tnfr 4.5.1__py3-none-any.whl → 4.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tnfr might be problematic. Click here for more details.
- tnfr/__init__.py +91 -90
- tnfr/alias.py +546 -0
- tnfr/cache.py +578 -0
- tnfr/callback_utils.py +388 -0
- tnfr/cli/__init__.py +75 -0
- tnfr/cli/arguments.py +177 -0
- tnfr/cli/execution.py +288 -0
- tnfr/cli/utils.py +36 -0
- tnfr/collections_utils.py +300 -0
- tnfr/config.py +19 -28
- tnfr/constants/__init__.py +174 -0
- tnfr/constants/core.py +159 -0
- tnfr/constants/init.py +31 -0
- tnfr/constants/metric.py +110 -0
- tnfr/constants_glyphs.py +98 -0
- tnfr/dynamics/__init__.py +658 -0
- tnfr/dynamics/dnfr.py +733 -0
- tnfr/dynamics/integrators.py +267 -0
- tnfr/dynamics/sampling.py +31 -0
- tnfr/execution.py +201 -0
- tnfr/flatten.py +283 -0
- tnfr/gamma.py +302 -88
- tnfr/glyph_history.py +290 -0
- tnfr/grammar.py +285 -96
- tnfr/graph_utils.py +84 -0
- tnfr/helpers/__init__.py +71 -0
- tnfr/helpers/numeric.py +87 -0
- tnfr/immutable.py +178 -0
- tnfr/import_utils.py +228 -0
- tnfr/initialization.py +197 -0
- tnfr/io.py +246 -0
- tnfr/json_utils.py +162 -0
- tnfr/locking.py +37 -0
- tnfr/logging_utils.py +116 -0
- tnfr/metrics/__init__.py +41 -0
- tnfr/metrics/coherence.py +829 -0
- tnfr/metrics/common.py +151 -0
- tnfr/metrics/core.py +101 -0
- tnfr/metrics/diagnosis.py +234 -0
- tnfr/metrics/export.py +137 -0
- tnfr/metrics/glyph_timing.py +189 -0
- tnfr/metrics/reporting.py +148 -0
- tnfr/metrics/sense_index.py +120 -0
- tnfr/metrics/trig.py +181 -0
- tnfr/metrics/trig_cache.py +109 -0
- tnfr/node.py +214 -159
- tnfr/observers.py +126 -136
- tnfr/ontosim.py +134 -134
- tnfr/operators/__init__.py +420 -0
- tnfr/operators/jitter.py +203 -0
- tnfr/operators/remesh.py +485 -0
- tnfr/presets.py +46 -14
- tnfr/rng.py +254 -0
- tnfr/selector.py +210 -0
- tnfr/sense.py +284 -131
- tnfr/structural.py +207 -79
- tnfr/tokens.py +60 -0
- tnfr/trace.py +329 -94
- tnfr/types.py +43 -17
- tnfr/validators.py +70 -24
- tnfr/value_utils.py +59 -0
- tnfr-4.5.2.dist-info/METADATA +379 -0
- tnfr-4.5.2.dist-info/RECORD +67 -0
- tnfr/cli.py +0 -322
- tnfr/constants.py +0 -277
- tnfr/dynamics.py +0 -814
- tnfr/helpers.py +0 -264
- tnfr/main.py +0 -47
- tnfr/metrics.py +0 -597
- tnfr/operators.py +0 -525
- tnfr/program.py +0 -176
- tnfr/scenarios.py +0 -34
- tnfr-4.5.1.dist-info/METADATA +0 -221
- tnfr-4.5.1.dist-info/RECORD +0 -28
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/WHEEL +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/entry_points.txt +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/licenses/LICENSE.md +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/top_level.txt +0 -0
tnfr/scenarios.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
from typing import Any
|
|
3
|
-
import random
|
|
4
|
-
import networkx as nx
|
|
5
|
-
|
|
6
|
-
from .constants import inject_defaults, DEFAULTS
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def build_graph(n: int = 24, topology: str = "ring", seed: int | None = 1):
|
|
10
|
-
rng = random.Random(seed)
|
|
11
|
-
if topology == "ring":
|
|
12
|
-
G = nx.cycle_graph(n)
|
|
13
|
-
elif topology == "complete":
|
|
14
|
-
G = nx.complete_graph(n)
|
|
15
|
-
elif topology == "erdos":
|
|
16
|
-
G = nx.gnp_random_graph(n, 3.0 / n, seed=seed)
|
|
17
|
-
else:
|
|
18
|
-
G = nx.path_graph(n)
|
|
19
|
-
|
|
20
|
-
# Valores canónicos para inicialización
|
|
21
|
-
inject_defaults(G, DEFAULTS)
|
|
22
|
-
vf_min = float(G.graph.get("VF_MIN", DEFAULTS["VF_MIN"]))
|
|
23
|
-
vf_max = float(G.graph.get("VF_MAX", DEFAULTS["VF_MAX"]))
|
|
24
|
-
th_min = float(G.graph.get("INIT_THETA_MIN", DEFAULTS.get("INIT_THETA_MIN", -3.1416)))
|
|
25
|
-
th_max = float(G.graph.get("INIT_THETA_MAX", DEFAULTS.get("INIT_THETA_MAX", 3.1416)))
|
|
26
|
-
|
|
27
|
-
for i in G.nodes():
|
|
28
|
-
nd = G.nodes[i]
|
|
29
|
-
nd.setdefault("EPI", rng.uniform(0.1, 0.3))
|
|
30
|
-
nd.setdefault("νf", rng.uniform(vf_min, vf_max))
|
|
31
|
-
nd.setdefault("θ", rng.uniform(th_min, th_max))
|
|
32
|
-
nd.setdefault("Si", rng.uniform(0.4, 0.7))
|
|
33
|
-
|
|
34
|
-
return G
|
tnfr-4.5.1.dist-info/METADATA
DELETED
|
@@ -1,221 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: tnfr
|
|
3
|
-
Version: 4.5.1
|
|
4
|
-
Summary: modular structural-based dynamics on networks
|
|
5
|
-
Author: fmg
|
|
6
|
-
License: MIT
|
|
7
|
-
Project-URL: Homepage, https://pypi.org/project/tnfr/
|
|
8
|
-
Project-URL: Repository, https://github.com/fermga/Teoria-de-la-naturaleza-fractal-resonante-TNFR-
|
|
9
|
-
Keywords: TNFR,resonant fractal,resonance,glyphs,networkx,dynamics,coherence,EPI,Kuramoto
|
|
10
|
-
Classifier: Programming Language :: Python :: 3
|
|
11
|
-
Classifier: Programming Language :: Python :: 3 :: Only
|
|
12
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.13
|
|
17
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
18
|
-
Classifier: Operating System :: OS Independent
|
|
19
|
-
Classifier: Intended Audience :: Science/Research
|
|
20
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
21
|
-
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
22
|
-
Requires-Python: >=3.9
|
|
23
|
-
Description-Content-Type: text/markdown
|
|
24
|
-
License-File: LICENSE.md
|
|
25
|
-
Requires-Dist: networkx>=2.6
|
|
26
|
-
Dynamic: license-file
|
|
27
|
-
|
|
28
|
-
# tnfr · Python package
|
|
29
|
-
|
|
30
|
-
> Engine for **modeling, simulation, and measurement** of multiscale structural coherence through **structural operators** (emission, reception, coherence, dissonance, coupling, resonance, silence, expansion, contraction, self‑organization, mutation, transition, recursivity).
|
|
31
|
-
|
|
32
|
-
---
|
|
33
|
-
|
|
34
|
-
## What is `tnfr`?
|
|
35
|
-
|
|
36
|
-
`tnfr` is a Python library to **operate with form**: build nodes, couple them into networks, and **modulate their coherence** over time using structural operators. It does not describe “things”; it **activates processes**. Its theoretical basis is the Resonant Fractal Nature Theory (TNFR), which understands reality as **networks of coherence** that persist because they **resonate**.
|
|
37
|
-
|
|
38
|
-
In practical terms, `tnfr` lets you:
|
|
39
|
-
|
|
40
|
-
* Model **Resonant Fractal Nodes (NFR)** with parameters for **frequency** (νf), **phase** (θ), and **form** (EPI).
|
|
41
|
-
* Apply **structural operators** to start, stabilize, propagate, or reconfigure coherence.
|
|
42
|
-
* **Simulate** nodal dynamics with discrete/continuous integrators.
|
|
43
|
-
* **Measure** global coherence C(t), nodal gradient ΔNFR, and the **Sense Index** (Si).
|
|
44
|
-
* **Visualize** states and trajectories (coupling matrices, C(t) curves, graphs).
|
|
45
|
-
|
|
46
|
-
> **Nodal equation (operational core)**
|
|
47
|
-
>
|
|
48
|
-
> $\frac{\partial \mathrm{EPI}}{\partial t} = \nu_f\,\cdot\,\Delta\mathrm{NFR}(t)$
|
|
49
|
-
>
|
|
50
|
-
> A form emerges and persists when **internal reorganization** (ΔNFR) **resonates** with the node’s **frequency** (νf).
|
|
51
|
-
|
|
52
|
-
---
|
|
53
|
-
|
|
54
|
-
## Installation
|
|
55
|
-
|
|
56
|
-
```bash
|
|
57
|
-
pip install tnfr
|
|
58
|
-
```
|
|
59
|
-
|
|
60
|
-
Requires **Python ≥ 3.9**.
|
|
61
|
-
|
|
62
|
-
---
|
|
63
|
-
|
|
64
|
-
## Why TNFR (in 60 seconds)
|
|
65
|
-
|
|
66
|
-
* **From objects to coherences:** you model **processes** that hold, not fixed entities.
|
|
67
|
-
* **Operators instead of rules:** you compose **structural operators** (e.g., *emission*, *coherence*, *dissonance*) to **build trajectories**.
|
|
68
|
-
* **Operational fractality:** the same pattern works for **ideas, teams, tissues, narratives**; the scales change, **the logic doesn’t**.
|
|
69
|
-
|
|
70
|
-
---
|
|
71
|
-
|
|
72
|
-
## Getting started (minimal recipe)
|
|
73
|
-
|
|
74
|
-
> *The high‑level API centers on three things: nodes, operators, simulation.*
|
|
75
|
-
|
|
76
|
-
```python
|
|
77
|
-
# 1) Nodes and network
|
|
78
|
-
import tnfr as T
|
|
79
|
-
|
|
80
|
-
# A minimal set of nodes with initial frequency (νf)
|
|
81
|
-
A = T.Node(label="seed", nu_f=0.8)
|
|
82
|
-
B = T.Node(label="context", nu_f=0.6)
|
|
83
|
-
net = T.Network([A, B], edges=[(A, B, 0.7)]) # coupling 0..1
|
|
84
|
-
|
|
85
|
-
# 2) Sequence of structural operators
|
|
86
|
-
ops = [
|
|
87
|
-
T.ops.Emission(strength=0.4), # start pattern
|
|
88
|
-
T.ops.Coupling(weight=0.7), # synchronize nodes
|
|
89
|
-
T.ops.Coherence(), # stabilize form
|
|
90
|
-
]
|
|
91
|
-
|
|
92
|
-
# 3) Simulation and metrics
|
|
93
|
-
traj = T.sim.run(net, ops, steps=200, dt=0.05)
|
|
94
|
-
print("C(t) =", T.metrics.coherence(traj)[-1])
|
|
95
|
-
print("Si =", T.metrics.sense_index(traj))
|
|
96
|
-
|
|
97
|
-
# 4) Quick visualization
|
|
98
|
-
T.viz.plot_coherence(traj) # C(t) curve
|
|
99
|
-
T.viz.plot_network(net) # graph/couplings
|
|
100
|
-
```
|
|
101
|
-
|
|
102
|
-
> **Note:** Specific class/function names may vary across minor versions. Check `help(T.ops)` and `help(T.sim)` for your installed API.
|
|
103
|
-
|
|
104
|
-
---
|
|
105
|
-
|
|
106
|
-
## Key concepts (operational summary)
|
|
107
|
-
|
|
108
|
-
* **Node (NFR):** a unit that persists because it **resonates**. Parameterized by **νf** (frequency), **θ** (phase), and **EPI** (coherent form).
|
|
109
|
-
* **Structural operators:** functions that reorganize the network. We use **functional** names (not phonemes):
|
|
110
|
-
|
|
111
|
-
* **Emission** (start), **Reception** (open), **Coherence** (stabilize), **Dissonance** (creative tension), **Coupling** (synchrony), **Resonance** (propagate), **Silence** (latency), **Expansion**, **Contraction**, **Self‑organization**, **Mutation**, **Transition**, **Recursivity**.
|
|
112
|
-
* **Magnitudes:**
|
|
113
|
-
|
|
114
|
-
* **C(t):** global coherence.
|
|
115
|
-
* **ΔNFR:** nodal gradient (need for reorganization).
|
|
116
|
-
* **νf:** structural frequency (Hz\_str).
|
|
117
|
-
* **Si:** sense index (ability to generate stable shared coherence).
|
|
118
|
-
|
|
119
|
-
---
|
|
120
|
-
|
|
121
|
-
## Typical workflow
|
|
122
|
-
|
|
123
|
-
1. **Model** your system as a network: nodes (agents, ideas, tissues, modules) and couplings.
|
|
124
|
-
2. **Select** a **trajectory of operators** aligned with your goal (e.g., *start → couple → stabilize*).
|
|
125
|
-
3. **Simulate** the dynamics: number of steps, step size, tolerances.
|
|
126
|
-
4. **Measure**: C(t), ΔNFR, Si; identify bifurcations and collapses.
|
|
127
|
-
5. **Iterate** with controlled **dissonance** to open mutations without losing form.
|
|
128
|
-
|
|
129
|
-
---
|
|
130
|
-
|
|
131
|
-
## High‑level API (orientation map)
|
|
132
|
-
|
|
133
|
-
> The typical module layout in `tnfr` is:
|
|
134
|
-
|
|
135
|
-
* `tnfr.core`: `Node`, `Network`, `EPI`, `State`
|
|
136
|
-
* `tnfr.ops`: structural operators (Emission, Reception, Coherence, Dissonance, ...)
|
|
137
|
-
* `tnfr.sim`: integrators (`run`, `step`, `integrate`), dt control and thresholds
|
|
138
|
-
* `tnfr.metrics`: `coherence`, `gradient`, `sense_index`, `phase_sync`
|
|
139
|
-
* `tnfr.viz`: plotting utilities (`plot_coherence`, `plot_network`, `plot_phase`)
|
|
140
|
-
|
|
141
|
-
Usage examples:
|
|
142
|
-
|
|
143
|
-
```python
|
|
144
|
-
from tnfr import core, ops, sim, metrics
|
|
145
|
-
|
|
146
|
-
net = core.Network.from_edges([
|
|
147
|
-
("n1", "n2", 0.6),
|
|
148
|
-
("n2", "n3", 0.8),
|
|
149
|
-
])
|
|
150
|
-
|
|
151
|
-
sequence = [ops.Emission(0.3), ops.Coupling(0.5), ops.Coherence()]
|
|
152
|
-
traj = sim.run(net, sequence, steps=500)
|
|
153
|
-
|
|
154
|
-
print(metrics.coherence(traj))
|
|
155
|
-
```
|
|
156
|
-
|
|
157
|
-
---
|
|
158
|
-
|
|
159
|
-
## Parametric modeling
|
|
160
|
-
|
|
161
|
-
```python
|
|
162
|
-
import tnfr as T
|
|
163
|
-
|
|
164
|
-
net = T.Network.uniform(n=25, nu_f=0.4, coupling=0.3)
|
|
165
|
-
plan = (
|
|
166
|
-
T.ops.Emission(0.2)
|
|
167
|
-
>> T.ops.Expansion(0.4)
|
|
168
|
-
>> T.ops.Coupling(0.6)
|
|
169
|
-
>> T.ops.Coherence()
|
|
170
|
-
)
|
|
171
|
-
traj = T.sim.run(net, plan, steps=800)
|
|
172
|
-
T.viz.plot_phase(traj)
|
|
173
|
-
```
|
|
174
|
-
|
|
175
|
-
---
|
|
176
|
-
|
|
177
|
-
## Main metrics
|
|
178
|
-
|
|
179
|
-
* `coherence(traj) → C(t)`: global stability; higher values indicate sustained form.
|
|
180
|
-
* `gradient(state) → ΔNFR`: local demand for reorganization (high = risk of collapse/bifurcation).
|
|
181
|
-
* `sense_index(traj) → Si`: proxy for **structural sense** (capacity to generate shared coherence) combining **νf**, phase, and topology.
|
|
182
|
-
|
|
183
|
-
---
|
|
184
|
-
|
|
185
|
-
## Best practices
|
|
186
|
-
|
|
187
|
-
* **Short sequences** and frequent C(t) checks avoid unnecessary collapses.
|
|
188
|
-
* Use **dissonance** as a tool: introduce it to open possibilities, but **seal** with coherence.
|
|
189
|
-
* **Scale first, detail later:** tune coarse couplings before micro‑parameters.
|
|
190
|
-
|
|
191
|
-
---
|
|
192
|
-
|
|
193
|
-
## Project status
|
|
194
|
-
|
|
195
|
-
* **pre‑1.0 API**: signatures may be refined; concepts and magnitudes are stable.
|
|
196
|
-
* **Pure‑Python** core with minimal dependencies (optional: `numpy`, `matplotlib`, `networkx`).
|
|
197
|
-
|
|
198
|
-
---
|
|
199
|
-
|
|
200
|
-
## Contributing
|
|
201
|
-
|
|
202
|
-
Suggestions, issues, and PRs are welcome. Guidelines:
|
|
203
|
-
|
|
204
|
-
1. Prioritize **operational clarity** (names, docstrings, examples).
|
|
205
|
-
2. Add **tests** and **notebooks** that show the structural effect of each PR.
|
|
206
|
-
3. Keep **semantic neutrality**: operators act on form, not on contents.
|
|
207
|
-
|
|
208
|
-
---
|
|
209
|
-
|
|
210
|
-
## License
|
|
211
|
-
|
|
212
|
-
MIT
|
|
213
|
-
|
|
214
|
-
---
|
|
215
|
-
|
|
216
|
-
## References & notes
|
|
217
|
-
|
|
218
|
-
* Theoretical foundations: TNFR operational manual.
|
|
219
|
-
* Operational definitions: nodal equation, dimensions (frequency, phase, form), and structural operators.
|
|
220
|
-
|
|
221
|
-
> If you use `tnfr` in research or projects, please cite the TNFR conceptual framework and link to the PyPI package.
|
tnfr-4.5.1.dist-info/RECORD
DELETED
|
@@ -1,28 +0,0 @@
|
|
|
1
|
-
tnfr/__init__.py,sha256=2j-PNqXRQxiMOsq6qEZ33XZ59vuqrvLXq7g4GCxAwDw,2790
|
|
2
|
-
tnfr/cli.py,sha256=7OR3dlWUVjEKVH_itH-zYq8WQculXwSdCDDvmQH15kY,14372
|
|
3
|
-
tnfr/config.py,sha256=bFc5AnLVoF0oUrSedAi5WpD6oCvn4hhLHO7WGgslg2M,1303
|
|
4
|
-
tnfr/constants.py,sha256=XoUlTuUaQgQ6BbHzKSIHijqRMf9Gb3Avjo7_CLicgps,11570
|
|
5
|
-
tnfr/dynamics.py,sha256=An0MlAJVhCy5uCQsl3c_PZKdAKBZojgRCnTAQzfaahg,32799
|
|
6
|
-
tnfr/gamma.py,sha256=U1yXbv4ef9VSwXirjRlcwdNr78Ah5LstAsg5WIkRQxY,4083
|
|
7
|
-
tnfr/grammar.py,sha256=vz5F0P3IfvA6HassRcoD327hBP5vCUw-xPSTsPmqwhQ,5363
|
|
8
|
-
tnfr/helpers.py,sha256=KT9_CAz3Z-WRKdARyGnsQ16m-p2z-l1-Y6UhVyY8tcU,8323
|
|
9
|
-
tnfr/main.py,sha256=XqjI1YEdF-OqRzTMa5dYIxCig4qyAR-l1FPcyxpC8WY,1926
|
|
10
|
-
tnfr/metrics.py,sha256=MTp0YifWdycW-jUFWhvxbJx-labWUR0thTnS0sxifrg,20259
|
|
11
|
-
tnfr/node.py,sha256=A3nlaW_lwG0Q1dj6HPmyjfccWfZt4rwnzqPxTglu-Sk,6184
|
|
12
|
-
tnfr/observers.py,sha256=7bdxYCXVDwHeSeeyI9IalogMuxaZYy2MafDs9rWEyQY,5979
|
|
13
|
-
tnfr/ontosim.py,sha256=9GfEtiLIdJOPJUTufcq_MssAA9J8AfChHU6HKb3DIJY,5628
|
|
14
|
-
tnfr/operators.py,sha256=TSY2LNIC-um3iSwniYiyu6oumnDwiES2zwb2B7ZbEZE,20536
|
|
15
|
-
tnfr/presets.py,sha256=qFuDxlexc_kw--3VRaOx3cfyL6vPEOX_UVsJd2DNWAE,998
|
|
16
|
-
tnfr/program.py,sha256=eim7D8zsbbkGDWbODag-0VKG44jEYioX4Sl6KRwgVtw,6038
|
|
17
|
-
tnfr/scenarios.py,sha256=QkUdCHp5R5T44fgfGppJ8dHzZa6avdNTNsYJbya_7XM,1165
|
|
18
|
-
tnfr/sense.py,sha256=9ABkqHjwu5pxoakddZwANpp9xy_NNo4frm9NGTg1GXQ,6482
|
|
19
|
-
tnfr/structural.py,sha256=hE5_l7cuiPad9AuFVrFtnkJ8A8eL_e69gUN5VknkQiI,5155
|
|
20
|
-
tnfr/trace.py,sha256=e_xdOOMZ5rqXOcdw99h8X1RnVuf_s9AeTzncqS551hE,4735
|
|
21
|
-
tnfr/types.py,sha256=CnSwzzh9d0WgqB128y71iNWiiAA7Sf-eJ_v1xHMAwLo,507
|
|
22
|
-
tnfr/validators.py,sha256=tCsz9A8OvEKiBZX9wvvri_C894XXdWfkbEZ6qqpcdNg,1169
|
|
23
|
-
tnfr-4.5.1.dist-info/licenses/LICENSE.md,sha256=SRvvhXLrKtseuK6DARbuJffuXOXqAyk3wvF2n0t1SWA,1109
|
|
24
|
-
tnfr-4.5.1.dist-info/METADATA,sha256=EQzW2AFCOyt8eVHWaqk5ka1MIzHCUn1IRRg8x1czxbA,8119
|
|
25
|
-
tnfr-4.5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
26
|
-
tnfr-4.5.1.dist-info/entry_points.txt,sha256=j4-QRHqeT2WnchHe_mvK7npGTLjlyfLpvRONFe9Z4MU,39
|
|
27
|
-
tnfr-4.5.1.dist-info/top_level.txt,sha256=Q2HJnvc5Rt2VHwVvyBTnNPT4SfmJWnCj7XUxxEvQa7c,5
|
|
28
|
-
tnfr-4.5.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|