tnfr 4.5.1__py3-none-any.whl → 4.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tnfr might be problematic. Click here for more details.
- tnfr/__init__.py +91 -90
- tnfr/alias.py +546 -0
- tnfr/cache.py +578 -0
- tnfr/callback_utils.py +388 -0
- tnfr/cli/__init__.py +75 -0
- tnfr/cli/arguments.py +177 -0
- tnfr/cli/execution.py +288 -0
- tnfr/cli/utils.py +36 -0
- tnfr/collections_utils.py +300 -0
- tnfr/config.py +19 -28
- tnfr/constants/__init__.py +174 -0
- tnfr/constants/core.py +159 -0
- tnfr/constants/init.py +31 -0
- tnfr/constants/metric.py +110 -0
- tnfr/constants_glyphs.py +98 -0
- tnfr/dynamics/__init__.py +658 -0
- tnfr/dynamics/dnfr.py +733 -0
- tnfr/dynamics/integrators.py +267 -0
- tnfr/dynamics/sampling.py +31 -0
- tnfr/execution.py +201 -0
- tnfr/flatten.py +283 -0
- tnfr/gamma.py +302 -88
- tnfr/glyph_history.py +290 -0
- tnfr/grammar.py +285 -96
- tnfr/graph_utils.py +84 -0
- tnfr/helpers/__init__.py +71 -0
- tnfr/helpers/numeric.py +87 -0
- tnfr/immutable.py +178 -0
- tnfr/import_utils.py +228 -0
- tnfr/initialization.py +197 -0
- tnfr/io.py +246 -0
- tnfr/json_utils.py +162 -0
- tnfr/locking.py +37 -0
- tnfr/logging_utils.py +116 -0
- tnfr/metrics/__init__.py +41 -0
- tnfr/metrics/coherence.py +829 -0
- tnfr/metrics/common.py +151 -0
- tnfr/metrics/core.py +101 -0
- tnfr/metrics/diagnosis.py +234 -0
- tnfr/metrics/export.py +137 -0
- tnfr/metrics/glyph_timing.py +189 -0
- tnfr/metrics/reporting.py +148 -0
- tnfr/metrics/sense_index.py +120 -0
- tnfr/metrics/trig.py +181 -0
- tnfr/metrics/trig_cache.py +109 -0
- tnfr/node.py +214 -159
- tnfr/observers.py +126 -136
- tnfr/ontosim.py +134 -134
- tnfr/operators/__init__.py +420 -0
- tnfr/operators/jitter.py +203 -0
- tnfr/operators/remesh.py +485 -0
- tnfr/presets.py +46 -14
- tnfr/rng.py +254 -0
- tnfr/selector.py +210 -0
- tnfr/sense.py +284 -131
- tnfr/structural.py +207 -79
- tnfr/tokens.py +60 -0
- tnfr/trace.py +329 -94
- tnfr/types.py +43 -17
- tnfr/validators.py +70 -24
- tnfr/value_utils.py +59 -0
- tnfr-4.5.2.dist-info/METADATA +379 -0
- tnfr-4.5.2.dist-info/RECORD +67 -0
- tnfr/cli.py +0 -322
- tnfr/constants.py +0 -277
- tnfr/dynamics.py +0 -814
- tnfr/helpers.py +0 -264
- tnfr/main.py +0 -47
- tnfr/metrics.py +0 -597
- tnfr/operators.py +0 -525
- tnfr/program.py +0 -176
- tnfr/scenarios.py +0 -34
- tnfr-4.5.1.dist-info/METADATA +0 -221
- tnfr-4.5.1.dist-info/RECORD +0 -28
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/WHEEL +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/entry_points.txt +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/licenses/LICENSE.md +0 -0
- {tnfr-4.5.1.dist-info → tnfr-4.5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,829 @@
|
|
|
1
|
+
"""Coherence metrics."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import math
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import Any, Sequence
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
from ..constants import (
|
|
11
|
+
get_aliases,
|
|
12
|
+
get_param,
|
|
13
|
+
)
|
|
14
|
+
from ..callback_utils import CallbackEvent, callback_manager
|
|
15
|
+
from ..glyph_history import ensure_history, append_metric
|
|
16
|
+
from ..alias import collect_attr, get_attr, set_attr
|
|
17
|
+
from ..collections_utils import normalize_weights
|
|
18
|
+
from ..helpers.numeric import clamp01
|
|
19
|
+
from ..cache import ensure_node_index_map
|
|
20
|
+
from .common import compute_coherence, min_max_range
|
|
21
|
+
from .trig_cache import compute_theta_trig, get_trig_cache
|
|
22
|
+
from ..observers import (
|
|
23
|
+
DEFAULT_GLYPH_LOAD_SPAN,
|
|
24
|
+
DEFAULT_WBAR_SPAN,
|
|
25
|
+
glyph_load,
|
|
26
|
+
kuramoto_order,
|
|
27
|
+
phase_sync,
|
|
28
|
+
)
|
|
29
|
+
from ..sense import sigma_vector
|
|
30
|
+
from ..import_utils import get_numpy
|
|
31
|
+
from ..logging_utils import get_logger
|
|
32
|
+
|
|
33
|
+
logger = get_logger(__name__)
|
|
34
|
+
|
|
35
|
+
ALIAS_THETA = get_aliases("THETA")
|
|
36
|
+
ALIAS_EPI = get_aliases("EPI")
|
|
37
|
+
ALIAS_VF = get_aliases("VF")
|
|
38
|
+
ALIAS_SI = get_aliases("SI")
|
|
39
|
+
ALIAS_DNFR = get_aliases("DNFR")
|
|
40
|
+
ALIAS_DEPI = get_aliases("DEPI")
|
|
41
|
+
ALIAS_DSI = get_aliases("DSI")
|
|
42
|
+
ALIAS_DVF = get_aliases("DVF")
|
|
43
|
+
ALIAS_D2VF = get_aliases("D2VF")
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
@dataclass
|
|
47
|
+
class SimilarityInputs:
|
|
48
|
+
"""Similarity inputs and optional trigonometric caches."""
|
|
49
|
+
|
|
50
|
+
th_vals: Sequence[float]
|
|
51
|
+
epi_vals: Sequence[float]
|
|
52
|
+
vf_vals: Sequence[float]
|
|
53
|
+
si_vals: Sequence[float]
|
|
54
|
+
cos_vals: Sequence[float] | None = None
|
|
55
|
+
sin_vals: Sequence[float] | None = None
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def _compute_wij_phase_epi_vf_si_vectorized(
|
|
59
|
+
epi,
|
|
60
|
+
vf,
|
|
61
|
+
si,
|
|
62
|
+
cos_th,
|
|
63
|
+
sin_th,
|
|
64
|
+
epi_range,
|
|
65
|
+
vf_range,
|
|
66
|
+
np,
|
|
67
|
+
):
|
|
68
|
+
"""Vectorized computation of similarity components.
|
|
69
|
+
|
|
70
|
+
All parameters are expected to be NumPy arrays already cast to ``float``
|
|
71
|
+
when appropriate. ``epi_range`` and ``vf_range`` are normalized inside the
|
|
72
|
+
function to avoid division by zero.
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
epi_range = epi_range if epi_range > 0 else 1.0
|
|
76
|
+
vf_range = vf_range if vf_range > 0 else 1.0
|
|
77
|
+
s_phase = 0.5 * (
|
|
78
|
+
1.0
|
|
79
|
+
+ cos_th[:, None] * cos_th[None, :]
|
|
80
|
+
+ sin_th[:, None] * sin_th[None, :]
|
|
81
|
+
)
|
|
82
|
+
s_epi = 1.0 - np.abs(epi[:, None] - epi[None, :]) / epi_range
|
|
83
|
+
s_vf = 1.0 - np.abs(vf[:, None] - vf[None, :]) / vf_range
|
|
84
|
+
s_si = 1.0 - np.abs(si[:, None] - si[None, :])
|
|
85
|
+
return s_phase, s_epi, s_vf, s_si
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def compute_wij_phase_epi_vf_si(
|
|
89
|
+
inputs: SimilarityInputs,
|
|
90
|
+
i: int | None = None,
|
|
91
|
+
j: int | None = None,
|
|
92
|
+
*,
|
|
93
|
+
trig=None,
|
|
94
|
+
G: Any | None = None,
|
|
95
|
+
nodes: Sequence[Any] | None = None,
|
|
96
|
+
epi_range: float = 1.0,
|
|
97
|
+
vf_range: float = 1.0,
|
|
98
|
+
np=None,
|
|
99
|
+
):
|
|
100
|
+
"""Return similarity components for nodes ``i`` and ``j``.
|
|
101
|
+
|
|
102
|
+
When ``np`` is provided and ``i`` and ``j`` are ``None`` the computation is
|
|
103
|
+
vectorized returning full matrices for all node pairs.
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
trig = trig or (get_trig_cache(G, np=np) if G is not None else None)
|
|
107
|
+
cos_vals = inputs.cos_vals
|
|
108
|
+
sin_vals = inputs.sin_vals
|
|
109
|
+
if cos_vals is None or sin_vals is None:
|
|
110
|
+
th_vals = inputs.th_vals
|
|
111
|
+
pairs = zip(nodes or range(len(th_vals)), th_vals)
|
|
112
|
+
trig_local = compute_theta_trig(pairs, np=np)
|
|
113
|
+
index_iter = nodes if nodes is not None else range(len(th_vals))
|
|
114
|
+
if trig is not None and nodes is not None:
|
|
115
|
+
cos_vals = [trig.cos.get(n, trig_local.cos[n]) for n in nodes]
|
|
116
|
+
sin_vals = [trig.sin.get(n, trig_local.sin[n]) for n in nodes]
|
|
117
|
+
else:
|
|
118
|
+
cos_vals = [trig_local.cos[i] for i in index_iter]
|
|
119
|
+
sin_vals = [trig_local.sin[i] for i in index_iter]
|
|
120
|
+
inputs.cos_vals = cos_vals
|
|
121
|
+
inputs.sin_vals = sin_vals
|
|
122
|
+
|
|
123
|
+
th_vals = inputs.th_vals
|
|
124
|
+
epi_vals = inputs.epi_vals
|
|
125
|
+
vf_vals = inputs.vf_vals
|
|
126
|
+
si_vals = inputs.si_vals
|
|
127
|
+
|
|
128
|
+
if np is not None and i is None and j is None:
|
|
129
|
+
epi = np.asarray(epi_vals)
|
|
130
|
+
vf = np.asarray(vf_vals)
|
|
131
|
+
si = np.asarray(si_vals)
|
|
132
|
+
cos_th = np.asarray(cos_vals, dtype=float)
|
|
133
|
+
sin_th = np.asarray(sin_vals, dtype=float)
|
|
134
|
+
return _compute_wij_phase_epi_vf_si_vectorized(
|
|
135
|
+
epi,
|
|
136
|
+
vf,
|
|
137
|
+
si,
|
|
138
|
+
cos_th,
|
|
139
|
+
sin_th,
|
|
140
|
+
epi_range,
|
|
141
|
+
vf_range,
|
|
142
|
+
np,
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
if i is None or j is None:
|
|
146
|
+
raise ValueError("i and j are required for non-vectorized computation")
|
|
147
|
+
epi_range = epi_range if epi_range > 0 else 1.0
|
|
148
|
+
vf_range = vf_range if vf_range > 0 else 1.0
|
|
149
|
+
cos_i = cos_vals[i]
|
|
150
|
+
sin_i = sin_vals[i]
|
|
151
|
+
cos_j = cos_vals[j]
|
|
152
|
+
sin_j = sin_vals[j]
|
|
153
|
+
s_phase = 0.5 * (1.0 + (cos_i * cos_j + sin_i * sin_j))
|
|
154
|
+
s_epi = 1.0 - abs(epi_vals[i] - epi_vals[j]) / epi_range
|
|
155
|
+
s_vf = 1.0 - abs(vf_vals[i] - vf_vals[j]) / vf_range
|
|
156
|
+
s_si = 1.0 - abs(si_vals[i] - si_vals[j])
|
|
157
|
+
return s_phase, s_epi, s_vf, s_si
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def _combine_similarity(
|
|
161
|
+
s_phase,
|
|
162
|
+
s_epi,
|
|
163
|
+
s_vf,
|
|
164
|
+
s_si,
|
|
165
|
+
phase_w,
|
|
166
|
+
epi_w,
|
|
167
|
+
vf_w,
|
|
168
|
+
si_w,
|
|
169
|
+
np=None,
|
|
170
|
+
):
|
|
171
|
+
wij = phase_w * s_phase + epi_w * s_epi + vf_w * s_vf + si_w * s_si
|
|
172
|
+
if np is not None:
|
|
173
|
+
return np.clip(wij, 0.0, 1.0)
|
|
174
|
+
return clamp01(wij)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def _wij_components_weights(
|
|
178
|
+
G,
|
|
179
|
+
nodes,
|
|
180
|
+
inputs: SimilarityInputs,
|
|
181
|
+
wnorm,
|
|
182
|
+
i: int | None = None,
|
|
183
|
+
j: int | None = None,
|
|
184
|
+
epi_range: float = 1.0,
|
|
185
|
+
vf_range: float = 1.0,
|
|
186
|
+
np=None,
|
|
187
|
+
):
|
|
188
|
+
"""Return similarity components together with their weights.
|
|
189
|
+
|
|
190
|
+
This consolidates repeated computations ensuring that both the
|
|
191
|
+
similarity components and the corresponding weights are derived once and
|
|
192
|
+
consistently across different implementations.
|
|
193
|
+
"""
|
|
194
|
+
|
|
195
|
+
s_phase, s_epi, s_vf, s_si = compute_wij_phase_epi_vf_si(
|
|
196
|
+
inputs,
|
|
197
|
+
i,
|
|
198
|
+
j,
|
|
199
|
+
G=G,
|
|
200
|
+
nodes=nodes,
|
|
201
|
+
epi_range=epi_range,
|
|
202
|
+
vf_range=vf_range,
|
|
203
|
+
np=np,
|
|
204
|
+
)
|
|
205
|
+
phase_w = wnorm["phase"]
|
|
206
|
+
epi_w = wnorm["epi"]
|
|
207
|
+
vf_w = wnorm["vf"]
|
|
208
|
+
si_w = wnorm["si"]
|
|
209
|
+
return s_phase, s_epi, s_vf, s_si, phase_w, epi_w, vf_w, si_w
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
def _wij_vectorized(
|
|
213
|
+
G,
|
|
214
|
+
nodes,
|
|
215
|
+
inputs: SimilarityInputs,
|
|
216
|
+
wnorm,
|
|
217
|
+
epi_min,
|
|
218
|
+
epi_max,
|
|
219
|
+
vf_min,
|
|
220
|
+
vf_max,
|
|
221
|
+
self_diag,
|
|
222
|
+
np,
|
|
223
|
+
):
|
|
224
|
+
epi_range = epi_max - epi_min if epi_max > epi_min else 1.0
|
|
225
|
+
vf_range = vf_max - vf_min if vf_max > vf_min else 1.0
|
|
226
|
+
(
|
|
227
|
+
s_phase,
|
|
228
|
+
s_epi,
|
|
229
|
+
s_vf,
|
|
230
|
+
s_si,
|
|
231
|
+
phase_w,
|
|
232
|
+
epi_w,
|
|
233
|
+
vf_w,
|
|
234
|
+
si_w,
|
|
235
|
+
) = _wij_components_weights(
|
|
236
|
+
G,
|
|
237
|
+
nodes,
|
|
238
|
+
inputs,
|
|
239
|
+
wnorm,
|
|
240
|
+
epi_range=epi_range,
|
|
241
|
+
vf_range=vf_range,
|
|
242
|
+
np=np,
|
|
243
|
+
)
|
|
244
|
+
wij = _combine_similarity(
|
|
245
|
+
s_phase, s_epi, s_vf, s_si, phase_w, epi_w, vf_w, si_w, np=np
|
|
246
|
+
)
|
|
247
|
+
if self_diag:
|
|
248
|
+
np.fill_diagonal(wij, 1.0)
|
|
249
|
+
else:
|
|
250
|
+
np.fill_diagonal(wij, 0.0)
|
|
251
|
+
return wij
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
def _assign_wij(
|
|
255
|
+
wij: list[list[float]],
|
|
256
|
+
i: int,
|
|
257
|
+
j: int,
|
|
258
|
+
G: Any,
|
|
259
|
+
nodes: Sequence[Any],
|
|
260
|
+
inputs: SimilarityInputs,
|
|
261
|
+
epi_range: float,
|
|
262
|
+
vf_range: float,
|
|
263
|
+
wnorm: dict[str, float],
|
|
264
|
+
) -> None:
|
|
265
|
+
(
|
|
266
|
+
s_phase,
|
|
267
|
+
s_epi,
|
|
268
|
+
s_vf,
|
|
269
|
+
s_si,
|
|
270
|
+
phase_w,
|
|
271
|
+
epi_w,
|
|
272
|
+
vf_w,
|
|
273
|
+
si_w,
|
|
274
|
+
) = _wij_components_weights(
|
|
275
|
+
G,
|
|
276
|
+
nodes,
|
|
277
|
+
inputs,
|
|
278
|
+
wnorm,
|
|
279
|
+
i,
|
|
280
|
+
j,
|
|
281
|
+
epi_range,
|
|
282
|
+
vf_range,
|
|
283
|
+
)
|
|
284
|
+
wij_ij = _combine_similarity(
|
|
285
|
+
s_phase, s_epi, s_vf, s_si, phase_w, epi_w, vf_w, si_w
|
|
286
|
+
)
|
|
287
|
+
wij[i][j] = wij[j][i] = wij_ij
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
def _wij_loops(
|
|
291
|
+
G,
|
|
292
|
+
nodes: Sequence[Any],
|
|
293
|
+
node_to_index: dict[Any, int],
|
|
294
|
+
inputs: SimilarityInputs,
|
|
295
|
+
wnorm: dict[str, float],
|
|
296
|
+
epi_min: float,
|
|
297
|
+
epi_max: float,
|
|
298
|
+
vf_min: float,
|
|
299
|
+
vf_max: float,
|
|
300
|
+
neighbors_only: bool,
|
|
301
|
+
self_diag: bool,
|
|
302
|
+
) -> list[list[float]]:
|
|
303
|
+
n = len(nodes)
|
|
304
|
+
cos_vals = inputs.cos_vals
|
|
305
|
+
sin_vals = inputs.sin_vals
|
|
306
|
+
if cos_vals is None or sin_vals is None:
|
|
307
|
+
th_vals = inputs.th_vals
|
|
308
|
+
trig_local = compute_theta_trig(zip(nodes, th_vals))
|
|
309
|
+
cos_vals = [trig_local.cos[n] for n in nodes]
|
|
310
|
+
sin_vals = [trig_local.sin[n] for n in nodes]
|
|
311
|
+
inputs.cos_vals = cos_vals
|
|
312
|
+
inputs.sin_vals = sin_vals
|
|
313
|
+
wij = [
|
|
314
|
+
[1.0 if (self_diag and i == j) else 0.0 for j in range(n)]
|
|
315
|
+
for i in range(n)
|
|
316
|
+
]
|
|
317
|
+
epi_range = epi_max - epi_min if epi_max > epi_min else 1.0
|
|
318
|
+
vf_range = vf_max - vf_min if vf_max > vf_min else 1.0
|
|
319
|
+
if neighbors_only:
|
|
320
|
+
for u, v in G.edges():
|
|
321
|
+
i = node_to_index[u]
|
|
322
|
+
j = node_to_index[v]
|
|
323
|
+
if i == j:
|
|
324
|
+
continue
|
|
325
|
+
_assign_wij(
|
|
326
|
+
wij,
|
|
327
|
+
i,
|
|
328
|
+
j,
|
|
329
|
+
G,
|
|
330
|
+
nodes,
|
|
331
|
+
inputs,
|
|
332
|
+
epi_range,
|
|
333
|
+
vf_range,
|
|
334
|
+
wnorm,
|
|
335
|
+
)
|
|
336
|
+
else:
|
|
337
|
+
for i in range(n):
|
|
338
|
+
for j in range(i + 1, n):
|
|
339
|
+
_assign_wij(
|
|
340
|
+
wij,
|
|
341
|
+
i,
|
|
342
|
+
j,
|
|
343
|
+
G,
|
|
344
|
+
nodes,
|
|
345
|
+
inputs,
|
|
346
|
+
epi_range,
|
|
347
|
+
vf_range,
|
|
348
|
+
wnorm,
|
|
349
|
+
)
|
|
350
|
+
return wij
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
def _compute_stats(values, row_sum, n, self_diag, np=None):
|
|
354
|
+
"""Return aggregate statistics for ``values`` and normalized row sums.
|
|
355
|
+
|
|
356
|
+
``values`` and ``row_sum`` can be any iterables. They are normalized to
|
|
357
|
+
either NumPy arrays or Python lists depending on the availability of
|
|
358
|
+
NumPy. The computation then delegates to the appropriate numerical
|
|
359
|
+
functions with minimal branching.
|
|
360
|
+
"""
|
|
361
|
+
|
|
362
|
+
if np is not None:
|
|
363
|
+
# Normalize inputs to NumPy arrays
|
|
364
|
+
if not isinstance(values, np.ndarray):
|
|
365
|
+
values = np.asarray(list(values), dtype=float)
|
|
366
|
+
else:
|
|
367
|
+
values = values.astype(float)
|
|
368
|
+
if not isinstance(row_sum, np.ndarray):
|
|
369
|
+
row_sum = np.asarray(list(row_sum), dtype=float)
|
|
370
|
+
else:
|
|
371
|
+
row_sum = row_sum.astype(float)
|
|
372
|
+
|
|
373
|
+
def size_fn(v):
|
|
374
|
+
return int(v.size)
|
|
375
|
+
|
|
376
|
+
def min_fn(v):
|
|
377
|
+
return float(v.min()) if v.size else 0.0
|
|
378
|
+
|
|
379
|
+
def max_fn(v):
|
|
380
|
+
return float(v.max()) if v.size else 0.0
|
|
381
|
+
|
|
382
|
+
def mean_fn(v):
|
|
383
|
+
return float(v.mean()) if v.size else 0.0
|
|
384
|
+
|
|
385
|
+
def wi_fn(r, d):
|
|
386
|
+
return (r / d).astype(float).tolist()
|
|
387
|
+
|
|
388
|
+
else:
|
|
389
|
+
# Fall back to pure Python lists
|
|
390
|
+
values = list(values)
|
|
391
|
+
row_sum = list(row_sum)
|
|
392
|
+
|
|
393
|
+
def size_fn(v):
|
|
394
|
+
return len(v)
|
|
395
|
+
|
|
396
|
+
def min_fn(v):
|
|
397
|
+
return min(v) if v else 0.0
|
|
398
|
+
|
|
399
|
+
def max_fn(v):
|
|
400
|
+
return max(v) if v else 0.0
|
|
401
|
+
|
|
402
|
+
def mean_fn(v):
|
|
403
|
+
return sum(v) / len(v) if v else 0.0
|
|
404
|
+
|
|
405
|
+
def wi_fn(r, d):
|
|
406
|
+
return [float(r[i]) / d for i in range(n)]
|
|
407
|
+
|
|
408
|
+
count_val = size_fn(values)
|
|
409
|
+
min_val = min_fn(values)
|
|
410
|
+
max_val = max_fn(values)
|
|
411
|
+
mean_val = mean_fn(values)
|
|
412
|
+
row_count = n if self_diag else n - 1
|
|
413
|
+
denom = max(1, row_count)
|
|
414
|
+
Wi = wi_fn(row_sum, denom)
|
|
415
|
+
return min_val, max_val, mean_val, Wi, count_val
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+
def _coherence_numpy(wij, mode, thr, np):
|
|
419
|
+
"""Aggregate coherence weights using vectorized operations.
|
|
420
|
+
|
|
421
|
+
Produces the structural weight matrix ``W`` along with the list of off
|
|
422
|
+
diagonal values and row sums ready for statistical analysis.
|
|
423
|
+
"""
|
|
424
|
+
|
|
425
|
+
n = wij.shape[0]
|
|
426
|
+
mask = ~np.eye(n, dtype=bool)
|
|
427
|
+
values = wij[mask]
|
|
428
|
+
row_sum = wij.sum(axis=1)
|
|
429
|
+
if mode == "dense":
|
|
430
|
+
W = wij.tolist()
|
|
431
|
+
else:
|
|
432
|
+
idx = np.where((wij >= thr) & mask)
|
|
433
|
+
W = [
|
|
434
|
+
(int(i), int(j), float(wij[i, j]))
|
|
435
|
+
for i, j in zip(idx[0], idx[1])
|
|
436
|
+
]
|
|
437
|
+
return n, values, row_sum, W
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
def _coherence_python(wij, mode, thr):
|
|
441
|
+
"""Aggregate coherence weights using pure Python loops."""
|
|
442
|
+
|
|
443
|
+
n = len(wij)
|
|
444
|
+
values: list[float] = []
|
|
445
|
+
row_sum = [0.0] * n
|
|
446
|
+
if mode == "dense":
|
|
447
|
+
W = [row[:] for row in wij]
|
|
448
|
+
for i in range(n):
|
|
449
|
+
for j in range(n):
|
|
450
|
+
w = W[i][j]
|
|
451
|
+
if i != j:
|
|
452
|
+
values.append(w)
|
|
453
|
+
row_sum[i] += w
|
|
454
|
+
else:
|
|
455
|
+
W: list[tuple[int, int, float]] = []
|
|
456
|
+
for i in range(n):
|
|
457
|
+
row_i = wij[i]
|
|
458
|
+
for j in range(n):
|
|
459
|
+
w = row_i[j]
|
|
460
|
+
if i != j:
|
|
461
|
+
values.append(w)
|
|
462
|
+
if w >= thr:
|
|
463
|
+
W.append((i, j, w))
|
|
464
|
+
row_sum[i] += w
|
|
465
|
+
return n, values, row_sum, W
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
def _finalize_wij(G, nodes, wij, mode, thr, scope, self_diag, np=None):
|
|
469
|
+
"""Finalize the coherence matrix ``wij`` and store results in history.
|
|
470
|
+
|
|
471
|
+
When ``np`` is provided and ``wij`` is a NumPy array, the computation is
|
|
472
|
+
performed using vectorized operations. Otherwise a pure Python loop-based
|
|
473
|
+
approach is used.
|
|
474
|
+
"""
|
|
475
|
+
|
|
476
|
+
use_np = np is not None and isinstance(wij, np.ndarray)
|
|
477
|
+
n, values, row_sum, W = (
|
|
478
|
+
_coherence_numpy(wij, mode, thr, np)
|
|
479
|
+
if use_np
|
|
480
|
+
else _coherence_python(wij, mode, thr)
|
|
481
|
+
)
|
|
482
|
+
|
|
483
|
+
min_val, max_val, mean_val, Wi, count_val = _compute_stats(
|
|
484
|
+
values, row_sum, n, self_diag, np if use_np else None
|
|
485
|
+
)
|
|
486
|
+
stats = {
|
|
487
|
+
"min": min_val,
|
|
488
|
+
"max": max_val,
|
|
489
|
+
"mean": mean_val,
|
|
490
|
+
"n_edges": count_val,
|
|
491
|
+
"mode": mode,
|
|
492
|
+
"scope": scope,
|
|
493
|
+
}
|
|
494
|
+
|
|
495
|
+
hist = ensure_history(G)
|
|
496
|
+
cfg = get_param(G, "COHERENCE")
|
|
497
|
+
append_metric(hist, cfg.get("history_key", "W_sparse"), W)
|
|
498
|
+
append_metric(hist, cfg.get("Wi_history_key", "W_i"), Wi)
|
|
499
|
+
append_metric(hist, cfg.get("stats_history_key", "W_stats"), stats)
|
|
500
|
+
return nodes, W
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
def coherence_matrix(G, use_numpy: bool | None = None):
|
|
504
|
+
cfg = get_param(G, "COHERENCE")
|
|
505
|
+
if not cfg.get("enabled", True):
|
|
506
|
+
return None, None
|
|
507
|
+
|
|
508
|
+
node_to_index = ensure_node_index_map(G)
|
|
509
|
+
nodes = list(node_to_index.keys())
|
|
510
|
+
n = len(nodes)
|
|
511
|
+
if n == 0:
|
|
512
|
+
return nodes, []
|
|
513
|
+
|
|
514
|
+
# NumPy handling for optional vectorized operations
|
|
515
|
+
np = get_numpy()
|
|
516
|
+
use_np = (
|
|
517
|
+
np is not None if use_numpy is None else (use_numpy and np is not None)
|
|
518
|
+
)
|
|
519
|
+
|
|
520
|
+
# Precompute indices to avoid repeated list.index calls within loops
|
|
521
|
+
|
|
522
|
+
th_vals = collect_attr(G, nodes, ALIAS_THETA, 0.0, np=np if use_np else None)
|
|
523
|
+
epi_vals = collect_attr(G, nodes, ALIAS_EPI, 0.0, np=np if use_np else None)
|
|
524
|
+
vf_vals = collect_attr(G, nodes, ALIAS_VF, 0.0, np=np if use_np else None)
|
|
525
|
+
si_vals = collect_attr(G, nodes, ALIAS_SI, 0.0, np=np if use_np else None)
|
|
526
|
+
si_vals = (
|
|
527
|
+
np.clip(si_vals, 0.0, 1.0)
|
|
528
|
+
if use_np
|
|
529
|
+
else [clamp01(v) for v in si_vals]
|
|
530
|
+
)
|
|
531
|
+
epi_min, epi_max = min_max_range(epi_vals)
|
|
532
|
+
vf_min, vf_max = min_max_range(vf_vals)
|
|
533
|
+
|
|
534
|
+
wdict = dict(cfg.get("weights", {}))
|
|
535
|
+
for k in ("phase", "epi", "vf", "si"):
|
|
536
|
+
wdict.setdefault(k, 0.0)
|
|
537
|
+
wnorm = normalize_weights(wdict, ("phase", "epi", "vf", "si"), default=0.0)
|
|
538
|
+
|
|
539
|
+
scope = str(cfg.get("scope", "neighbors")).lower()
|
|
540
|
+
neighbors_only = scope != "all"
|
|
541
|
+
self_diag = bool(cfg.get("self_on_diag", True))
|
|
542
|
+
mode = str(cfg.get("store_mode", "sparse")).lower()
|
|
543
|
+
thr = float(cfg.get("threshold", 0.0))
|
|
544
|
+
if mode not in ("sparse", "dense"):
|
|
545
|
+
mode = "sparse"
|
|
546
|
+
trig = get_trig_cache(G, np=np)
|
|
547
|
+
cos_map, sin_map = trig.cos, trig.sin
|
|
548
|
+
trig_local = compute_theta_trig(zip(nodes, th_vals), np=np)
|
|
549
|
+
cos_vals = [cos_map.get(n, trig_local.cos[n]) for n in nodes]
|
|
550
|
+
sin_vals = [sin_map.get(n, trig_local.sin[n]) for n in nodes]
|
|
551
|
+
inputs = SimilarityInputs(
|
|
552
|
+
th_vals=th_vals,
|
|
553
|
+
epi_vals=epi_vals,
|
|
554
|
+
vf_vals=vf_vals,
|
|
555
|
+
si_vals=si_vals,
|
|
556
|
+
cos_vals=cos_vals,
|
|
557
|
+
sin_vals=sin_vals,
|
|
558
|
+
)
|
|
559
|
+
if use_np:
|
|
560
|
+
wij = _wij_vectorized(
|
|
561
|
+
G,
|
|
562
|
+
nodes,
|
|
563
|
+
inputs,
|
|
564
|
+
wnorm,
|
|
565
|
+
epi_min,
|
|
566
|
+
epi_max,
|
|
567
|
+
vf_min,
|
|
568
|
+
vf_max,
|
|
569
|
+
self_diag,
|
|
570
|
+
np,
|
|
571
|
+
)
|
|
572
|
+
if neighbors_only:
|
|
573
|
+
adj = np.eye(n, dtype=bool)
|
|
574
|
+
for u, v in G.edges():
|
|
575
|
+
i = node_to_index[u]
|
|
576
|
+
j = node_to_index[v]
|
|
577
|
+
adj[i, j] = True
|
|
578
|
+
adj[j, i] = True
|
|
579
|
+
wij = np.where(adj, wij, 0.0)
|
|
580
|
+
else:
|
|
581
|
+
wij = _wij_loops(
|
|
582
|
+
G,
|
|
583
|
+
nodes,
|
|
584
|
+
node_to_index,
|
|
585
|
+
inputs,
|
|
586
|
+
wnorm,
|
|
587
|
+
epi_min,
|
|
588
|
+
epi_max,
|
|
589
|
+
vf_min,
|
|
590
|
+
vf_max,
|
|
591
|
+
neighbors_only,
|
|
592
|
+
self_diag,
|
|
593
|
+
)
|
|
594
|
+
|
|
595
|
+
return _finalize_wij(G, nodes, wij, mode, thr, scope, self_diag, np)
|
|
596
|
+
|
|
597
|
+
|
|
598
|
+
def local_phase_sync_weighted(
|
|
599
|
+
G, n, nodes_order=None, W_row=None, node_to_index=None
|
|
600
|
+
):
|
|
601
|
+
"""Compute local phase synchrony using explicit weights.
|
|
602
|
+
|
|
603
|
+
``nodes_order`` is the node ordering used to build the coherence matrix
|
|
604
|
+
and ``W_row`` contains either the dense row corresponding to ``n`` or the
|
|
605
|
+
sparse list of ``(i, j, w)`` tuples for the whole matrix.
|
|
606
|
+
"""
|
|
607
|
+
if W_row is None or nodes_order is None:
|
|
608
|
+
raise ValueError(
|
|
609
|
+
"nodes_order and W_row are required for weighted phase synchrony"
|
|
610
|
+
)
|
|
611
|
+
|
|
612
|
+
if node_to_index is None:
|
|
613
|
+
node_to_index = ensure_node_index_map(G)
|
|
614
|
+
i = node_to_index.get(n)
|
|
615
|
+
if i is None:
|
|
616
|
+
i = nodes_order.index(n)
|
|
617
|
+
|
|
618
|
+
num = 0 + 0j
|
|
619
|
+
den = 0.0
|
|
620
|
+
|
|
621
|
+
trig = get_trig_cache(G)
|
|
622
|
+
cos_map, sin_map = trig.cos, trig.sin
|
|
623
|
+
|
|
624
|
+
if (
|
|
625
|
+
isinstance(W_row, list)
|
|
626
|
+
and W_row
|
|
627
|
+
and isinstance(W_row[0], (int, float))
|
|
628
|
+
):
|
|
629
|
+
for w, nj in zip(W_row, nodes_order):
|
|
630
|
+
if nj == n:
|
|
631
|
+
continue
|
|
632
|
+
den += w
|
|
633
|
+
cos_j = cos_map.get(nj)
|
|
634
|
+
sin_j = sin_map.get(nj)
|
|
635
|
+
if cos_j is None or sin_j is None:
|
|
636
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
637
|
+
cos_j = trig_j.cos[nj]
|
|
638
|
+
sin_j = trig_j.sin[nj]
|
|
639
|
+
num += w * complex(cos_j, sin_j)
|
|
640
|
+
else:
|
|
641
|
+
for ii, jj, w in W_row:
|
|
642
|
+
if ii != i:
|
|
643
|
+
continue
|
|
644
|
+
nj = nodes_order[jj]
|
|
645
|
+
if nj == n:
|
|
646
|
+
continue
|
|
647
|
+
den += w
|
|
648
|
+
cos_j = cos_map.get(nj)
|
|
649
|
+
sin_j = sin_map.get(nj)
|
|
650
|
+
if cos_j is None or sin_j is None:
|
|
651
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
652
|
+
cos_j = trig_j.cos[nj]
|
|
653
|
+
sin_j = trig_j.sin[nj]
|
|
654
|
+
num += w * complex(cos_j, sin_j)
|
|
655
|
+
|
|
656
|
+
return abs(num / den) if den else 0.0
|
|
657
|
+
|
|
658
|
+
|
|
659
|
+
def local_phase_sync(G, n):
|
|
660
|
+
"""Compute unweighted local phase synchronization for node ``n``."""
|
|
661
|
+
nodes, W = coherence_matrix(G)
|
|
662
|
+
if nodes is None:
|
|
663
|
+
return 0.0
|
|
664
|
+
return local_phase_sync_weighted(G, n, nodes_order=nodes, W_row=W)
|
|
665
|
+
|
|
666
|
+
|
|
667
|
+
def _coherence_step(G, ctx: dict[str, Any] | None = None):
|
|
668
|
+
del ctx
|
|
669
|
+
|
|
670
|
+
if not get_param(G, "COHERENCE").get("enabled", True):
|
|
671
|
+
return
|
|
672
|
+
coherence_matrix(G)
|
|
673
|
+
|
|
674
|
+
|
|
675
|
+
def register_coherence_callbacks(G) -> None:
|
|
676
|
+
callback_manager.register_callback(
|
|
677
|
+
G,
|
|
678
|
+
event=CallbackEvent.AFTER_STEP.value,
|
|
679
|
+
func=_coherence_step,
|
|
680
|
+
name="coherence_step",
|
|
681
|
+
)
|
|
682
|
+
|
|
683
|
+
|
|
684
|
+
# ---------------------------------------------------------------------------
|
|
685
|
+
# Coherence and observer-related metric updates
|
|
686
|
+
# ---------------------------------------------------------------------------
|
|
687
|
+
|
|
688
|
+
|
|
689
|
+
def _record_metrics(
|
|
690
|
+
hist: dict[str, Any], *pairs: tuple[Any, str], evaluate: bool = False
|
|
691
|
+
) -> None:
|
|
692
|
+
"""Generic recorder for metric values."""
|
|
693
|
+
|
|
694
|
+
for value, key in pairs:
|
|
695
|
+
append_metric(hist, key, value() if evaluate else value)
|
|
696
|
+
|
|
697
|
+
|
|
698
|
+
def _update_coherence(G, hist) -> None:
|
|
699
|
+
"""Update network coherence and related means."""
|
|
700
|
+
|
|
701
|
+
C, dnfr_mean, depi_mean = compute_coherence(G, return_means=True)
|
|
702
|
+
_record_metrics(
|
|
703
|
+
hist,
|
|
704
|
+
(C, "C_steps"),
|
|
705
|
+
(dnfr_mean, "dnfr_mean"),
|
|
706
|
+
(depi_mean, "depi_mean"),
|
|
707
|
+
)
|
|
708
|
+
|
|
709
|
+
cs = hist["C_steps"]
|
|
710
|
+
if cs:
|
|
711
|
+
window = min(len(cs), DEFAULT_WBAR_SPAN)
|
|
712
|
+
w = max(1, window)
|
|
713
|
+
wbar = sum(cs[-w:]) / w
|
|
714
|
+
_record_metrics(hist, (wbar, "W_bar"))
|
|
715
|
+
|
|
716
|
+
|
|
717
|
+
def _update_phase_sync(G, hist) -> None:
|
|
718
|
+
"""Capture phase synchrony and Kuramoto order."""
|
|
719
|
+
|
|
720
|
+
ps = phase_sync(G)
|
|
721
|
+
ko = kuramoto_order(G)
|
|
722
|
+
_record_metrics(
|
|
723
|
+
hist,
|
|
724
|
+
(ps, "phase_sync"),
|
|
725
|
+
(ko, "kuramoto_R"),
|
|
726
|
+
)
|
|
727
|
+
|
|
728
|
+
|
|
729
|
+
def _update_sigma(G, hist) -> None:
|
|
730
|
+
"""Record glyph load and associated Σ⃗ vector."""
|
|
731
|
+
|
|
732
|
+
gl = glyph_load(G, window=DEFAULT_GLYPH_LOAD_SPAN)
|
|
733
|
+
_record_metrics(
|
|
734
|
+
hist,
|
|
735
|
+
(gl.get("_estabilizadores", 0.0), "glyph_load_estab"),
|
|
736
|
+
(gl.get("_disruptivos", 0.0), "glyph_load_disr"),
|
|
737
|
+
)
|
|
738
|
+
|
|
739
|
+
dist = {k: v for k, v in gl.items() if not k.startswith("_")}
|
|
740
|
+
sig = sigma_vector(dist)
|
|
741
|
+
_record_metrics(
|
|
742
|
+
hist,
|
|
743
|
+
(sig.get("x", 0.0), "sense_sigma_x"),
|
|
744
|
+
(sig.get("y", 0.0), "sense_sigma_y"),
|
|
745
|
+
(sig.get("mag", 0.0), "sense_sigma_mag"),
|
|
746
|
+
(sig.get("angle", 0.0), "sense_sigma_angle"),
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
|
|
750
|
+
def _track_stability(G, hist, dt, eps_dnfr, eps_depi):
|
|
751
|
+
"""Track per-node stability and derivative metrics."""
|
|
752
|
+
|
|
753
|
+
stables = 0
|
|
754
|
+
total = max(1, G.number_of_nodes())
|
|
755
|
+
delta_si_sum = 0.0
|
|
756
|
+
delta_si_count = 0
|
|
757
|
+
B_sum = 0.0
|
|
758
|
+
B_count = 0
|
|
759
|
+
|
|
760
|
+
for _, nd in G.nodes(data=True):
|
|
761
|
+
if (
|
|
762
|
+
abs(get_attr(nd, ALIAS_DNFR, 0.0)) <= eps_dnfr
|
|
763
|
+
and abs(get_attr(nd, ALIAS_DEPI, 0.0)) <= eps_depi
|
|
764
|
+
):
|
|
765
|
+
stables += 1
|
|
766
|
+
|
|
767
|
+
Si_curr = get_attr(nd, ALIAS_SI, 0.0)
|
|
768
|
+
Si_prev = nd.get("_prev_Si", Si_curr)
|
|
769
|
+
dSi = Si_curr - Si_prev
|
|
770
|
+
nd["_prev_Si"] = Si_curr
|
|
771
|
+
set_attr(nd, ALIAS_DSI, dSi)
|
|
772
|
+
delta_si_sum += dSi
|
|
773
|
+
delta_si_count += 1
|
|
774
|
+
|
|
775
|
+
vf_curr = get_attr(nd, ALIAS_VF, 0.0)
|
|
776
|
+
vf_prev = nd.get("_prev_vf", vf_curr)
|
|
777
|
+
dvf_dt = (vf_curr - vf_prev) / dt
|
|
778
|
+
dvf_prev = nd.get("_prev_dvf", dvf_dt)
|
|
779
|
+
B = (dvf_dt - dvf_prev) / dt
|
|
780
|
+
nd["_prev_vf"] = vf_curr
|
|
781
|
+
nd["_prev_dvf"] = dvf_dt
|
|
782
|
+
set_attr(nd, ALIAS_DVF, dvf_dt)
|
|
783
|
+
set_attr(nd, ALIAS_D2VF, B)
|
|
784
|
+
B_sum += B
|
|
785
|
+
B_count += 1
|
|
786
|
+
|
|
787
|
+
hist["stable_frac"].append(stables / total)
|
|
788
|
+
hist["delta_Si"].append(
|
|
789
|
+
delta_si_sum / delta_si_count if delta_si_count else 0.0
|
|
790
|
+
)
|
|
791
|
+
hist["B"].append(B_sum / B_count if B_count else 0.0)
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
def _aggregate_si(G, hist):
|
|
795
|
+
"""Aggregate Si statistics across nodes."""
|
|
796
|
+
|
|
797
|
+
try:
|
|
798
|
+
thr_sel = get_param(G, "SELECTOR_THRESHOLDS")
|
|
799
|
+
thr_def = get_param(G, "GLYPH_THRESHOLDS")
|
|
800
|
+
si_hi = float(thr_sel.get("si_hi", thr_def.get("hi", 0.66)))
|
|
801
|
+
si_lo = float(thr_sel.get("si_lo", thr_def.get("lo", 0.33)))
|
|
802
|
+
|
|
803
|
+
sis = [
|
|
804
|
+
s
|
|
805
|
+
for _, nd in G.nodes(data=True)
|
|
806
|
+
if not math.isnan(s := get_attr(nd, ALIAS_SI, float("nan")))
|
|
807
|
+
]
|
|
808
|
+
|
|
809
|
+
total = 0.0
|
|
810
|
+
hi_count = 0
|
|
811
|
+
lo_count = 0
|
|
812
|
+
for s in sis:
|
|
813
|
+
total += s
|
|
814
|
+
if s >= si_hi:
|
|
815
|
+
hi_count += 1
|
|
816
|
+
if s <= si_lo:
|
|
817
|
+
lo_count += 1
|
|
818
|
+
|
|
819
|
+
n = len(sis)
|
|
820
|
+
if n:
|
|
821
|
+
hist["Si_mean"].append(total / n)
|
|
822
|
+
hist["Si_hi_frac"].append(hi_count / n)
|
|
823
|
+
hist["Si_lo_frac"].append(lo_count / n)
|
|
824
|
+
else:
|
|
825
|
+
hist["Si_mean"].append(0.0)
|
|
826
|
+
hist["Si_hi_frac"].append(0.0)
|
|
827
|
+
hist["Si_lo_frac"].append(0.0)
|
|
828
|
+
except (KeyError, AttributeError, TypeError) as exc:
|
|
829
|
+
logger.debug("Si aggregation failed: %s", exc)
|