tinygrad 0.9.1__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tinygrad/__init__.py +11 -6
- tinygrad/codegen/kernel.py +308 -175
- tinygrad/codegen/linearize.py +95 -0
- tinygrad/codegen/lowerer.py +143 -0
- tinygrad/codegen/transcendental.py +257 -0
- tinygrad/codegen/uopgraph.py +506 -0
- tinygrad/device.py +72 -171
- tinygrad/dtype.py +122 -47
- tinygrad/engine/jit.py +184 -87
- tinygrad/{lazy.py → engine/lazy.py} +74 -66
- tinygrad/engine/memory.py +51 -0
- tinygrad/engine/realize.py +86 -61
- tinygrad/engine/schedule.py +366 -317
- tinygrad/engine/search.py +58 -47
- tinygrad/function.py +59 -58
- tinygrad/helpers.py +120 -102
- tinygrad/multi.py +82 -78
- tinygrad/nn/__init__.py +116 -67
- tinygrad/nn/datasets.py +12 -5
- tinygrad/nn/optim.py +1 -1
- tinygrad/nn/state.py +91 -6
- tinygrad/ops.py +1126 -143
- tinygrad/renderer/__init__.py +47 -23
- tinygrad/renderer/cstyle.py +338 -265
- tinygrad/renderer/llvmir.py +125 -143
- tinygrad/renderer/ptx.py +225 -0
- tinygrad/runtime/autogen/adreno.py +17904 -0
- tinygrad/runtime/autogen/amd_gpu.py +46974 -11993
- tinygrad/runtime/autogen/cuda.py +6 -162
- tinygrad/runtime/autogen/io_uring.py +97 -63
- tinygrad/runtime/autogen/kfd.py +60 -47
- tinygrad/runtime/autogen/kgsl.py +1386 -0
- tinygrad/runtime/autogen/libc.py +5462 -0
- tinygrad/runtime/autogen/nv_gpu.py +1976 -1957
- tinygrad/runtime/autogen/nvrtc.py +579 -0
- tinygrad/runtime/autogen/opencl.py +11 -11
- tinygrad/runtime/autogen/qcom_dsp.py +1739 -0
- tinygrad/runtime/graph/clang.py +3 -3
- tinygrad/runtime/graph/cuda.py +11 -15
- tinygrad/runtime/graph/hcq.py +120 -107
- tinygrad/runtime/graph/metal.py +71 -43
- tinygrad/runtime/ops_amd.py +244 -323
- tinygrad/runtime/ops_clang.py +12 -5
- tinygrad/runtime/ops_cloud.py +220 -0
- tinygrad/runtime/ops_cuda.py +42 -99
- tinygrad/runtime/ops_disk.py +25 -26
- tinygrad/runtime/ops_dsp.py +181 -0
- tinygrad/runtime/ops_gpu.py +29 -16
- tinygrad/runtime/ops_hip.py +68 -0
- tinygrad/runtime/ops_llvm.py +15 -10
- tinygrad/runtime/ops_metal.py +147 -64
- tinygrad/runtime/ops_nv.py +356 -397
- tinygrad/runtime/ops_python.py +78 -79
- tinygrad/runtime/ops_qcom.py +405 -0
- tinygrad/runtime/support/__init__.py +0 -0
- tinygrad/runtime/support/compiler_cuda.py +77 -0
- tinygrad/runtime/{driver/hip_comgr.py → support/compiler_hip.py} +13 -1
- tinygrad/runtime/support/elf.py +38 -0
- tinygrad/runtime/support/hcq.py +539 -0
- tinygrad/shape/shapetracker.py +40 -50
- tinygrad/shape/view.py +102 -63
- tinygrad/tensor.py +1109 -365
- {tinygrad-0.9.1.dist-info → tinygrad-0.10.0.dist-info}/METADATA +54 -50
- tinygrad-0.10.0.dist-info/RECORD +77 -0
- {tinygrad-0.9.1.dist-info → tinygrad-0.10.0.dist-info}/WHEEL +1 -1
- tinygrad/codegen/linearizer.py +0 -528
- tinygrad/codegen/uops.py +0 -451
- tinygrad/engine/graph.py +0 -100
- tinygrad/renderer/assembly.py +0 -269
- tinygrad/shape/symbolic.py +0 -327
- tinygrad-0.9.1.dist-info/RECORD +0 -63
- /tinygrad/{runtime/driver/__init__.py → py.typed} +0 -0
- {tinygrad-0.9.1.dist-info → tinygrad-0.10.0.dist-info}/LICENSE +0 -0
- {tinygrad-0.9.1.dist-info → tinygrad-0.10.0.dist-info}/top_level.txt +0 -0
tinygrad/codegen/linearizer.py
DELETED
@@ -1,528 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
from typing import List, Tuple, Optional, Type, cast, DefaultDict, Dict, Union, Final, Iterator, Sequence, Callable
|
3
|
-
import itertools, math, functools
|
4
|
-
from collections import defaultdict
|
5
|
-
|
6
|
-
from tinygrad.dtype import ImageDType, dtypes, DType, PtrDType
|
7
|
-
from tinygrad.helpers import colored, DEBUG, dedup, diskcache_put, prod, getenv, to_function_name, flatten
|
8
|
-
from tinygrad.ops import LazyOp, UnaryOps, BinaryOps, TernaryOps, ReduceOps, ConstBuffer, MemBuffer, BufferOps, get_lazyop_info
|
9
|
-
from tinygrad.shape.shapetracker import ShapeTracker
|
10
|
-
from tinygrad.shape.symbolic import Variable, NumNode, Node, SumNode, MulNode, DivNode, ModNode, LtNode, AndNode, create_lt_node, sint
|
11
|
-
from tinygrad.codegen.kernel import LocalBuffer, Kernel
|
12
|
-
from tinygrad.renderer import Program
|
13
|
-
|
14
|
-
from tinygrad.codegen.uops import UOps, UOp, UOpGraph
|
15
|
-
|
16
|
-
def get_grouped_dims(prefix:str, off:int, dims:Tuple[sint, ...], max_sizes:Optional[Tuple[int, ...]], reverse_dims:bool=False):
|
17
|
-
""" Maps all global/local dims onto global/local sizes and returns the idxs, loop_idxs and sizes.
|
18
|
-
|
19
|
-
* If there are fewer dims than size, size will be padded with 1s to the length of max_sizes.
|
20
|
-
* If there are more dims than size, dims will be collapsed onto size starting from left-most (i.e. onto x, then y, then z).
|
21
|
-
* If the dim is too large for the size, the dim will be split between adjacent size axes space permitting, otherwise assert
|
22
|
-
|
23
|
-
Keyword arguments:
|
24
|
-
prefix -- the prefix to use for the size Variable names.
|
25
|
-
off -- the starting index for the size Variable names.
|
26
|
-
dims -- the global or local dims of the full shape.
|
27
|
-
max_sizes -- the maximum values for each size in (x, y, z) order.
|
28
|
-
reverse_dims -- reverse the order of the dims as they are mapped into size, i.e. if True, the right dim will go to the left size (.x).
|
29
|
-
"""
|
30
|
-
|
31
|
-
# check the edge cases on max_sizes
|
32
|
-
if max_sizes is None: max_sizes = tuple([0xFFFFFFFFFFFFFFFF] * len(dims))
|
33
|
-
assert len(max_sizes) > 0 or len(dims) == 0, f"{prefix} dims should be empty because no size axes available"
|
34
|
-
if len(max_sizes) == 0: return [], [], None
|
35
|
-
|
36
|
-
# initialize the map of dims to size with a single dim in each size axis
|
37
|
-
# TODO: support sint properly
|
38
|
-
size_dims:List[List[Tuple[int, sint, sint]]] = [[(dim_idx, dim, dim if isinstance(dim, int) else dim.max+1)] for dim_idx, dim in enumerate(dims)]
|
39
|
-
|
40
|
-
# reverse the order of the dims to size map, if desired (currently for globals where smallest stride is on the right)
|
41
|
-
# TODO: remove reverse_dims, the mapping of dims to size for globals should be cosearched with memory layouts for optimal peformance
|
42
|
-
if reverse_dims: size_dims = size_dims[::-1]
|
43
|
-
|
44
|
-
# ensure that the initial dims initially fit the valid size axes
|
45
|
-
for size_idx in range(min(len(max_sizes), len(size_dims))):
|
46
|
-
# if the initial dim is too large, split the dim to separate size axes, if possible
|
47
|
-
dim_idx, dim, dim_max = size_dims[size_idx][0]
|
48
|
-
if dim_max <= (max_sz:=max_sizes[size_idx]): continue
|
49
|
-
assert isinstance(dim, int), "variable shape too large for size"
|
50
|
-
for factor in range(2, int(dim**0.5)+1):
|
51
|
-
if dim % factor == 0 and dim // factor <= max_sz:
|
52
|
-
size_dims = size_dims[:size_idx] + [[(dim_idx, dim//factor, dim//factor)], [(dim_idx, factor, factor)]] + size_dims[size_idx+1:]
|
53
|
-
break
|
54
|
-
assert size_dims[size_idx][0][2] <= max_sz, f"dim at {size_idx} too large and non-factorable: {dim} > {max_sz}"
|
55
|
-
|
56
|
-
# compress the extra dims, collapsing them onto the left-most valid size axis
|
57
|
-
cur_size_idx = 0
|
58
|
-
while len(size_dims) > len(max_sizes):
|
59
|
-
if prod([dim_max for (_, _, dim_max) in size_dims[cur_size_idx]])*size_dims[cur_size_idx+1][0][2] <= max_sizes[cur_size_idx]:
|
60
|
-
size_dims = size_dims[:cur_size_idx] + [size_dims[cur_size_idx] + size_dims[cur_size_idx+1]] + size_dims[cur_size_idx+2:]
|
61
|
-
elif cur_size_idx < len(max_sizes)-1: cur_size_idx += 1
|
62
|
-
else: raise AssertionError(f"cannot fit dims in size: {dims=} {max_sizes=}")
|
63
|
-
|
64
|
-
# construct the final dim idx variables from the the portions of the size variables
|
65
|
-
sizes, idxs = [prod([dim for (_, dim, _) in size_dim]) for size_dim in size_dims], [NumNode(0)] * len(dims)
|
66
|
-
size_vars = loop_idxs = [Variable(f"{prefix}{len(sizes)-1-(i+off) if reverse_dims else i+off}", 0, s-1) for i,s in enumerate(sizes)]
|
67
|
-
for size_idx, size_var in enumerate(size_vars):
|
68
|
-
for dim_idx, dim, _ in size_dims[size_idx]:
|
69
|
-
idxs[dim_idx] += (size_var % dim) * (idxs[dim_idx].max+1)
|
70
|
-
size_var //= dim
|
71
|
-
|
72
|
-
# pad the final sizes array to the proper length if necessary
|
73
|
-
return idxs, [x for x in loop_idxs if not isinstance(x, NumNode)], sizes + [1]*(len(max_sizes)-len(sizes))
|
74
|
-
|
75
|
-
def expand_idx(node:Node) -> Union[Variable, NumNode]: return next((v for v in node.vars() if v.expr.startswith("_uidx")), NumNode(0))
|
76
|
-
def expand_idxs(nodes:Sequence[Node]) -> Tuple[Union[Variable, NumNode], ...]:
|
77
|
-
eidxs = [expand_idx(node) for node in nodes]
|
78
|
-
return tuple([v if v not in eidxs[:j] else NumNode(0) for j, v in enumerate(eidxs)]) # take only first occurrence of expand variable
|
79
|
-
def iter_idxs(idxs:Tuple[Union[Variable, NumNode], ...]) -> Iterator[Tuple[int,...]]:
|
80
|
-
yield from (x[::-1] for x in itertools.product(*[list(range(v.min, v.max + 1)) for v in idxs[::-1]]))
|
81
|
-
|
82
|
-
def to_image_idx(base_shape:Tuple[int, ...], idxy:Node, valid:Node) -> Tuple[Tuple[Node, Node], Node]:
|
83
|
-
idx, idy = (idxy // 4) % base_shape[1], (idxy // (4 * base_shape[1]))
|
84
|
-
# TODO: bring back the valid removal logic (correct!)
|
85
|
-
if DEBUG>=5: print("to_image_idx", base_shape, idx.min, idx.max, idy.min, idy.max, idx, idy, valid)
|
86
|
-
return (idx, idy), valid
|
87
|
-
|
88
|
-
# expand a Node into List[Node] that enumerates the underlying Variables from min to max
|
89
|
-
# expand increments earlier variables faster than later variables (as specified in the argument)
|
90
|
-
@functools.lru_cache(maxsize=None)
|
91
|
-
def expand_node(node:Node, idxs:Optional[Tuple[Union[Variable, NumNode], ...]]=None) -> List[Node]:
|
92
|
-
if idxs is None: idxs = (expand_idx(node),)
|
93
|
-
return [node.substitute({k:v for k,v in zip(idxs, (NumNode(x) for x in rep)) if isinstance(k, Variable)}) for rep in iter_idxs(idxs)]
|
94
|
-
|
95
|
-
def variable_to_uop(x, ctx=None) -> UOp:
|
96
|
-
if isinstance(x, int): return UOp.const(dtypes.int, x)
|
97
|
-
return x.render(render_ops, ctx)
|
98
|
-
|
99
|
-
render_ops: Dict[Type, Callable[..., UOp]] = {
|
100
|
-
NumNode: lambda self, ops, ctx: UOp.const(dtypes.int, self.b),
|
101
|
-
Variable: lambda self, ops, ctx: ctx[self.expr] if self.expr in ctx else UOp(UOps.DEFINE_VAR, dtypes.int, (), self),
|
102
|
-
MulNode: lambda self, ops, ctx: self.a.render(ops, ctx)*variable_to_uop(self.b, ctx),
|
103
|
-
DivNode: lambda self, ops, ctx: self.a.render(ops, ctx)//variable_to_uop(self.b, ctx),
|
104
|
-
ModNode: lambda self, ops, ctx: self.a.render(ops, ctx)%variable_to_uop(self.b, ctx),
|
105
|
-
LtNode: lambda self, ops, ctx: self.a.render(ops, ctx).lt(variable_to_uop(self.b, ctx)),
|
106
|
-
SumNode: lambda self,ops,ctx: functools.reduce(lambda a,b: a+variable_to_uop(b, ctx), self.nodes[1:], self.nodes[0].render(ops,ctx)),
|
107
|
-
AndNode: lambda self,ops,ctx: functools.reduce(lambda a,b: a*variable_to_uop(b, ctx), self.nodes[1:], self.nodes[0].render(ops,ctx)) }
|
108
|
-
|
109
|
-
class Linearizer(Kernel):
|
110
|
-
def get_reduce_acc(self, reduceop:LazyOp):
|
111
|
-
if reduceop.op is ReduceOps.SUM: return 0.0 if dtypes.is_float(reduceop.dtype) else 0
|
112
|
-
if reduceop.op is ReduceOps.MAX:
|
113
|
-
if dtypes.is_int(reduceop.dtype): return 0 if dtypes.is_unsigned(reduceop.dtype) else -2**(reduceop.dtype.itemsize*8-1)
|
114
|
-
return -math.inf if dtypes.is_float(reduceop.dtype) else False
|
115
|
-
|
116
|
-
# NOTE: once images are loaded, we uop them as their base float
|
117
|
-
def get_base_dtype(self, dt:DType) -> DType: return dt.base if isinstance(dt, ImageDType) else dt
|
118
|
-
|
119
|
-
def global_load(self, i:int, idxs:List[Node], acc:Optional[LazyOp]=None, barrier:Optional[UOp]=None, loop_ctx:Tuple[UOp, ...]=()) -> List[UOp]:
|
120
|
-
buf = self.bufs[i]
|
121
|
-
localtype = self.get_base_dtype(buf.dtype if acc is None else acc.dtype)
|
122
|
-
const = buf.val if isinstance(buf, ConstBuffer) else None
|
123
|
-
|
124
|
-
expand_vars = expand_idxs(idxs)
|
125
|
-
|
126
|
-
dim, amt = None, 1
|
127
|
-
# float 4 grouping
|
128
|
-
if len(upcast_dim := self.get_float4_upcast_dim(i)) == 1 and len(float4_expand := expand_node(idxs[upcast_dim[0]])) in [4,2]:
|
129
|
-
dim, amt = upcast_dim[0], len(float4_expand)
|
130
|
-
g_idx, g_valid = self.sts[i].expr_idxs(idxs[:dim] + [float4_expand[0]] + idxs[dim+1:])
|
131
|
-
# do not use float4 if idx is not aligned
|
132
|
-
if g_idx != (g_idx//amt*amt): dim, amt = None, 1
|
133
|
-
if dim is None:
|
134
|
-
g_idx, g_valid = self.sts[i].expr_idxs(idxs)
|
135
|
-
# todo: multioutput test with different output valids to add if acc is None: g_valid = NumNode(1)
|
136
|
-
|
137
|
-
if amt > 1: localtype = localtype.vec(amt)
|
138
|
-
e_idxs, e_valids = expand_node(g_idx, expand_vars), expand_node(g_valid, expand_vars) # pylint: disable=possibly-used-before-assignment
|
139
|
-
|
140
|
-
ret = []
|
141
|
-
invalid_value = 0
|
142
|
-
acc_count = 0
|
143
|
-
for idx, valid, rep_idx in zip(e_idxs, e_valids, iter_idxs(expand_vars)):
|
144
|
-
this_const, idx, valid = (invalid_value, NumNode(0), NumNode(1)) if valid.max == 0 else (const, idx, valid)
|
145
|
-
key = f"{'' if acc is None else self.reduceops.index(acc)}{localtype}{'CONST'+str(this_const) if this_const is not None and acc is None else (buf.idx if isinstance(buf, MemBuffer) else cast(LocalBuffer, buf).name)}{idx.render()}{valid.render()}" # noqa: E501
|
146
|
-
if key not in self.load_cache:
|
147
|
-
if acc is not None:
|
148
|
-
self.load_cache[key] = UOp(UOps.DEFINE_ACC, localtype, (UOp.const(localtype.scalar(), self.get_reduce_acc(acc)), *loop_ctx), (i, acc_count))
|
149
|
-
acc_count += 1
|
150
|
-
elif this_const is not None:
|
151
|
-
self.load_cache[key] = UOp.const(localtype, this_const)
|
152
|
-
if valid.min == 0 and valid.max == 1:
|
153
|
-
valid_rendered = valid.render(render_ops, self.loop_uops)
|
154
|
-
self.load_cache[key] = UOp.alu(TernaryOps.WHERE, valid_rendered, self.load_cache[key], UOp.const(localtype, invalid_value))
|
155
|
-
elif isinstance(buf.dtype, ImageDType):
|
156
|
-
buf_uop = self.buf_uops[i]
|
157
|
-
assert buf_uop is not None, f"buffer {i} wasn't UOped"
|
158
|
-
image_idx, valid = to_image_idx(buf.dtype.shape, idx, valid)
|
159
|
-
rendered_idx = UOp(UOps.CAST, dtypes.int.vec(2), tuple(x.render(render_ops, self.loop_uops) for x in image_idx))
|
160
|
-
valid_tuple = (valid.render(render_ops, self.loop_uops), UOp.const(buf.dtype.base.vec(4), invalid_value)) if valid.min == 0 else tuple()
|
161
|
-
self.load_cache[key] = UOp(UOps.LOAD, buf.dtype.base.vec(4),
|
162
|
-
(buf_uop, rendered_idx) + valid_tuple + ((barrier,) if barrier else ()))
|
163
|
-
if localtype == localtype.scalar():
|
164
|
-
idx_small = idx%4
|
165
|
-
res = idx_small.render(render_ops, self.loop_uops)
|
166
|
-
out = UOp(UOps.GEP, localtype, (self.load_cache[key],), idx_small.max)
|
167
|
-
for ix in range(idx_small.max, idx_small.min, -1):
|
168
|
-
rvv = UOp(UOps.GEP, localtype, (self.load_cache[key],), ix-1)
|
169
|
-
sel = UOp.alu(BinaryOps.CMPLT, res, UOp.const(dtypes.int, ix))
|
170
|
-
out = UOp.alu(TernaryOps.WHERE, sel, rvv, out)
|
171
|
-
self.load_cache[key] = out
|
172
|
-
else:
|
173
|
-
buf_uop = self.buf_uops[i]
|
174
|
-
assert buf_uop is not None, f"buffer {i} wasn't UOped"
|
175
|
-
rendered_idx = idx.render(render_ops, self.loop_uops)
|
176
|
-
valid_tuple = (valid.render(render_ops, self.loop_uops), UOp.const(localtype, invalid_value)) if valid.min == 0 else tuple()
|
177
|
-
self.load_cache[key] = UOp(UOps.LOAD, localtype, (buf_uop, rendered_idx) + valid_tuple + ((barrier,) if barrier else ()))
|
178
|
-
ret.append(UOp(UOps.GEP, localtype.scalar(), (self.load_cache[key],), rep_idx[dim]) if dim is not None else self.load_cache[key])
|
179
|
-
return ret
|
180
|
-
|
181
|
-
def global_store(self, i:int, idxs:List[Node], store:List[UOp]) -> List[UOp]:
|
182
|
-
buf = self.bufs[i]
|
183
|
-
buf_uop = self.buf_uops[i]
|
184
|
-
assert buf_uop is not None, f"buffer {i} wasn't UOped"
|
185
|
-
|
186
|
-
expand_vars = expand_idxs(idxs)
|
187
|
-
_idxs = zip(*[expand_node(idx, expand_vars) for idx in idxs]) if idxs else [tuple()] # transpose
|
188
|
-
store_offset = dict(zip(_idxs, store))
|
189
|
-
|
190
|
-
# float4 grouping
|
191
|
-
if len(upcast_dim := self.get_float4_upcast_dim(i)) == 1 and len(float4_expand := expand_node(idxs[upcast_dim[0]])) in [2,4]:
|
192
|
-
grouped_store_offset = defaultdict(list)
|
193
|
-
for k in store_offset:
|
194
|
-
_idx = k[:upcast_dim[0]] + (float4_expand[0],) + k[upcast_dim[0]+1:]
|
195
|
-
grouped_store_offset[_idx].append(store_offset[k])
|
196
|
-
store_offset_new = {}
|
197
|
-
for k,grouped in grouped_store_offset.items():
|
198
|
-
amt = len(grouped)
|
199
|
-
idx, valid = self.sts[i].expr_idxs(k)
|
200
|
-
assert idx == ((idx//amt)*amt), "float4 stores are always aligned"
|
201
|
-
store_offset_new[k] = UOp(UOps.CAST, buf.dtype.vec(amt), tuple(grouped))
|
202
|
-
store_offset = store_offset_new
|
203
|
-
|
204
|
-
stores = []
|
205
|
-
for _idx, var in store_offset.items():
|
206
|
-
idx, valid = self.sts[i].expr_idxs(_idx)
|
207
|
-
if isinstance(buf.dtype, ImageDType):
|
208
|
-
image_idx, valid = to_image_idx(buf.dtype.shape, idx, valid)
|
209
|
-
rendered_idx = UOp(UOps.CAST, dtypes.int.vec(2), \
|
210
|
-
tuple(x.render(render_ops, self.loop_uops) for x in image_idx))
|
211
|
-
else:
|
212
|
-
rendered_idx = idx.render(render_ops, self.loop_uops)
|
213
|
-
# TODO: let UPat check this once it's fast
|
214
|
-
if valid.min == 1: stores.append(UOp(UOps.STORE, None, (buf_uop, rendered_idx, var)))
|
215
|
-
else: stores.append(UOp(UOps.STORE, None, (buf_uop, rendered_idx, var, valid.render(render_ops, self.loop_uops))))
|
216
|
-
return stores
|
217
|
-
|
218
|
-
# render loop
|
219
|
-
def render_loop(self, xx:List[Variable], depth:int, reduce:bool) -> Tuple[UOp, ...]:
|
220
|
-
new_loops = {x.expr:UOp(UOps.RANGE, dtypes.int32, (
|
221
|
-
UOp.const(dtypes.int, x.min) if isinstance(x.min, int) else cast(Node, x.min).render(render_ops, self.loop_uops),
|
222
|
-
UOp.const(dtypes.int, x.max+1) if isinstance(x.max, int) else cast(Node, x.max+1).render(render_ops, self.loop_uops)), arg=(depth,i,reduce)) for i,x in enumerate(xx) if not isinstance(x, NumNode) and x.expr is not None} # noqa: E501
|
223
|
-
self.loop_uops.update(new_loops)
|
224
|
-
return tuple(new_loops.values())
|
225
|
-
|
226
|
-
def index_local_aliases(self, global_idxs, local_idxs, reduce_idxs, upcast_idxs, full_upcast_idxs):
|
227
|
-
def calc_tc_idxs(local_sizes: List[int], aliases: List[List[int]]):
|
228
|
-
replace_idxs, thread_idxs, thread_idx = [], [], Variable("_uidx_tc", 0, prod(local_sizes)-1)
|
229
|
-
for s in local_sizes:
|
230
|
-
thread_idxs.append(thread_idx % s)
|
231
|
-
thread_idx //= s
|
232
|
-
for alias in aliases:
|
233
|
-
full_var, full_var_sz = NumNode(0), 1
|
234
|
-
if alias[0] != 0:
|
235
|
-
for i in alias:
|
236
|
-
next_var = local_idxs[i-1] if i > 0 else thread_idxs[-i-1]
|
237
|
-
full_var += next_var * full_var_sz
|
238
|
-
full_var_sz *= next_var.max+1
|
239
|
-
replace_idxs.append(full_var)
|
240
|
-
return replace_idxs
|
241
|
-
|
242
|
-
# compute local aliases
|
243
|
-
alias_buf_idxs: DefaultDict[LazyOp, List[Tuple[int, int, List]]] = defaultdict(list)
|
244
|
-
for op, local_alias in self.local_alias.items():
|
245
|
-
for i in local_alias:
|
246
|
-
localbuf_idx = self.bufs.index(local_alias[i])
|
247
|
-
buf_idxs = [idx*0 if s == 0 else idx for idx,s in zip(global_idxs+local_idxs+reduce_idxs+full_upcast_idxs,self.sts[i].real_strides())]
|
248
|
-
if (tc:=self.tensor_core):
|
249
|
-
min_alias_idx = min(local_alias.keys())
|
250
|
-
replace_input_idxs = calc_tc_idxs(tc.thread_local_sizes[i-min_alias_idx], tc.thread_local_aliases[i-min_alias_idx])
|
251
|
-
for n in range(len(tc.threads)):
|
252
|
-
buf_idxs[self.global_dims+n] = replace_input_idxs[n] # replace locals
|
253
|
-
for n in range(tc.num_upcasts()):
|
254
|
-
buf_idxs[self.shape_len-self.upcasted+n] = replace_input_idxs[len(tc.threads)+n] # replace upcasts
|
255
|
-
if DEBUG >= 3: print(f"{localbuf_idx} alias {i}: sts={self.sts[i]} idxs={buf_idxs}")
|
256
|
-
alias_buf_idxs[op].append((i, localbuf_idx, buf_idxs))
|
257
|
-
# modify idxs if necessary for TC
|
258
|
-
if (tc:=self.tensor_core):
|
259
|
-
replace_acc_idxs = calc_tc_idxs(tc.thread_local_sizes[2], tc.thread_local_aliases[2])
|
260
|
-
for n in range(len(tc.threads)):
|
261
|
-
local_idxs[n] = replace_acc_idxs[n] # replace locals
|
262
|
-
for n in range(len(replace_acc_idxs)-len(tc.threads)):
|
263
|
-
upcast_idxs[n] = replace_acc_idxs[len(tc.threads)+n] # replace upcasts
|
264
|
-
if DEBUG >= 3: print(f"store alias: sts={self.sts[0]} idxs={global_idxs+local_idxs+upcast_idxs}")
|
265
|
-
return alias_buf_idxs
|
266
|
-
|
267
|
-
def render_reduceop(self, reduceop:LazyOp, accs:Dict[LazyOp, List[UOp]], loaded_buffers:Dict[Union[MemBuffer, ConstBuffer, LocalBuffer], List[UOp]],
|
268
|
-
global_idxs, local_idxs, upcast_idxs, full_upcast_idxs, reduce_idxs, fake_reduce_idxs,
|
269
|
-
alias_buf_idxs:List[Tuple[int, int, List]]) -> Tuple[List[NumNode|Variable], List[NumNode|Variable]]:
|
270
|
-
# reduce loop
|
271
|
-
loop_ctx = self.render_loop(reduce_idxs, (i:=self.reduceops.index(reduceop))*2+2, True)
|
272
|
-
|
273
|
-
# define accumulator - modify idxs if necessary for TC
|
274
|
-
out_buf = -len(self.reduceops)+i if self.group_for_reduces else 0
|
275
|
-
accs[reduceop] = self.global_load(out_buf, global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs, acc=reduceop, loop_ctx=loop_ctx)
|
276
|
-
|
277
|
-
# store local aliases
|
278
|
-
locals_to_store = [(localbuf_idx, buf_idxs, self.global_load(i, buf_idxs)) for i, localbuf_idx, buf_idxs in alias_buf_idxs]
|
279
|
-
|
280
|
-
if (tc:=self.tensor_core):
|
281
|
-
# run tensor cores AST
|
282
|
-
wmma_sz = [prod(l) for l in tc.thread_local_sizes]
|
283
|
-
def upcast_strides(buf:int):
|
284
|
-
strides, next_ = [], 1
|
285
|
-
for (sz, stride, _) in self.upcasted_axis(buf)[tc.num_upcasts():]:
|
286
|
-
strides.append((0 if stride == 0 else next_, sz))
|
287
|
-
next_ *= 1 if stride == 0 else sz
|
288
|
-
return strides
|
289
|
-
upcasts, dev = [upcast_strides(x) for x in [locals_to_store[0][0], locals_to_store[1][0], 0]], self.opts.device
|
290
|
-
# cast initial accs
|
291
|
-
wmmas = [UOp(UOps.CAST, (dt3:=tc.dtype_out.vec(wmma_sz[2])), tuple(accs[reduceop][x:x+wmma_sz[2]]))
|
292
|
-
for x in range(0, len(accs[reduceop]), wmma_sz[2])]
|
293
|
-
for it in [x[::-1] for x in itertools.product(*list([range(sz) for _,sz in upcasts[0]][::-1]))]:
|
294
|
-
offs = [x*y for (x,y) in zip([sum([prod(x) for x in zip(it, [stride for stride,_ in y])]) for y in upcasts], wmma_sz)]
|
295
|
-
ops = (UOp(UOps.CAST, tc.dtype_in.vec(wmma_sz[0]), tuple(locals_to_store[0][2][offs[0]:offs[0]+wmma_sz[0]])),
|
296
|
-
UOp(UOps.CAST, tc.dtype_in.vec(wmma_sz[1]), tuple(locals_to_store[1][2][offs[1]:offs[1]+wmma_sz[1]])),
|
297
|
-
wmmas[(wmma_idx:=offs[2]//wmma_sz[2])])
|
298
|
-
# TODO: don't need to DEFINE_ACC, pass to WMMA in op3, or PHI accs that are not valid
|
299
|
-
wmmas[wmma_idx] = UOp(UOps.WMMA, dt3, ops, (str(tc), tc.dims, tc.dtype_in, tc.dtype_out, tuple(wmma_sz), dev))
|
300
|
-
# phi the last wmmas back to accs
|
301
|
-
accs[reduceop] = [UOp(UOps.PHI, tc.dtype_out, (acc, UOp(UOps.GEP, tc.dtype_out, (wmmas[z//wmma_sz[2]],), z%wmma_sz[2])))
|
302
|
-
for z, acc in enumerate(accs[reduceop])]
|
303
|
-
else:
|
304
|
-
assert not locals_to_store, "storing locals isn't supported here"
|
305
|
-
|
306
|
-
# load earlybufs
|
307
|
-
loaded_buffers.update({b:self.global_load(self.bufs.index(self.local_alias[reduceop][i]) if i in self.local_alias else i,
|
308
|
-
global_idxs+local_idxs+reduce_idxs+full_upcast_idxs) for i,b in enumerate(self.bufs) if b in self.earlybufs})
|
309
|
-
|
310
|
-
def gate_acc(r, idxs): return [
|
311
|
-
UOp.alu(TernaryOps.WHERE, valid.render(render_ops, self.loop_uops), acc, UOp.const(r.dtype, 0)) if valid.min == 0 and valid.max == 1 else acc
|
312
|
-
for valid, acc in zip(expand_node(self.sts[self.full_buf_index].expr_idxs(idxs)[1], expand_idxs(idxs)), accs[r])]
|
313
|
-
local_accs = {r: gate_acc(r,global_idxs+local_idxs+reduce_idxs+full_upcast_idxs) for r in accs}
|
314
|
-
|
315
|
-
# run early AST (with reduce)
|
316
|
-
self.ast_parse(reduceop, local_accs, self.acc_offsets(self.full_buf_index), loaded_buffers, reduce_acc=accs[reduceop])
|
317
|
-
|
318
|
-
# end the reduce loop
|
319
|
-
self.load_cache.clear()
|
320
|
-
|
321
|
-
# end the local loop, do the local reduce
|
322
|
-
if self.group_for_reduces:
|
323
|
-
fake_global_idxs = [x*0 for x in global_idxs]
|
324
|
-
stores = self.global_store(out_buf, fake_global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs, accs[reduceop]) # store accumulators
|
325
|
-
barrier = UOp(UOps.BARRIER, None, tuple(stores))
|
326
|
-
if self.opts.has_local:
|
327
|
-
fake_idxs = [NumNode(0)]*len(self.sts[-1].shape)
|
328
|
-
fake_idxs[self.global_dims+self.local_dims:self.global_dims+len(local_idxs)] = local_idxs[self.local_dims:]
|
329
|
-
if_cond: UOp = create_lt_node(self.sts[-1].expr_idxs(fake_idxs)[0], 1).render(render_ops, self.loop_uops)
|
330
|
-
barrier = UOp(UOps.IF, None, (if_cond, barrier))
|
331
|
-
|
332
|
-
# create new late reduce local loops and replace local_idxs that have been used
|
333
|
-
end_local_idxs = [Variable(f"tidx{i}", 0, self.full_shape[i]-1 if i >= self.first_reduce and i not in self.upcast_in_mid_reduce_axes else 0) for i in range(0, self.first_reduce+self.group_for_reduces)] # noqa: E501
|
334
|
-
local_idxs = local_idxs[:self.local_dims] + end_local_idxs[self.global_dims + self.local_dims:]
|
335
|
-
|
336
|
-
# if any group_for_reduce items aren't reduces, upcast them here
|
337
|
-
for j in self.upcast_in_mid_reduce_axes:
|
338
|
-
self.reshape_and_permute(None, [i for i in range(self.shape_len) if i != j] + [j])
|
339
|
-
self.upcast()
|
340
|
-
self.group_for_reduces -= 1
|
341
|
-
local_idxs = local_idxs[:-1]
|
342
|
-
end_local_idxs = end_local_idxs[:-1]
|
343
|
-
# regenerate upcast_idxs
|
344
|
-
upcast_idxs = [Variable(f"_uidx{i}", 0, s-1) for i, s in enumerate(self.output_shape[self.shape_len-self.upcasted:])]
|
345
|
-
|
346
|
-
# NOTE: this structure is the same as the reduce op above
|
347
|
-
|
348
|
-
# late reduce loop
|
349
|
-
loop_ctx = self.render_loop(end_local_idxs, i*2+3, True)
|
350
|
-
|
351
|
-
# define late accumulator
|
352
|
-
accs[reduceop] = self.global_load(0, fake_global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs, acc=reduceop, loop_ctx=loop_ctx)
|
353
|
-
|
354
|
-
# load localbufs
|
355
|
-
loaded_buffers[self.bufs[out_buf]] = self.global_load(out_buf, fake_global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs, barrier=barrier)
|
356
|
-
|
357
|
-
# there's no AST here (and there's no shape for the reduce LazyOp)
|
358
|
-
self.ast_parse(LazyOp(reduceop.op, (LazyOp(BufferOps.LOAD, (), self.bufs[out_buf]),)),\
|
359
|
-
accs, self.acc_offsets(-1), loaded_buffers, reduce_acc=accs[reduceop])
|
360
|
-
|
361
|
-
# end the late reduce loop
|
362
|
-
self.load_cache.clear()
|
363
|
-
|
364
|
-
if reduceop is not self.reduceops[-1]:
|
365
|
-
for j in self.upcast_in_mid_reduce_axes:
|
366
|
-
self.upcasted -= 1
|
367
|
-
self.group_for_reduces += 1
|
368
|
-
assert self.buf_uops[out_buf] is not None, "Local reduce buf must have been uoped at this point"
|
369
|
-
fake_local_idxs = local_idxs[:self.local_dims] + [x*0 for x in local_idxs[self.local_dims:]]
|
370
|
-
stores = self.global_store(out_buf, fake_global_idxs+fake_local_idxs+fake_reduce_idxs+upcast_idxs, accs[reduceop])
|
371
|
-
barrier = UOp(UOps.BARRIER, None, tuple(stores))
|
372
|
-
accs[reduceop] = self.global_load(out_buf, fake_global_idxs+fake_local_idxs+fake_reduce_idxs+upcast_idxs, barrier=barrier)
|
373
|
-
return local_idxs[:self.local_dims] + [NumNode(0) for _ in range(self.group_for_reduces)], upcast_idxs
|
374
|
-
|
375
|
-
kernel_cnt: Final[DefaultDict[str, int]] = defaultdict(int)
|
376
|
-
def linearize(self) -> Linearizer:
|
377
|
-
# no new opts and we already ran? skip relinearizing
|
378
|
-
if self.applied_opts == self.applied_opts_cache: return self
|
379
|
-
|
380
|
-
# late alias the tensor core buffers
|
381
|
-
if (tc:=self.tensor_core) and self.tensor_core_opts is not None:
|
382
|
-
alias_pattern = [0]*(self.global_dims) + [2]*(len(tc.threads)) + [0]*(self.local_dims-len(tc.threads)) + [0]*(self.shape_len-self.upcasted-self.first_reduce) + [1,1] + [3]*(self.upcasted-2) # noqa: E501
|
383
|
-
for op, tc_bufs in self.bufs_for_tensor_core.items():
|
384
|
-
for tc_buf in tc_bufs: self.alias_buffer(op, tc_buf, alias_pattern)
|
385
|
-
|
386
|
-
# save backups
|
387
|
-
sts_backup, gfr_backup, upc_backup = self.sts[:], self.group_for_reduces, self.upcasted
|
388
|
-
|
389
|
-
# uops
|
390
|
-
self.buf_uops: List[Optional[UOp]] = [None]*len(self.bufs)
|
391
|
-
self.loop_uops: Dict[str, UOp] = {}
|
392
|
-
|
393
|
-
# add global buffers
|
394
|
-
for i,buf in enumerate(self.bufs):
|
395
|
-
if isinstance(buf, MemBuffer):
|
396
|
-
self.buf_uops[i] = UOp(UOps.DEFINE_GLOBAL,
|
397
|
-
buf.dtype if isinstance(buf.dtype, ImageDType) else PtrDType(buf.dtype), (),
|
398
|
-
(buf.idx, any(buf.idx == x.idx for x in self.outbufs)))
|
399
|
-
# define local buffers
|
400
|
-
for aliases in self.local_alias.values():
|
401
|
-
for lb in aliases.values(): self.buf_uops[self.bufs.index(lb)] = UOp(UOps.DEFINE_LOCAL, PtrDType(lb.dtype),
|
402
|
-
(), (lb.name, self.sts[self.bufs.index(lb)].size))
|
403
|
-
# add a local buffer for multistage reduce. # TODO: use local alias
|
404
|
-
if self.group_for_reduces:
|
405
|
-
for i in range(len(self.reduceops)):
|
406
|
-
# TODO: the strides of this can be controlled
|
407
|
-
self.sts.append(ShapeTracker.from_shape(tuple([1] * self.global_dims + list(self.full_shape[self.global_dims:self.global_dims+self.local_dims+self.group_for_reduces]) + [1] * (self.shape_len - self.upcasted - self.group_for_reduces - self.first_reduce) + [x[0] for x in self.upcasted_axis(0)]))) # noqa: E501
|
408
|
-
temp_dtype = self.get_base_dtype(cast(LazyOp, self.reduceop).dtype)
|
409
|
-
self.bufs.append(LocalBuffer(name:=f"temp{i if len(self.reduceops) > 1 else ''}", buf_size:=self.sts[-1].size, temp_dtype))
|
410
|
-
self.buf_uops.append(UOp(UOps.DEFINE_LOCAL, PtrDType(temp_dtype), (), (name, buf_size)))
|
411
|
-
|
412
|
-
# kernel name (before late upcast)
|
413
|
-
self.name = ("r" if self.reduceop else ("C" if all(x.op in BufferOps for x in self.lazyops) else "E")) + \
|
414
|
-
(f"{len(self.outbufs)}_" if len(self.outbufs) > 1 else "_") + \
|
415
|
-
colored('_', 'BLACK').join([colored(str(x), c) for x,c in zip(self.full_shape, self.colors())])
|
416
|
-
|
417
|
-
# name the function something unique
|
418
|
-
Linearizer.kernel_cnt[(function_name := to_function_name(self.name))] += 1
|
419
|
-
suffix = f"{'n'+str(Linearizer.kernel_cnt[function_name]-1)}" if Linearizer.kernel_cnt[function_name] > 1 else ""
|
420
|
-
self.name = self.name+colored(suffix, 'BLACK')
|
421
|
-
|
422
|
-
# define indexes
|
423
|
-
gl_dims = self.full_shape[:self.first_reduce+self.group_for_reduces]
|
424
|
-
global_idxs, loop_global_idxs, self.global_size = get_grouped_dims("idx" if self.dont_use_locals else "gidx", 0, gl_dims[:self.global_dims],
|
425
|
-
self.opts.global_max, self.opts.has_local)
|
426
|
-
local_idxs, loop_local_idxs, self.local_size = get_grouped_dims("lidx", self.global_dims, gl_dims[self.global_dims:],
|
427
|
-
self.opts.local_max if self.opts.has_local else (), False)
|
428
|
-
upcast_idxs = [Variable(f"_uidx{i}", 0, s-1) for i, s in enumerate(self.output_shape[self.shape_len-self.upcasted:])]
|
429
|
-
full_upcast_idxs = [Variable(f"_uidx{i}", 0, s-1) for i, s in enumerate(self.full_shape[self.shape_len-self.upcasted:])]
|
430
|
-
|
431
|
-
# render global and local as specials or a loop
|
432
|
-
if self.opts.has_local:
|
433
|
-
self.loop_uops.update({x.expr:UOp(UOps.SPECIAL, dtypes.int32, (), (i, x.expr, x.max+1)) for i,x in enumerate(loop_global_idxs)})
|
434
|
-
if not self.dont_use_locals:
|
435
|
-
self.loop_uops.update({x.expr:UOp(UOps.SPECIAL, dtypes.int32, (), (i, x.expr, x.max+1)) for i,x in enumerate(loop_local_idxs)})
|
436
|
-
else:
|
437
|
-
self.global_size, self.local_size = None, None
|
438
|
-
self.render_loop(loop_global_idxs+loop_local_idxs, 1, False)
|
439
|
-
|
440
|
-
# define idxs for aliased buffers TODO: this doesn't belong in Kernel, but it can't exist in Block either (because of multireduce tensor cores)
|
441
|
-
reduce_idxs = [Variable(f"ridx{i}", 0, self.full_shape[i]-1) for i in range(self.first_reduce+self.group_for_reduces, self.shape_len-self.upcasted)] # noqa: E501
|
442
|
-
alias_buf_idxs = self.index_local_aliases(global_idxs,local_idxs,reduce_idxs,upcast_idxs,full_upcast_idxs)
|
443
|
-
|
444
|
-
# parse AST
|
445
|
-
self.load_cache: Dict[str, UOp] = {}
|
446
|
-
loaded_buffers:Dict[Union[MemBuffer, ConstBuffer, LocalBuffer], List[UOp]] = {}
|
447
|
-
accs: Dict[LazyOp, List[UOp]] = {}
|
448
|
-
|
449
|
-
# render reduceops by depth
|
450
|
-
for reduceop in self.reduceops:
|
451
|
-
self.render_block((reduceop, ), global_idxs, local_idxs, upcast_idxs, full_upcast_idxs, alias_buf_idxs, loaded_buffers, accs)
|
452
|
-
stores = self.render_block(self.ast, global_idxs, local_idxs, upcast_idxs, full_upcast_idxs, alias_buf_idxs, loaded_buffers, accs)
|
453
|
-
|
454
|
-
# only the final stores are needed to define the full UOps graph
|
455
|
-
self.uops:UOpGraph = UOpGraph(flatten(stores))
|
456
|
-
|
457
|
-
# maybe graph the uops
|
458
|
-
if DEBUG >= 5: self.uops.print()
|
459
|
-
if getenv("GRAPHUOPS"): self.uops.graph()
|
460
|
-
|
461
|
-
# restore backups
|
462
|
-
self.sts, self.group_for_reduces, self.upcasted = sts_backup, gfr_backup, upc_backup
|
463
|
-
|
464
|
-
# set cache and return
|
465
|
-
self.applied_opts_cache = self.applied_opts[:]
|
466
|
-
return self
|
467
|
-
|
468
|
-
def render_block(self, outputs:Tuple[LazyOp, ...], global_idxs, local_idxs, upcast_idxs, full_upcast_idxs,
|
469
|
-
alias_buf_idxs:DefaultDict[LazyOp,List[Tuple[int,int,List[NumNode|Variable]]]],
|
470
|
-
loaded_buffers:Dict[Union[MemBuffer, ConstBuffer, LocalBuffer], List[UOp]], accs:Dict[LazyOp,List[UOp]]) -> List[List[UOp]]:
|
471
|
-
reduceops = dedup(x for x in outputs if x.op in ReduceOps)
|
472
|
-
assert len(reduceops) <= 1, "max one reduceop per block"
|
473
|
-
reduce_idxs = [Variable(f"ridx{i}", 0, self.full_shape[i]-1) for i in range(self.first_reduce+self.group_for_reduces, self.shape_len-self.upcasted)] # noqa: E501
|
474
|
-
fake_reduce_idxs = [x*0 for x in reduce_idxs]
|
475
|
-
|
476
|
-
if len(reduceops) != 0:
|
477
|
-
# TODO: delete render_reduceop and move the logic for group_for_reduces to Block
|
478
|
-
nlidx, nuidx = self.render_reduceop((r:=reduceops[0]),accs,loaded_buffers,\
|
479
|
-
global_idxs,local_idxs,upcast_idxs,full_upcast_idxs,reduce_idxs,fake_reduce_idxs,alias_buf_idxs[r])
|
480
|
-
|
481
|
-
# all local indices which were used for group_for_reduce are not valid any more and should be replaced with fake NumNode(0), since they have
|
482
|
-
# been rewritten with fake end_local_idxs.
|
483
|
-
if r is self.reduceops[-1]: local_idxs[:], upcast_idxs[:] = nlidx, nuidx
|
484
|
-
return [accs[r]]
|
485
|
-
|
486
|
-
# load latebufs
|
487
|
-
loaded_buffers.update({b:self.global_load(i, global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs) \
|
488
|
-
for i,b in enumerate(self.bufs) if b not in self.earlybufs and b.__class__ is not LocalBuffer})
|
489
|
-
# run late AST (without the store)
|
490
|
-
store_vals = {op.arg.idx:self.ast_parse(op.src[0], accs, None, loaded_buffers) for op in self.ast}
|
491
|
-
return [self.global_store(i, global_idxs+local_idxs+fake_reduce_idxs+upcast_idxs, val) for i, val in store_vals.items()]
|
492
|
-
|
493
|
-
def ast_parse(self, x:LazyOp, accs:Dict[LazyOp, List[UOp]], offs:Optional[List[int]], loaded_buffers:Dict[Union[MemBuffer, ConstBuffer, LocalBuffer], List[UOp]], reduce_acc:Optional[List[UOp]]=None, cache=None) -> List[UOp]: # noqa: E501
|
494
|
-
if cache is None: cache = {}
|
495
|
-
if x in cache: return cache[x]
|
496
|
-
if x.op in BufferOps: return loaded_buffers[x.arg]
|
497
|
-
if x.op in [UnaryOps.CAST, UnaryOps.BITCAST]:
|
498
|
-
return [UOp(UOps.BITCAST if x.op is UnaryOps.BITCAST else UOps.CAST,
|
499
|
-
self.get_base_dtype(x.arg), (u,)) for u in self.ast_parse(x.src[0], accs, offs, loaded_buffers)]
|
500
|
-
if x.op in ReduceOps and reduce_acc is None:
|
501
|
-
return [accs[x][i] for i in offs] if offs else accs[x]
|
502
|
-
|
503
|
-
values = [self.ast_parse(v, accs, offs, loaded_buffers, cache=cache) for v in x.src]
|
504
|
-
ops = {ReduceOps.SUM:BinaryOps.ADD, ReduceOps.MAX:BinaryOps.MAX}
|
505
|
-
if x.op in ops:
|
506
|
-
assert reduce_acc is not None
|
507
|
-
ret: List[UOp] = []
|
508
|
-
acc, input_acc = reduce_acc, reduce_acc[:]
|
509
|
-
for val, off in zip(zip(*values), cast(List[int], offs)):
|
510
|
-
acc[off] = UOp.alu(ops[cast(ReduceOps, x.op)], *(val+(acc[off], )))
|
511
|
-
ret.append(acc[off])
|
512
|
-
for off in range(len(acc)):
|
513
|
-
if input_acc[off] != acc[off]:
|
514
|
-
acc[off] = UOp(UOps.PHI, input_acc[off].dtype, (input_acc[off], acc[off]))
|
515
|
-
else: ret = [UOp.alu(x.op, *src) for src in zip(*values)]
|
516
|
-
cache[x] = ret
|
517
|
-
return ret
|
518
|
-
|
519
|
-
def to_program(self) -> Program:
|
520
|
-
self.linearize()
|
521
|
-
info = get_lazyop_info(self.ast[0])
|
522
|
-
src = self.opts.render(name:=to_function_name(self.name), self.uops)
|
523
|
-
if getenv("RUN_PROCESS_REPLAY"): diskcache_put("process_replay", id(self), (self.ast, self.opts, self.applied_opts, name, src))
|
524
|
-
ops, mem = self.uops.flops_mem()
|
525
|
-
run_count = prod((self.global_size or []) + (self.local_size or []))
|
526
|
-
# NOTE: we use min here to ignore the indexing FLOPS
|
527
|
-
return Program(self.name, src, self.opts.device, self.global_size, self.local_size,
|
528
|
-
self.uops, min(info.flops, ops * run_count), min(info.mem_estimate, mem * run_count))
|