tico 0.1.0.dev250714__py3-none-any.whl → 0.1.0.dev251102__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tico/__init__.py +9 -1
- tico/config/base.py +1 -1
- tico/config/v1.py +5 -0
- tico/passes/cast_aten_where_arg_type.py +1 -1
- tico/passes/cast_clamp_mixed_type_args.py +169 -0
- tico/passes/cast_mixed_type_args.py +4 -2
- tico/passes/const_prop_pass.py +1 -1
- tico/passes/convert_conv1d_to_conv2d.py +1 -1
- tico/passes/convert_expand_to_slice_cat.py +153 -0
- tico/passes/convert_matmul_to_linear.py +312 -0
- tico/passes/convert_to_relu6.py +1 -1
- tico/passes/decompose_addmm.py +0 -3
- tico/passes/decompose_batch_norm.py +2 -2
- tico/passes/decompose_fake_quantize.py +0 -3
- tico/passes/decompose_fake_quantize_tensor_qparams.py +5 -6
- tico/passes/decompose_group_norm.py +0 -3
- tico/passes/legalize_predefined_layout_operators.py +2 -11
- tico/passes/lower_to_resize_nearest_neighbor.py +1 -1
- tico/passes/lower_to_slice.py +1 -1
- tico/passes/merge_consecutive_cat.py +1 -1
- tico/passes/ops.py +1 -1
- tico/passes/remove_redundant_assert_nodes.py +3 -1
- tico/passes/remove_redundant_expand.py +3 -6
- tico/passes/remove_redundant_reshape.py +5 -5
- tico/passes/segment_index_select.py +1 -1
- tico/quantization/__init__.py +6 -0
- tico/{experimental/quantization → quantization}/algorithm/gptq/gptq.py +1 -1
- tico/quantization/algorithm/gptq/quantizer.py +292 -0
- tico/{experimental/quantization → quantization}/algorithm/gptq/utils.py +1 -1
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/annotator.py +7 -14
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/adaptive_avg_pool2d.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/add.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/conv2d.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/div.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/linear.py +5 -7
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/mean.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/mul.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/relu6.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/rsqrt.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/sub.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/spec.py +1 -3
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/utils.py +1 -1
- tico/{experimental/quantization → quantization}/algorithm/pt2e/quantizer.py +5 -2
- tico/{experimental/quantization → quantization}/algorithm/pt2e/utils.py +1 -4
- tico/{experimental/quantization → quantization}/algorithm/smoothquant/observer.py +26 -8
- tico/{experimental/quantization → quantization}/algorithm/smoothquant/quantizer.py +28 -9
- tico/quantization/algorithm/smoothquant/smooth_quant.py +327 -0
- tico/quantization/config/base.py +26 -0
- tico/quantization/config/gptq.py +29 -0
- tico/quantization/config/pt2e.py +25 -0
- tico/quantization/config/ptq.py +119 -0
- tico/{experimental/quantization/config.py → quantization/config/smoothquant.py} +9 -36
- tico/{experimental/quantization → quantization}/evaluation/evaluate.py +8 -17
- tico/{experimental/quantization → quantization}/evaluation/executor/circle_executor.py +3 -4
- tico/{experimental/quantization → quantization}/evaluation/executor/triv24_executor.py +2 -4
- tico/quantization/evaluation/metric.py +146 -0
- tico/{experimental/quantization → quantization}/evaluation/utils.py +1 -1
- tico/quantization/passes/__init__.py +1 -0
- tico/{experimental/quantization → quantization}/passes/fold_quant_ops.py +0 -1
- tico/quantization/passes/insert_quantize_on_dtype_mismatch.py +459 -0
- tico/{experimental/quantization → quantization}/passes/quantize_bias.py +0 -1
- tico/{experimental/quantization → quantization}/passes/remove_weight_dequant_op.py +1 -1
- tico/{experimental/quantization → quantization}/public_interface.py +19 -18
- tico/{experimental/quantization → quantization}/quantizer.py +1 -1
- tico/quantization/quantizer_registry.py +73 -0
- tico/quantization/wrapq/__init__.py +1 -0
- tico/quantization/wrapq/dtypes.py +70 -0
- tico/quantization/wrapq/examples/__init__.py +1 -0
- tico/quantization/wrapq/examples/compare_ppl.py +230 -0
- tico/quantization/wrapq/examples/debug_quant_outputs.py +224 -0
- tico/quantization/wrapq/examples/quantize_linear.py +107 -0
- tico/quantization/wrapq/examples/quantize_llama_attn.py +101 -0
- tico/quantization/wrapq/examples/quantize_llama_decoder_layer.py +125 -0
- tico/quantization/wrapq/examples/quantize_llama_mlp.py +95 -0
- tico/quantization/wrapq/examples/quantize_with_gptq.py +265 -0
- tico/quantization/wrapq/mode.py +32 -0
- tico/quantization/wrapq/observers/__init__.py +1 -0
- tico/quantization/wrapq/observers/affine_base.py +128 -0
- tico/quantization/wrapq/observers/base.py +98 -0
- tico/quantization/wrapq/observers/ema.py +62 -0
- tico/quantization/wrapq/observers/identity.py +74 -0
- tico/quantization/wrapq/observers/minmax.py +39 -0
- tico/quantization/wrapq/observers/mx.py +60 -0
- tico/quantization/wrapq/qscheme.py +40 -0
- tico/quantization/wrapq/quantizer.py +179 -0
- tico/quantization/wrapq/utils/__init__.py +1 -0
- tico/quantization/wrapq/utils/introspection.py +167 -0
- tico/quantization/wrapq/utils/metrics.py +124 -0
- tico/quantization/wrapq/utils/reduce_utils.py +25 -0
- tico/quantization/wrapq/wrappers/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/fairseq/__init__.py +5 -0
- tico/quantization/wrapq/wrappers/fairseq/decoder_export_single_step.py +234 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_decoder.py +429 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_decoder_layer.py +492 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_encoder.py +331 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_encoder_layer.py +163 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_mha.py +381 -0
- tico/quantization/wrapq/wrappers/llama/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/llama/quant_attn.py +276 -0
- tico/quantization/wrapq/wrappers/llama/quant_decoder_layer.py +176 -0
- tico/quantization/wrapq/wrappers/llama/quant_mlp.py +96 -0
- tico/quantization/wrapq/wrappers/nn/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/nn/quant_layernorm.py +183 -0
- tico/quantization/wrapq/wrappers/nn/quant_linear.py +65 -0
- tico/quantization/wrapq/wrappers/nn/quant_silu.py +59 -0
- tico/quantization/wrapq/wrappers/ptq_wrapper.py +69 -0
- tico/quantization/wrapq/wrappers/quant_elementwise.py +111 -0
- tico/quantization/wrapq/wrappers/quant_module_base.py +168 -0
- tico/quantization/wrapq/wrappers/registry.py +125 -0
- tico/serialize/circle_graph.py +12 -4
- tico/serialize/circle_mapping.py +76 -2
- tico/serialize/circle_serializer.py +253 -148
- tico/serialize/operators/adapters/__init__.py +1 -0
- tico/serialize/operators/adapters/llama_rmsnorm.py +35 -0
- tico/serialize/operators/op_any.py +7 -14
- tico/serialize/operators/op_avg_pool2d.py +11 -4
- tico/serialize/operators/op_clamp.py +5 -7
- tico/serialize/operators/op_constant_pad_nd.py +41 -11
- tico/serialize/operators/op_conv2d.py +14 -6
- tico/serialize/operators/op_copy.py +26 -3
- tico/serialize/operators/op_cumsum.py +3 -1
- tico/serialize/operators/op_depthwise_conv2d.py +17 -7
- tico/serialize/operators/op_full_like.py +0 -2
- tico/serialize/operators/op_index_select.py +8 -1
- tico/serialize/operators/op_instance_norm.py +0 -6
- tico/serialize/operators/op_le.py +54 -0
- tico/serialize/operators/op_log1p.py +3 -2
- tico/serialize/operators/op_max_pool2d_with_indices.py +17 -7
- tico/serialize/operators/op_mm.py +15 -131
- tico/serialize/operators/op_mul.py +2 -8
- tico/serialize/operators/op_pow.py +3 -1
- tico/serialize/operators/op_repeat.py +12 -3
- tico/serialize/operators/op_reshape.py +1 -1
- tico/serialize/operators/op_rmsnorm.py +65 -0
- tico/serialize/operators/op_softmax.py +7 -14
- tico/serialize/operators/op_split_with_sizes.py +16 -8
- tico/serialize/operators/op_transpose_conv.py +11 -8
- tico/serialize/operators/op_view.py +2 -1
- tico/serialize/quant_param.py +5 -5
- tico/utils/convert.py +30 -17
- tico/utils/dtype.py +42 -0
- tico/utils/graph.py +1 -1
- tico/utils/model.py +2 -1
- tico/utils/padding.py +2 -2
- tico/utils/pytree_utils.py +134 -0
- tico/utils/record_input.py +102 -0
- tico/utils/register_custom_op.py +29 -4
- tico/utils/serialize.py +16 -3
- tico/utils/signature.py +247 -0
- tico/utils/torch_compat.py +52 -0
- tico/utils/utils.py +50 -58
- tico/utils/validate_args_kwargs.py +38 -3
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/METADATA +49 -2
- tico-0.1.0.dev251102.dist-info/RECORD +271 -0
- tico/experimental/quantization/__init__.py +0 -1
- tico/experimental/quantization/algorithm/gptq/quantizer.py +0 -225
- tico/experimental/quantization/algorithm/smoothquant/smooth_quant.py +0 -164
- tico/experimental/quantization/evaluation/metric.py +0 -109
- tico/experimental/quantization/passes/insert_quantize_on_dtype_mismatch.py +0 -437
- tico-0.1.0.dev250714.dist-info/RECORD +0 -209
- /tico/{experimental/quantization → quantization}/algorithm/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/gptq/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/gptq/quant.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/config.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/transformation/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/transformation/convert_scalars_to_attrs.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/smoothquant/__init__.py +0 -0
- /tico/{experimental/quantization/evaluation → quantization/config}/__init__.py +0 -0
- /tico/{experimental/quantization/evaluation/executor → quantization/evaluation}/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/evaluation/backend.py +0 -0
- /tico/{experimental/quantization/passes → quantization/evaluation/executor}/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/evaluation/executor/backend_executor.py +0 -0
- /tico/{experimental/quantization → quantization}/passes/propagate_qparam_backward.py +0 -0
- /tico/{experimental/quantization → quantization}/passes/propagate_qparam_forward.py +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/LICENSE +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/WHEEL +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/entry_points.txt +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import pathlib
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
19
|
+
|
|
20
|
+
from tico.quantization import convert, prepare
|
|
21
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
22
|
+
from tico.quantization.evaluation.metric import compute_peir
|
|
23
|
+
from tico.quantization.evaluation.utils import plot_two_outputs
|
|
24
|
+
from tico.quantization.wrapq.mode import Mode
|
|
25
|
+
from tico.quantization.wrapq.wrappers.llama.quant_attn import QuantLlamaAttention
|
|
26
|
+
from tico.utils.utils import SuppressWarning
|
|
27
|
+
|
|
28
|
+
name = "Maykeye/TinyLLama-v0"
|
|
29
|
+
model = AutoModelForCausalLM.from_pretrained(name)
|
|
30
|
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
|
31
|
+
|
|
32
|
+
# -------------------------------------------------------------------------
|
|
33
|
+
# 1. Replace layer-0’s MLP with QuantLlamaMLP
|
|
34
|
+
# -------------------------------------------------------------------------
|
|
35
|
+
orig_attn = model.model.layers[0].self_attn
|
|
36
|
+
model.model.layers[0].self_attn = prepare(orig_attn, PTQConfig())
|
|
37
|
+
model.eval()
|
|
38
|
+
|
|
39
|
+
attn_q = model.model.layers[0].self_attn # quant wrapper
|
|
40
|
+
assert isinstance(attn_q.wrapped, QuantLlamaAttention)
|
|
41
|
+
rotary = model.model.rotary_emb
|
|
42
|
+
|
|
43
|
+
# -------------------------------------------------------------------------
|
|
44
|
+
# 2. Single-pass calibration
|
|
45
|
+
# -------------------------------------------------------------------------
|
|
46
|
+
PROMPTS = [
|
|
47
|
+
"The quick brown fox jumps over the lazy dog.",
|
|
48
|
+
"In 2025, AI systems accelerated hardware-software co-design at scale.",
|
|
49
|
+
"양자화는 왜 어려울까? 분포, 길이, 마스크가 관건이다.",
|
|
50
|
+
"今日はいい天気ですね。ところでRoPE角度は長さに依存します。",
|
|
51
|
+
"def quicksort(arr):\n if len(arr) <= 1: return arr\n ...",
|
|
52
|
+
"Prices rose 3.14% — see Figure 2; emails: foo@bar.com!",
|
|
53
|
+
]
|
|
54
|
+
|
|
55
|
+
with torch.no_grad():
|
|
56
|
+
for prompt in PROMPTS:
|
|
57
|
+
ids = tokenizer(prompt, return_tensors="pt")
|
|
58
|
+
embeds = model.model.embed_tokens(ids["input_ids"])
|
|
59
|
+
cos_sin = rotary(embeds, ids["input_ids"])
|
|
60
|
+
S = cos_sin[0].shape[1]
|
|
61
|
+
float_mask = torch.zeros(1, 1, S, S)
|
|
62
|
+
_ = attn_q(embeds, cos_sin) # observers collect
|
|
63
|
+
|
|
64
|
+
convert(attn_q)
|
|
65
|
+
|
|
66
|
+
assert attn_q._mode is Mode.QUANT, "Quantization mode should be active now."
|
|
67
|
+
|
|
68
|
+
# -------------------------------------------------------------------------
|
|
69
|
+
# 3. Quick diff check (INT-sim vs FP32)
|
|
70
|
+
# -------------------------------------------------------------------------
|
|
71
|
+
ids = tokenizer("check", return_tensors="pt")
|
|
72
|
+
emb = model.model.embed_tokens(ids["input_ids"])
|
|
73
|
+
pos = rotary(emb, ids["input_ids"])
|
|
74
|
+
S = pos[0].shape[1]
|
|
75
|
+
float_mask = torch.zeros(1, 1, S, S)
|
|
76
|
+
with torch.no_grad():
|
|
77
|
+
int8 = attn_q(emb, pos)[0]
|
|
78
|
+
fp32 = orig_attn(emb, position_embeddings=pos, attention_mask=None)[0]
|
|
79
|
+
|
|
80
|
+
print("┌───────────── Quantization Error Summary ─────────────")
|
|
81
|
+
print(f"│ Mean |diff|: {(int8 - fp32).abs().mean().item():.6f}")
|
|
82
|
+
print(f"│ PEIR : {compute_peir(fp32, int8) * 100:.6f} %")
|
|
83
|
+
print("└──────────────────────────────────────────────────────")
|
|
84
|
+
print(plot_two_outputs(fp32, int8))
|
|
85
|
+
|
|
86
|
+
# -------------------------------------------------------------------------
|
|
87
|
+
# 4. Export the quantized block
|
|
88
|
+
# -------------------------------------------------------------------------
|
|
89
|
+
import tico
|
|
90
|
+
|
|
91
|
+
save_path = pathlib.Path("attn.q.circle")
|
|
92
|
+
B, S, D = 1, 4, model.config.hidden_size
|
|
93
|
+
example = torch.randn(B, S, D)
|
|
94
|
+
example_pos = rotary(example, torch.arange(S)[None, :])
|
|
95
|
+
float_mask = torch.zeros(1, 1, S, S)
|
|
96
|
+
|
|
97
|
+
with SuppressWarning(UserWarning, ".*"):
|
|
98
|
+
cm = tico.convert(attn_q, (example, example_pos))
|
|
99
|
+
cm.save(save_path)
|
|
100
|
+
|
|
101
|
+
print(f"Quantized Circle model saved to {save_path.resolve()}")
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
# =============================================================================
|
|
16
|
+
# POST-TRAINING QUANTIZATION EXAMPLE — Llama Decoder Layer (Self-Attn + MLP)
|
|
17
|
+
# -----------------------------------------------------------------------------
|
|
18
|
+
# This demo shows how to:
|
|
19
|
+
# 1. Replace a single FP32 `LlamaDecoderLayer` with `QuantLlamaDecoderLayer`.
|
|
20
|
+
# 2. Collect activation statistics in one calibration sweep.
|
|
21
|
+
# 3. Freeze scales / zero-points and switch to INT-simulation mode.
|
|
22
|
+
# 4. Compare INT-8 vs FP32 outputs with a quick mean-absolute-diff check.
|
|
23
|
+
# 5. Export the calibrated, quantized block to a Circle model.
|
|
24
|
+
# -----------------------------------------------------------------------------
|
|
25
|
+
# Style / layout is kept identical to the `quantize_llama_attn.py` and
|
|
26
|
+
# `quantize_llama_mlp.py` examples for easy side-by-side reading.
|
|
27
|
+
# =============================================================================
|
|
28
|
+
|
|
29
|
+
import pathlib
|
|
30
|
+
|
|
31
|
+
import torch
|
|
32
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
33
|
+
|
|
34
|
+
from tico.quantization import convert, prepare
|
|
35
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
36
|
+
from tico.quantization.evaluation.metric import compute_peir
|
|
37
|
+
from tico.quantization.evaluation.utils import plot_two_outputs
|
|
38
|
+
from tico.quantization.wrapq.mode import Mode
|
|
39
|
+
from tico.quantization.wrapq.wrappers.llama.quant_decoder_layer import (
|
|
40
|
+
QuantLlamaDecoderLayer,
|
|
41
|
+
)
|
|
42
|
+
from tico.utils.utils import SuppressWarning
|
|
43
|
+
|
|
44
|
+
MODEL_NAME = "Maykeye/TinyLLama-v0"
|
|
45
|
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
46
|
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
47
|
+
|
|
48
|
+
model.eval() # disable dropout, etc.
|
|
49
|
+
rotary = model.model.rotary_emb # RoPE helper
|
|
50
|
+
|
|
51
|
+
# -------------------------------------------------------------------------
|
|
52
|
+
# 1. Swap in the quant wrapper
|
|
53
|
+
# -------------------------------------------------------------------------
|
|
54
|
+
fp32_layer = model.model.layers[0] # keep a reference for diff check
|
|
55
|
+
model.model.layers[0] = prepare(fp32_layer, PTQConfig())
|
|
56
|
+
model.eval()
|
|
57
|
+
|
|
58
|
+
qlayer = model.model.layers[0] # alias for brevity
|
|
59
|
+
assert isinstance(qlayer.wrapped, QuantLlamaDecoderLayer)
|
|
60
|
+
|
|
61
|
+
# -------------------------------------------------------------------------
|
|
62
|
+
# 2. Single-pass calibration (gather activation ranges)
|
|
63
|
+
# -------------------------------------------------------------------------
|
|
64
|
+
PROMPTS = [
|
|
65
|
+
"The quick brown fox jumps over the lazy dog.",
|
|
66
|
+
"In 2025, AI systems accelerated hardware-software co-design at scale.",
|
|
67
|
+
"양자화는 왜 어려울까? 분포, 길이, 마스크가 관건이다.",
|
|
68
|
+
"今日はいい天気ですね。ところでRoPE角度は長さに依存します。",
|
|
69
|
+
"def quicksort(arr):\n if len(arr) <= 1: return arr\n ...",
|
|
70
|
+
"Prices rose 3.14% — see Figure 2; emails: foo@bar.com!",
|
|
71
|
+
]
|
|
72
|
+
|
|
73
|
+
with torch.no_grad():
|
|
74
|
+
for prompt in PROMPTS:
|
|
75
|
+
ids = tokenizer(prompt, return_tensors="pt")
|
|
76
|
+
hidden = model.model.embed_tokens(ids["input_ids"])
|
|
77
|
+
pos = rotary(hidden, ids["input_ids"]) # (cos, sin) tuple
|
|
78
|
+
S = pos[0].shape[1]
|
|
79
|
+
attn_mask = torch.zeros(1, 1, S, S) # causal-mask placeholder
|
|
80
|
+
_ = qlayer(hidden, attention_mask=attn_mask, position_embeddings=pos)
|
|
81
|
+
|
|
82
|
+
convert(qlayer)
|
|
83
|
+
|
|
84
|
+
assert qlayer._mode is Mode.QUANT, "Quantization mode should be active now."
|
|
85
|
+
|
|
86
|
+
# -------------------------------------------------------------------------
|
|
87
|
+
# 3. Quick INT-sim vs FP32 sanity check
|
|
88
|
+
# -------------------------------------------------------------------------
|
|
89
|
+
ids = tokenizer("check", return_tensors="pt")
|
|
90
|
+
hidden = model.model.embed_tokens(ids["input_ids"])
|
|
91
|
+
pos = rotary(hidden, ids["input_ids"])
|
|
92
|
+
S = pos[0].shape[1]
|
|
93
|
+
attn_mask = torch.zeros(1, 1, S, S)
|
|
94
|
+
|
|
95
|
+
with torch.no_grad():
|
|
96
|
+
int8_out = qlayer(hidden, attention_mask=attn_mask, position_embeddings=pos)
|
|
97
|
+
int8 = int8_out[0] if isinstance(int8_out, tuple) else int8_out
|
|
98
|
+
fp32_out = fp32_layer(hidden, attention_mask=attn_mask, position_embeddings=pos)
|
|
99
|
+
fp32 = fp32_out[0] if isinstance(fp32_out, tuple) else fp32_out
|
|
100
|
+
|
|
101
|
+
print("┌───────────── Quantization Error Summary ─────────────")
|
|
102
|
+
print(f"│ Mean |diff|: {(int8 - fp32).abs().mean().item():.6f}")
|
|
103
|
+
print(f"│ PEIR : {compute_peir(fp32, int8) * 100:.6f} %")
|
|
104
|
+
print("└──────────────────────────────────────────────────────")
|
|
105
|
+
print(plot_two_outputs(fp32, int8))
|
|
106
|
+
|
|
107
|
+
# -------------------------------------------------------------------------
|
|
108
|
+
# 4. Export the calibrated layer to Circle
|
|
109
|
+
# -------------------------------------------------------------------------
|
|
110
|
+
import tico
|
|
111
|
+
|
|
112
|
+
save_path = pathlib.Path("decoder_layer.q.circle")
|
|
113
|
+
B, S, D = 1, 4, model.config.hidden_size
|
|
114
|
+
example_hidden = torch.randn(B, S, D)
|
|
115
|
+
example_pos = rotary(example_hidden, torch.arange(S)[None, :])
|
|
116
|
+
attn_mask = torch.zeros(1, 1, S, S)
|
|
117
|
+
|
|
118
|
+
with SuppressWarning(UserWarning, ".*"):
|
|
119
|
+
cm = tico.convert(
|
|
120
|
+
qlayer, (example_hidden, attn_mask), {"position_embeddings": example_pos}
|
|
121
|
+
)
|
|
122
|
+
# Note that the model is not fully quantized.
|
|
123
|
+
cm.save(save_path)
|
|
124
|
+
|
|
125
|
+
print(f"Quantized Circle model saved to {save_path.resolve()}")
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import pathlib
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
19
|
+
|
|
20
|
+
import tico
|
|
21
|
+
from tico.quantization import convert, prepare
|
|
22
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
23
|
+
from tico.quantization.evaluation.metric import compute_peir
|
|
24
|
+
from tico.quantization.evaluation.utils import plot_two_outputs
|
|
25
|
+
from tico.quantization.wrapq.dtypes import INT16
|
|
26
|
+
from tico.quantization.wrapq.mode import Mode
|
|
27
|
+
from tico.quantization.wrapq.qscheme import QScheme
|
|
28
|
+
from tico.quantization.wrapq.wrappers.llama.quant_mlp import QuantLlamaMLP
|
|
29
|
+
from tico.utils.utils import SuppressWarning
|
|
30
|
+
|
|
31
|
+
name = "Maykeye/TinyLLama-v0"
|
|
32
|
+
model = AutoModelForCausalLM.from_pretrained(name)
|
|
33
|
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
|
34
|
+
model.eval()
|
|
35
|
+
|
|
36
|
+
# -------------------------------------------------------------------------
|
|
37
|
+
# 1. Replace layer-0’s MLP with QuantLlamaMLP
|
|
38
|
+
# -------------------------------------------------------------------------
|
|
39
|
+
fp32_mlp = model.model.layers[0].mlp
|
|
40
|
+
model.model.layers[0].mlp = prepare(
|
|
41
|
+
fp32_mlp, PTQConfig(default_dtype=INT16, default_qscheme=QScheme.PER_TENSOR_SYMM)
|
|
42
|
+
)
|
|
43
|
+
model.eval()
|
|
44
|
+
|
|
45
|
+
mlp_q = model.model.layers[0].mlp
|
|
46
|
+
assert isinstance(mlp_q.wrapped, QuantLlamaMLP)
|
|
47
|
+
|
|
48
|
+
# -------------------------------------------------------------------------
|
|
49
|
+
# 2. Single-pass calibration
|
|
50
|
+
# -------------------------------------------------------------------------
|
|
51
|
+
PROMPTS = [
|
|
52
|
+
"The quick brown fox jumps over the lazy dog.",
|
|
53
|
+
"In 2025, AI systems accelerated hardware-software co-design at scale.",
|
|
54
|
+
"양자화는 왜 어려울까? 분포, 길이, 마스크가 관건이다.",
|
|
55
|
+
"今日はいい天気ですね。ところでRoPE角度は長さに依存します。",
|
|
56
|
+
"def quicksort(arr):\n if len(arr) <= 1: return arr\n ...",
|
|
57
|
+
"Prices rose 3.14% — see Figure 2; emails: foo@bar.com!",
|
|
58
|
+
]
|
|
59
|
+
|
|
60
|
+
with torch.no_grad():
|
|
61
|
+
for prompt in PROMPTS:
|
|
62
|
+
enc = tokenizer(prompt, return_tensors="pt")
|
|
63
|
+
emb = model.model.embed_tokens(enc["input_ids"])
|
|
64
|
+
_ = mlp_q(emb)
|
|
65
|
+
|
|
66
|
+
convert(mlp_q)
|
|
67
|
+
|
|
68
|
+
assert mlp_q._mode is Mode.QUANT, "Quantization mode should be active now."
|
|
69
|
+
|
|
70
|
+
# -------------------------------------------------------------------------
|
|
71
|
+
# 3. Quick diff check (INT-sim vs FP32)
|
|
72
|
+
# -------------------------------------------------------------------------
|
|
73
|
+
with torch.no_grad():
|
|
74
|
+
ids = tokenizer("quant all tensors!", return_tensors="pt")
|
|
75
|
+
emb = model.model.embed_tokens(ids["input_ids"])
|
|
76
|
+
int16 = mlp_q(emb) # INT-sim
|
|
77
|
+
fp32 = fp32_mlp(emb) # baseline reference
|
|
78
|
+
|
|
79
|
+
print("┌───────────── Quantization Error Summary ─────────────")
|
|
80
|
+
print(f"│ Mean |diff|: {(int16 - fp32).abs().mean().item():.6f}")
|
|
81
|
+
print(f"│ PEIR : {compute_peir(fp32, int16) * 100:.6f} %")
|
|
82
|
+
print("└──────────────────────────────────────────────────────")
|
|
83
|
+
print(plot_two_outputs(fp32, int16))
|
|
84
|
+
|
|
85
|
+
# -------------------------------------------------------------------------
|
|
86
|
+
# 4. Export the quantized block
|
|
87
|
+
# -------------------------------------------------------------------------
|
|
88
|
+
save_path = pathlib.Path("mlp.q.circle")
|
|
89
|
+
example_in = (torch.randn(1, 1, model.config.hidden_size),)
|
|
90
|
+
|
|
91
|
+
with SuppressWarning(UserWarning, ".*"):
|
|
92
|
+
cm = tico.convert(mlp_q, example_in)
|
|
93
|
+
cm.save(save_path)
|
|
94
|
+
|
|
95
|
+
print(f"Quantized Circle model saved to {save_path.resolve()}")
|
|
@@ -0,0 +1,265 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
# =============================================================================
|
|
16
|
+
# PTQ + GPTQ HYBRID QUANTIZATION PIPELINE
|
|
17
|
+
# -----------------------------------------------------------------------------
|
|
18
|
+
# This script shows how to:
|
|
19
|
+
# 1. Load a pretrained FP Llama-3 model.
|
|
20
|
+
# 2. Run GPTQ to quantize weights only.
|
|
21
|
+
# 3. Wrap every Transformer layer with a PTQWrapper to quantize activations.
|
|
22
|
+
# 4. Calibrate UINT-8 observers in a single pass over a text corpus.
|
|
23
|
+
# 5. Inject GPTQ’s per-tensor weight scales / zero-points into the PTQ graph.
|
|
24
|
+
# 6. Freeze all Q-params and compute Wikitext-2 perplexity.
|
|
25
|
+
# =============================================================================
|
|
26
|
+
|
|
27
|
+
import argparse
|
|
28
|
+
import sys
|
|
29
|
+
from typing import Any
|
|
30
|
+
|
|
31
|
+
import torch
|
|
32
|
+
import tqdm
|
|
33
|
+
from datasets import load_dataset
|
|
34
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
35
|
+
|
|
36
|
+
from tico.quantization import convert, prepare
|
|
37
|
+
from tico.quantization.config.gptq import GPTQConfig
|
|
38
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
39
|
+
from tico.quantization.wrapq.observers.affine_base import AffineObserverBase
|
|
40
|
+
from tico.quantization.wrapq.utils.introspection import build_fqn_map
|
|
41
|
+
from tico.quantization.wrapq.utils.metrics import perplexity
|
|
42
|
+
from tico.quantization.wrapq.wrappers.ptq_wrapper import PTQWrapper
|
|
43
|
+
from tico.quantization.wrapq.wrappers.quant_module_base import QuantModuleBase
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
# Token-budget presets for activation calibration
|
|
47
|
+
TOKENS: dict[str, int] = {
|
|
48
|
+
# Smoke test (<1 min turnaround on CPU/GPU)
|
|
49
|
+
"debug": 2_000, # ≈16 × 128-seq batches
|
|
50
|
+
# Good default for 1-7B models (≲3 % ppl delta)
|
|
51
|
+
"baseline": 50_000,
|
|
52
|
+
# Production / 4-bit observer smoothing
|
|
53
|
+
"production": 200_000,
|
|
54
|
+
}
|
|
55
|
+
|
|
56
|
+
DTYPE_MAP = {
|
|
57
|
+
"float32": torch.float32,
|
|
58
|
+
"bfloat16": torch.bfloat16,
|
|
59
|
+
"float16": torch.float16,
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
# Hardcoded dataset settings
|
|
63
|
+
DATASET_NAME = "wikitext"
|
|
64
|
+
DATASET_CONFIG = "wikitext-2-raw-v1"
|
|
65
|
+
TRAIN_SPLIT = "train"
|
|
66
|
+
TEST_SPLIT = "test"
|
|
67
|
+
|
|
68
|
+
# -------------------------------------------------------------------------
|
|
69
|
+
# 1. Helper — copy GPTQ (scale, zp) into PTQ observers
|
|
70
|
+
# -------------------------------------------------------------------------
|
|
71
|
+
def inject_gptq_qparams(
|
|
72
|
+
root: torch.nn.Module,
|
|
73
|
+
gptq_quantizers: dict[str, Any], # {fp_name: quantizer}
|
|
74
|
+
weight_obs_name: str = "weight",
|
|
75
|
+
):
|
|
76
|
+
"""
|
|
77
|
+
For every `QuantModuleBase` whose `fp_name` matches a GPTQ key,
|
|
78
|
+
locate the observer called `weight_obs_name` and overwrite its
|
|
79
|
+
(scale, zero-point), then lock them against further updates.
|
|
80
|
+
"""
|
|
81
|
+
for m in root.modules():
|
|
82
|
+
if not isinstance(m, QuantModuleBase):
|
|
83
|
+
continue
|
|
84
|
+
if m.fp_name is None:
|
|
85
|
+
continue
|
|
86
|
+
quantizer = gptq_quantizers.get(m.fp_name)
|
|
87
|
+
if quantizer is None:
|
|
88
|
+
continue
|
|
89
|
+
obs = m.get_observer(weight_obs_name)
|
|
90
|
+
if obs is None:
|
|
91
|
+
continue
|
|
92
|
+
assert isinstance(obs, AffineObserverBase)
|
|
93
|
+
# GPTQ quantizer attributes
|
|
94
|
+
obs.load_qparams(quantizer.scale, quantizer.zero, lock=True)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def main():
|
|
98
|
+
parser = argparse.ArgumentParser(
|
|
99
|
+
description="GPTQ+PTQ pipeline (weight-only + activation UINT8)"
|
|
100
|
+
)
|
|
101
|
+
parser.add_argument(
|
|
102
|
+
"--model", type=str, required=True, help="HF repo name or local path."
|
|
103
|
+
)
|
|
104
|
+
parser.add_argument(
|
|
105
|
+
"--device",
|
|
106
|
+
type=str,
|
|
107
|
+
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
108
|
+
help="Device to run on (cuda|cpu|mps).",
|
|
109
|
+
)
|
|
110
|
+
parser.add_argument(
|
|
111
|
+
"--dtype",
|
|
112
|
+
choices=list(DTYPE_MAP.keys()),
|
|
113
|
+
default="float32",
|
|
114
|
+
help="Model dtype for load.",
|
|
115
|
+
)
|
|
116
|
+
parser.add_argument(
|
|
117
|
+
"--stride",
|
|
118
|
+
type=int,
|
|
119
|
+
default=512,
|
|
120
|
+
help="Sliding-window stride used for calibration and eval.",
|
|
121
|
+
)
|
|
122
|
+
parser.add_argument(
|
|
123
|
+
"--calib-preset",
|
|
124
|
+
choices=list(TOKENS.keys()),
|
|
125
|
+
default="debug",
|
|
126
|
+
help="Activation calibration token budget preset.",
|
|
127
|
+
)
|
|
128
|
+
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
|
|
129
|
+
parser.add_argument(
|
|
130
|
+
"--trust-remote-code",
|
|
131
|
+
action="store_true",
|
|
132
|
+
help="Enable only if you trust the model repo code.",
|
|
133
|
+
)
|
|
134
|
+
parser.add_argument(
|
|
135
|
+
"--hf-token",
|
|
136
|
+
type=str,
|
|
137
|
+
default=None,
|
|
138
|
+
help="Optional HF token for gated/private repos.",
|
|
139
|
+
)
|
|
140
|
+
parser.add_argument(
|
|
141
|
+
"--use-cache",
|
|
142
|
+
dest="use_cache",
|
|
143
|
+
action="store_true",
|
|
144
|
+
default=False,
|
|
145
|
+
help="Use model KV cache if enabled (off by default).",
|
|
146
|
+
)
|
|
147
|
+
parser.add_argument(
|
|
148
|
+
"--no-tqdm", action="store_true", help="Disable tqdm progress bars."
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
args = parser.parse_args()
|
|
152
|
+
|
|
153
|
+
# Basic setup
|
|
154
|
+
torch.manual_seed(args.seed)
|
|
155
|
+
device = torch.device(args.device)
|
|
156
|
+
dtype = DTYPE_MAP[args.dtype]
|
|
157
|
+
|
|
158
|
+
print("=== Config ===")
|
|
159
|
+
print(f"Model : {args.model}")
|
|
160
|
+
print(f"Device : {device.type}")
|
|
161
|
+
print(f"DType : {args.dtype}")
|
|
162
|
+
print(f"Stride : {args.stride}")
|
|
163
|
+
print(
|
|
164
|
+
f"Calib preset : {args.calib_preset} ({TOKENS[args.calib_preset]:,} tokens)"
|
|
165
|
+
)
|
|
166
|
+
print(f"Use HF cache? : {args.use_cache}")
|
|
167
|
+
print()
|
|
168
|
+
|
|
169
|
+
# -------------------------------------------------------------------------
|
|
170
|
+
# 2. Load the FP backbone and tokenizer
|
|
171
|
+
# -------------------------------------------------------------------------
|
|
172
|
+
print("Loading FP model …")
|
|
173
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
174
|
+
args.model,
|
|
175
|
+
trust_remote_code=args.trust_remote_code,
|
|
176
|
+
token=args.hf_token,
|
|
177
|
+
)
|
|
178
|
+
model = (
|
|
179
|
+
AutoModelForCausalLM.from_pretrained(
|
|
180
|
+
args.model,
|
|
181
|
+
torch_dtype=dtype,
|
|
182
|
+
trust_remote_code=args.trust_remote_code,
|
|
183
|
+
token=args.hf_token,
|
|
184
|
+
)
|
|
185
|
+
.to(device)
|
|
186
|
+
.eval()
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
model.config.use_cache = args.use_cache
|
|
190
|
+
|
|
191
|
+
# Build module -> FQN map BEFORE wrapping
|
|
192
|
+
m_to_fqn = build_fqn_map(model)
|
|
193
|
+
|
|
194
|
+
# -------------------------------------------------------------------------
|
|
195
|
+
# 3. Run GPTQ (weight-only) pass
|
|
196
|
+
# -------------------------------------------------------------------------
|
|
197
|
+
print("Applying GPTQ …")
|
|
198
|
+
dataset_test = load_dataset(DATASET_NAME, DATASET_CONFIG, split=TEST_SPLIT)
|
|
199
|
+
q_m = prepare(model, GPTQConfig(), inplace=True)
|
|
200
|
+
|
|
201
|
+
it = (
|
|
202
|
+
dataset_test
|
|
203
|
+
if args.no_tqdm
|
|
204
|
+
else tqdm.tqdm(dataset_test, desc="GPTQ calibration")
|
|
205
|
+
)
|
|
206
|
+
for d in it:
|
|
207
|
+
ids = tokenizer(d["text"], return_tensors="pt").input_ids.to(device)
|
|
208
|
+
q_m(ids) # observers gather weight stats
|
|
209
|
+
|
|
210
|
+
q_m = convert(q_m, inplace=True) # materialize INT-weight tensors
|
|
211
|
+
|
|
212
|
+
# -------------------------------------------------------------------------
|
|
213
|
+
# 4. Wrap every layer with PTQWrapper (activation UINT-8)
|
|
214
|
+
# -------------------------------------------------------------------------
|
|
215
|
+
print("Wrapping layers with PTQWrapper …")
|
|
216
|
+
qcfg = PTQConfig() # default: per-tensor UINT8
|
|
217
|
+
prepare(q_m, qcfg)
|
|
218
|
+
|
|
219
|
+
# -------------------------------------------------------------------------
|
|
220
|
+
# 5. Single-pass activation calibration
|
|
221
|
+
# -------------------------------------------------------------------------
|
|
222
|
+
print("Calibrating UINT-8 observers …")
|
|
223
|
+
CALIB_TOKENS = TOKENS[args.calib_preset]
|
|
224
|
+
print(f"Calibrating with {CALIB_TOKENS:,} tokens.\n")
|
|
225
|
+
dataset_train = load_dataset(DATASET_NAME, DATASET_CONFIG, split=TRAIN_SPLIT)
|
|
226
|
+
calib_txt = " ".join(dataset_train["text"])[:CALIB_TOKENS]
|
|
227
|
+
train_ids = tokenizer(calib_txt, return_tensors="pt").input_ids.to(device)
|
|
228
|
+
|
|
229
|
+
# Overwrite weight observers with GPTQ statistics
|
|
230
|
+
if hasattr(q_m, "quantizers") and isinstance(q_m.quantizers, dict):
|
|
231
|
+
inject_gptq_qparams(q_m, q_m.quantizers)
|
|
232
|
+
else:
|
|
233
|
+
print(
|
|
234
|
+
"[Warn] q_m.quantizers not found or not a dict; skipping GPTQ qparam injection."
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
# Forward passes to collect activation ranges
|
|
238
|
+
iterator = range(0, train_ids.size(1) - 1, args.stride)
|
|
239
|
+
if not args.no_tqdm:
|
|
240
|
+
iterator = tqdm.tqdm(iterator, desc="Act-calibration")
|
|
241
|
+
with torch.no_grad():
|
|
242
|
+
for i in iterator:
|
|
243
|
+
q_m(train_ids[:, i : i + args.stride])
|
|
244
|
+
|
|
245
|
+
# Freeze all Q-params (scale, zero-point)
|
|
246
|
+
convert(q_m)
|
|
247
|
+
|
|
248
|
+
# -------------------------------------------------------------------------
|
|
249
|
+
# 6. Evaluate perplexity on Wikitext-2
|
|
250
|
+
# -------------------------------------------------------------------------
|
|
251
|
+
print("\nCalculating perplexities …")
|
|
252
|
+
enc = tokenizer("\n\n".join(dataset_test["text"]), return_tensors="pt")
|
|
253
|
+
ppl_uint8 = perplexity(q_m, enc, device, stride=args.stride)
|
|
254
|
+
|
|
255
|
+
print("\n┌── Wikitext-2 test perplexity ─────────────")
|
|
256
|
+
print(f"│ UINT-8 : {ppl_uint8:8.2f}")
|
|
257
|
+
print("└───────────────────────────────────────────")
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
if __name__ == "__main__":
|
|
261
|
+
try:
|
|
262
|
+
main()
|
|
263
|
+
except Exception as e:
|
|
264
|
+
print(f"\n[Error] {e}", file=sys.stderr)
|
|
265
|
+
sys.exit(1)
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from enum import auto, Enum
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class Mode(Enum):
|
|
19
|
+
"""
|
|
20
|
+
Mode — global FSM for PTQWrapper & Handlers.
|
|
21
|
+
|
|
22
|
+
• NO_QUANT : pure pass-through (no stats, no fake-quant)
|
|
23
|
+
• CALIB : collect observer statistics only
|
|
24
|
+
• QUANT : use cached (scale, zero-point) → fake-quant enabled
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
NO_QUANT = auto()
|
|
28
|
+
CALIB = auto()
|
|
29
|
+
QUANT = auto()
|
|
30
|
+
|
|
31
|
+
def __str__(self) -> str:
|
|
32
|
+
return self.name.lower()
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# DO NOT REMOVE THIS FILE
|