tico 0.1.0.dev250714__py3-none-any.whl → 0.1.0.dev251102__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tico/__init__.py +9 -1
- tico/config/base.py +1 -1
- tico/config/v1.py +5 -0
- tico/passes/cast_aten_where_arg_type.py +1 -1
- tico/passes/cast_clamp_mixed_type_args.py +169 -0
- tico/passes/cast_mixed_type_args.py +4 -2
- tico/passes/const_prop_pass.py +1 -1
- tico/passes/convert_conv1d_to_conv2d.py +1 -1
- tico/passes/convert_expand_to_slice_cat.py +153 -0
- tico/passes/convert_matmul_to_linear.py +312 -0
- tico/passes/convert_to_relu6.py +1 -1
- tico/passes/decompose_addmm.py +0 -3
- tico/passes/decompose_batch_norm.py +2 -2
- tico/passes/decompose_fake_quantize.py +0 -3
- tico/passes/decompose_fake_quantize_tensor_qparams.py +5 -6
- tico/passes/decompose_group_norm.py +0 -3
- tico/passes/legalize_predefined_layout_operators.py +2 -11
- tico/passes/lower_to_resize_nearest_neighbor.py +1 -1
- tico/passes/lower_to_slice.py +1 -1
- tico/passes/merge_consecutive_cat.py +1 -1
- tico/passes/ops.py +1 -1
- tico/passes/remove_redundant_assert_nodes.py +3 -1
- tico/passes/remove_redundant_expand.py +3 -6
- tico/passes/remove_redundant_reshape.py +5 -5
- tico/passes/segment_index_select.py +1 -1
- tico/quantization/__init__.py +6 -0
- tico/{experimental/quantization → quantization}/algorithm/gptq/gptq.py +1 -1
- tico/quantization/algorithm/gptq/quantizer.py +292 -0
- tico/{experimental/quantization → quantization}/algorithm/gptq/utils.py +1 -1
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/annotator.py +7 -14
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/adaptive_avg_pool2d.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/add.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/conv2d.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/div.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/linear.py +5 -7
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/mean.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/mul.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/relu6.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/rsqrt.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/sub.py +4 -6
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/spec.py +1 -3
- tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/utils.py +1 -1
- tico/{experimental/quantization → quantization}/algorithm/pt2e/quantizer.py +5 -2
- tico/{experimental/quantization → quantization}/algorithm/pt2e/utils.py +1 -4
- tico/{experimental/quantization → quantization}/algorithm/smoothquant/observer.py +26 -8
- tico/{experimental/quantization → quantization}/algorithm/smoothquant/quantizer.py +28 -9
- tico/quantization/algorithm/smoothquant/smooth_quant.py +327 -0
- tico/quantization/config/base.py +26 -0
- tico/quantization/config/gptq.py +29 -0
- tico/quantization/config/pt2e.py +25 -0
- tico/quantization/config/ptq.py +119 -0
- tico/{experimental/quantization/config.py → quantization/config/smoothquant.py} +9 -36
- tico/{experimental/quantization → quantization}/evaluation/evaluate.py +8 -17
- tico/{experimental/quantization → quantization}/evaluation/executor/circle_executor.py +3 -4
- tico/{experimental/quantization → quantization}/evaluation/executor/triv24_executor.py +2 -4
- tico/quantization/evaluation/metric.py +146 -0
- tico/{experimental/quantization → quantization}/evaluation/utils.py +1 -1
- tico/quantization/passes/__init__.py +1 -0
- tico/{experimental/quantization → quantization}/passes/fold_quant_ops.py +0 -1
- tico/quantization/passes/insert_quantize_on_dtype_mismatch.py +459 -0
- tico/{experimental/quantization → quantization}/passes/quantize_bias.py +0 -1
- tico/{experimental/quantization → quantization}/passes/remove_weight_dequant_op.py +1 -1
- tico/{experimental/quantization → quantization}/public_interface.py +19 -18
- tico/{experimental/quantization → quantization}/quantizer.py +1 -1
- tico/quantization/quantizer_registry.py +73 -0
- tico/quantization/wrapq/__init__.py +1 -0
- tico/quantization/wrapq/dtypes.py +70 -0
- tico/quantization/wrapq/examples/__init__.py +1 -0
- tico/quantization/wrapq/examples/compare_ppl.py +230 -0
- tico/quantization/wrapq/examples/debug_quant_outputs.py +224 -0
- tico/quantization/wrapq/examples/quantize_linear.py +107 -0
- tico/quantization/wrapq/examples/quantize_llama_attn.py +101 -0
- tico/quantization/wrapq/examples/quantize_llama_decoder_layer.py +125 -0
- tico/quantization/wrapq/examples/quantize_llama_mlp.py +95 -0
- tico/quantization/wrapq/examples/quantize_with_gptq.py +265 -0
- tico/quantization/wrapq/mode.py +32 -0
- tico/quantization/wrapq/observers/__init__.py +1 -0
- tico/quantization/wrapq/observers/affine_base.py +128 -0
- tico/quantization/wrapq/observers/base.py +98 -0
- tico/quantization/wrapq/observers/ema.py +62 -0
- tico/quantization/wrapq/observers/identity.py +74 -0
- tico/quantization/wrapq/observers/minmax.py +39 -0
- tico/quantization/wrapq/observers/mx.py +60 -0
- tico/quantization/wrapq/qscheme.py +40 -0
- tico/quantization/wrapq/quantizer.py +179 -0
- tico/quantization/wrapq/utils/__init__.py +1 -0
- tico/quantization/wrapq/utils/introspection.py +167 -0
- tico/quantization/wrapq/utils/metrics.py +124 -0
- tico/quantization/wrapq/utils/reduce_utils.py +25 -0
- tico/quantization/wrapq/wrappers/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/fairseq/__init__.py +5 -0
- tico/quantization/wrapq/wrappers/fairseq/decoder_export_single_step.py +234 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_decoder.py +429 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_decoder_layer.py +492 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_encoder.py +331 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_encoder_layer.py +163 -0
- tico/quantization/wrapq/wrappers/fairseq/quant_mha.py +381 -0
- tico/quantization/wrapq/wrappers/llama/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/llama/quant_attn.py +276 -0
- tico/quantization/wrapq/wrappers/llama/quant_decoder_layer.py +176 -0
- tico/quantization/wrapq/wrappers/llama/quant_mlp.py +96 -0
- tico/quantization/wrapq/wrappers/nn/__init__.py +1 -0
- tico/quantization/wrapq/wrappers/nn/quant_layernorm.py +183 -0
- tico/quantization/wrapq/wrappers/nn/quant_linear.py +65 -0
- tico/quantization/wrapq/wrappers/nn/quant_silu.py +59 -0
- tico/quantization/wrapq/wrappers/ptq_wrapper.py +69 -0
- tico/quantization/wrapq/wrappers/quant_elementwise.py +111 -0
- tico/quantization/wrapq/wrappers/quant_module_base.py +168 -0
- tico/quantization/wrapq/wrappers/registry.py +125 -0
- tico/serialize/circle_graph.py +12 -4
- tico/serialize/circle_mapping.py +76 -2
- tico/serialize/circle_serializer.py +253 -148
- tico/serialize/operators/adapters/__init__.py +1 -0
- tico/serialize/operators/adapters/llama_rmsnorm.py +35 -0
- tico/serialize/operators/op_any.py +7 -14
- tico/serialize/operators/op_avg_pool2d.py +11 -4
- tico/serialize/operators/op_clamp.py +5 -7
- tico/serialize/operators/op_constant_pad_nd.py +41 -11
- tico/serialize/operators/op_conv2d.py +14 -6
- tico/serialize/operators/op_copy.py +26 -3
- tico/serialize/operators/op_cumsum.py +3 -1
- tico/serialize/operators/op_depthwise_conv2d.py +17 -7
- tico/serialize/operators/op_full_like.py +0 -2
- tico/serialize/operators/op_index_select.py +8 -1
- tico/serialize/operators/op_instance_norm.py +0 -6
- tico/serialize/operators/op_le.py +54 -0
- tico/serialize/operators/op_log1p.py +3 -2
- tico/serialize/operators/op_max_pool2d_with_indices.py +17 -7
- tico/serialize/operators/op_mm.py +15 -131
- tico/serialize/operators/op_mul.py +2 -8
- tico/serialize/operators/op_pow.py +3 -1
- tico/serialize/operators/op_repeat.py +12 -3
- tico/serialize/operators/op_reshape.py +1 -1
- tico/serialize/operators/op_rmsnorm.py +65 -0
- tico/serialize/operators/op_softmax.py +7 -14
- tico/serialize/operators/op_split_with_sizes.py +16 -8
- tico/serialize/operators/op_transpose_conv.py +11 -8
- tico/serialize/operators/op_view.py +2 -1
- tico/serialize/quant_param.py +5 -5
- tico/utils/convert.py +30 -17
- tico/utils/dtype.py +42 -0
- tico/utils/graph.py +1 -1
- tico/utils/model.py +2 -1
- tico/utils/padding.py +2 -2
- tico/utils/pytree_utils.py +134 -0
- tico/utils/record_input.py +102 -0
- tico/utils/register_custom_op.py +29 -4
- tico/utils/serialize.py +16 -3
- tico/utils/signature.py +247 -0
- tico/utils/torch_compat.py +52 -0
- tico/utils/utils.py +50 -58
- tico/utils/validate_args_kwargs.py +38 -3
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/METADATA +49 -2
- tico-0.1.0.dev251102.dist-info/RECORD +271 -0
- tico/experimental/quantization/__init__.py +0 -1
- tico/experimental/quantization/algorithm/gptq/quantizer.py +0 -225
- tico/experimental/quantization/algorithm/smoothquant/smooth_quant.py +0 -164
- tico/experimental/quantization/evaluation/metric.py +0 -109
- tico/experimental/quantization/passes/insert_quantize_on_dtype_mismatch.py +0 -437
- tico-0.1.0.dev250714.dist-info/RECORD +0 -209
- /tico/{experimental/quantization → quantization}/algorithm/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/gptq/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/gptq/quant.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/config.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/annotation/op/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/transformation/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/pt2e/transformation/convert_scalars_to_attrs.py +0 -0
- /tico/{experimental/quantization → quantization}/algorithm/smoothquant/__init__.py +0 -0
- /tico/{experimental/quantization/evaluation → quantization/config}/__init__.py +0 -0
- /tico/{experimental/quantization/evaluation/executor → quantization/evaluation}/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/evaluation/backend.py +0 -0
- /tico/{experimental/quantization/passes → quantization/evaluation/executor}/__init__.py +0 -0
- /tico/{experimental/quantization → quantization}/evaluation/executor/backend_executor.py +0 -0
- /tico/{experimental/quantization → quantization}/passes/propagate_qparam_backward.py +0 -0
- /tico/{experimental/quantization → quantization}/passes/propagate_qparam_forward.py +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/LICENSE +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/WHEEL +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/entry_points.txt +0 -0
- {tico-0.1.0.dev250714.dist-info → tico-0.1.0.dev251102.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Callable, Optional
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
import torch.nn as nn
|
|
19
|
+
|
|
20
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
21
|
+
from tico.quantization.wrapq.wrappers.quant_module_base import QuantModuleBase
|
|
22
|
+
from tico.quantization.wrapq.wrappers.registry import register
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class QuantElementwise(QuantModuleBase):
|
|
26
|
+
"""
|
|
27
|
+
Generic wrapper for any 1-to-1 element-wise op `y = f(x)`.
|
|
28
|
+
|
|
29
|
+
Sub-classes only need to implement:
|
|
30
|
+
• `FUNC`: a Callable that maps tensor→tensor
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
# subclass must set this
|
|
34
|
+
FUNC: Callable[[torch.Tensor], torch.Tensor] | None = None
|
|
35
|
+
|
|
36
|
+
def __init_subclass__(cls, **kwargs):
|
|
37
|
+
super().__init_subclass__(**kwargs)
|
|
38
|
+
if cls is QuantElementwise:
|
|
39
|
+
return
|
|
40
|
+
if cls.FUNC is None:
|
|
41
|
+
raise NotImplementedError(
|
|
42
|
+
f"{cls.__name__} must define a staticmethod `FUNC(tensor) -> tensor`"
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
def __init__(
|
|
46
|
+
self,
|
|
47
|
+
fp_module: nn.Module,
|
|
48
|
+
*,
|
|
49
|
+
qcfg: Optional[PTQConfig] = None,
|
|
50
|
+
fp_name: Optional[str] = None,
|
|
51
|
+
):
|
|
52
|
+
super().__init__(qcfg, fp_name=fp_name)
|
|
53
|
+
self.module = fp_module
|
|
54
|
+
self.act_in_obs = self._make_obs("act_in")
|
|
55
|
+
self.act_out_obs = self._make_obs("act_out")
|
|
56
|
+
|
|
57
|
+
# ------------------------------------------------------------
|
|
58
|
+
def forward(self, x):
|
|
59
|
+
x_q = self._fq(x, self.act_in_obs)
|
|
60
|
+
assert self.FUNC is not None
|
|
61
|
+
y = self.FUNC(x_q) # element-wise op
|
|
62
|
+
y_q = self._fq(y, self.act_out_obs)
|
|
63
|
+
return y_q
|
|
64
|
+
|
|
65
|
+
# ------------------------------------------------------------
|
|
66
|
+
def _all_observers(self):
|
|
67
|
+
return (self.act_in_obs, self.act_out_obs)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
"""
|
|
71
|
+
Why `FUNC` is a `staticmethod`
|
|
72
|
+
|
|
73
|
+
- Prevents automatic binding: calling `self.FUNC(x)` will not inject `self`,
|
|
74
|
+
so the callable keeps the expected signature `Tensor -> Tensor`
|
|
75
|
+
(e.g., `torch.sigmoid(x)`), avoiding TypeErrors.
|
|
76
|
+
|
|
77
|
+
- Expresses purity and statelessness: `FUNC` is a pure, element-wise transform
|
|
78
|
+
that must not read or mutate module state (params, buffers, config).
|
|
79
|
+
|
|
80
|
+
- Tracing/export friendly (FX / TorchScript): the call is captured as
|
|
81
|
+
`call_function(torch.*)` instead of a bound `call_method`, which makes graph
|
|
82
|
+
rewrites/pattern-matching and backends' substitutions more reliable.
|
|
83
|
+
|
|
84
|
+
- Avoids submodule pollution: we keep a functional op (`torch.relu`) rather
|
|
85
|
+
than an `nn.Module` instance that would appear in the module tree.
|
|
86
|
+
|
|
87
|
+
- Small perf/alloc win: no bound-method objects are created on each call.
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
# Sigmoid
|
|
91
|
+
@register(nn.Sigmoid)
|
|
92
|
+
class QuantSigmoid(QuantElementwise):
|
|
93
|
+
FUNC = staticmethod(torch.sigmoid)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
# Tanh
|
|
97
|
+
@register(nn.Tanh)
|
|
98
|
+
class QuantTanh(QuantElementwise):
|
|
99
|
+
FUNC = staticmethod(torch.tanh)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
# ReLU
|
|
103
|
+
@register(nn.ReLU)
|
|
104
|
+
class QuantReLU(QuantElementwise):
|
|
105
|
+
FUNC = staticmethod(torch.relu)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
# GELU (approximate)
|
|
109
|
+
@register(nn.GELU)
|
|
110
|
+
class QuantGELU(QuantElementwise):
|
|
111
|
+
FUNC = staticmethod(torch.nn.functional.gelu)
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from abc import ABC, abstractmethod
|
|
16
|
+
from typing import Iterable, Optional, Tuple
|
|
17
|
+
|
|
18
|
+
import torch.nn as nn
|
|
19
|
+
|
|
20
|
+
from tico.quantization.config.ptq import PTQConfig
|
|
21
|
+
|
|
22
|
+
from tico.quantization.wrapq.mode import Mode
|
|
23
|
+
from tico.quantization.wrapq.observers.base import ObserverBase
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class QuantModuleBase(nn.Module, ABC):
|
|
27
|
+
"""
|
|
28
|
+
Abstract parent for EVERY wrapper.
|
|
29
|
+
|
|
30
|
+
Responsibilities
|
|
31
|
+
----------------
|
|
32
|
+
• Own *one* Mode enum (`NO_QUANT / CALIB / QUANT`)
|
|
33
|
+
• Own a PTQConfig describing default / per-observer dtypes
|
|
34
|
+
• Expose a canonical lifecycle:
|
|
35
|
+
enable_calibration()
|
|
36
|
+
freeze_qparams()
|
|
37
|
+
• Provide helper `_fq(x, observer)` (“fake-quant or collect”) so
|
|
38
|
+
subclasses write arithmetic code without boilerplate.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self, qcfg: Optional[PTQConfig] = None, *, fp_name: Optional[str] = None
|
|
43
|
+
) -> None:
|
|
44
|
+
super().__init__()
|
|
45
|
+
self.qcfg = qcfg or PTQConfig()
|
|
46
|
+
self._mode: Mode = Mode.NO_QUANT # default state
|
|
47
|
+
self.fp_name = fp_name
|
|
48
|
+
|
|
49
|
+
def _child_quant_modules(self):
|
|
50
|
+
"""
|
|
51
|
+
Yield immediate QuantModuleBase *descendants*, skipping over pure containers
|
|
52
|
+
(e.g., ModuleList/Sequential/ModuleDict). Once a QuantModuleBase is found,
|
|
53
|
+
do NOT descend into it here—let recursion happen level by level.
|
|
54
|
+
"""
|
|
55
|
+
seen = set()
|
|
56
|
+
stack = list(self.children()) # start from direct children
|
|
57
|
+
|
|
58
|
+
while stack:
|
|
59
|
+
m = stack.pop()
|
|
60
|
+
if isinstance(m, QuantModuleBase):
|
|
61
|
+
if id(m) not in seen:
|
|
62
|
+
seen.add(id(m))
|
|
63
|
+
yield m
|
|
64
|
+
# IMPORTANT: do not recurse into `m` here; its own call will handle its subtree
|
|
65
|
+
elif isinstance(m, (nn.ModuleList, nn.ModuleDict, nn.Sequential)):
|
|
66
|
+
# `m` is a container or a non-quant leaf: keep descending until we hit quant modules
|
|
67
|
+
stack.extend(list(m.children()))
|
|
68
|
+
|
|
69
|
+
def enable_calibration(self) -> None:
|
|
70
|
+
self._mode = Mode.CALIB
|
|
71
|
+
for obs in self._all_observers():
|
|
72
|
+
obs.enabled = True
|
|
73
|
+
obs.reset()
|
|
74
|
+
|
|
75
|
+
# propagate to children
|
|
76
|
+
for child in self._child_quant_modules():
|
|
77
|
+
child.enable_calibration()
|
|
78
|
+
|
|
79
|
+
def freeze_qparams(self) -> None:
|
|
80
|
+
self._mode = Mode.QUANT
|
|
81
|
+
for obs in self._all_observers():
|
|
82
|
+
obs.enabled = False
|
|
83
|
+
obs.compute_qparams()
|
|
84
|
+
|
|
85
|
+
# propagate to children
|
|
86
|
+
for child in self._child_quant_modules():
|
|
87
|
+
child.freeze_qparams()
|
|
88
|
+
|
|
89
|
+
def _fq(self, x, obs: ObserverBase):
|
|
90
|
+
"""Fake-quant or collect."""
|
|
91
|
+
if self._mode is Mode.CALIB:
|
|
92
|
+
obs.collect(x.detach())
|
|
93
|
+
return x
|
|
94
|
+
if self._mode is Mode.QUANT:
|
|
95
|
+
return obs.fake_quant(x)
|
|
96
|
+
return x # NO_QUANT
|
|
97
|
+
|
|
98
|
+
@abstractmethod
|
|
99
|
+
def _all_observers(self) -> Iterable[ObserverBase]:
|
|
100
|
+
"""Return every observer owned by this module."""
|
|
101
|
+
...
|
|
102
|
+
|
|
103
|
+
def named_observers(self) -> Iterable[Tuple[str, ObserverBase]]:
|
|
104
|
+
for obs in self._all_observers():
|
|
105
|
+
yield obs.name, obs
|
|
106
|
+
|
|
107
|
+
def get_observer(self, name: str) -> Optional[ObserverBase]:
|
|
108
|
+
for obs in self._all_observers():
|
|
109
|
+
if obs.name == name:
|
|
110
|
+
return obs
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
def _make_obs(
|
|
114
|
+
self,
|
|
115
|
+
name: str,
|
|
116
|
+
**default_kwargs,
|
|
117
|
+
) -> ObserverBase:
|
|
118
|
+
"""
|
|
119
|
+
Instantiate an observer named *name*.
|
|
120
|
+
|
|
121
|
+
Precedence (3-tier) for keys:
|
|
122
|
+
• observer: user > wrapper-default > PTQConfig.default_observer
|
|
123
|
+
• dtype: user > wrapper-default > PTQConfig.default_dtype
|
|
124
|
+
• qscheme: user > wrapper-default > PTQConfig.default_qscheme
|
|
125
|
+
|
|
126
|
+
Other kwargs (e.g., qscheme, channel_axis, etc.) remain:
|
|
127
|
+
user override > wrapper-default
|
|
128
|
+
"""
|
|
129
|
+
_UNSPEC = object()
|
|
130
|
+
|
|
131
|
+
wrapper_defaults = default_kwargs.copy()
|
|
132
|
+
user_cfg = self.qcfg.get_kwargs(name).copy()
|
|
133
|
+
|
|
134
|
+
def pick3(user_val, wrap_val, global_val):
|
|
135
|
+
return (
|
|
136
|
+
user_val
|
|
137
|
+
if user_val is not _UNSPEC
|
|
138
|
+
else wrap_val
|
|
139
|
+
if wrap_val is not _UNSPEC
|
|
140
|
+
else global_val
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
# 1) resolve observer class
|
|
144
|
+
user_observer = user_cfg.pop("observer", _UNSPEC)
|
|
145
|
+
wrapper_observer = wrapper_defaults.pop("observer", _UNSPEC)
|
|
146
|
+
obs_cls = pick3(user_observer, wrapper_observer, self.qcfg.default_observer)
|
|
147
|
+
|
|
148
|
+
# 2) resolve dtype
|
|
149
|
+
user_dtype = user_cfg.pop("dtype", _UNSPEC)
|
|
150
|
+
wrapper_dtype = wrapper_defaults.pop("dtype", _UNSPEC)
|
|
151
|
+
final_dtype = pick3(user_dtype, wrapper_dtype, self.qcfg.default_dtype)
|
|
152
|
+
|
|
153
|
+
# 3) resolve qscheme
|
|
154
|
+
user_qscheme = user_cfg.pop("qscheme", _UNSPEC)
|
|
155
|
+
wrapper_qscheme = wrapper_defaults.pop("qscheme", _UNSPEC)
|
|
156
|
+
final_qscheme = pick3(user_qscheme, wrapper_qscheme, self.qcfg.default_qscheme)
|
|
157
|
+
|
|
158
|
+
# 4) merge remaining kwargs: user_cfg wins
|
|
159
|
+
final_kw = wrapper_defaults
|
|
160
|
+
final_kw.update(user_cfg)
|
|
161
|
+
final_kw["dtype"] = final_dtype
|
|
162
|
+
final_kw["qscheme"] = final_qscheme
|
|
163
|
+
|
|
164
|
+
return obs_cls(**final_kw, name=name)
|
|
165
|
+
|
|
166
|
+
# nice repr
|
|
167
|
+
def extra_repr(self) -> str:
|
|
168
|
+
return f"mode={self._mode.name.lower()}"
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
# Copyright (c) 2025 Samsung Electronics Co., Ltd. All Rights Reserved
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import importlib
|
|
16
|
+
from typing import Callable, Dict, Type
|
|
17
|
+
|
|
18
|
+
import torch.nn as nn
|
|
19
|
+
|
|
20
|
+
from tico.quantization.wrapq.wrappers.quant_module_base import QuantModuleBase
|
|
21
|
+
|
|
22
|
+
_WRAPPERS: Dict[Type[nn.Module], Type[QuantModuleBase]] = {}
|
|
23
|
+
_IMPORT_ONCE = False
|
|
24
|
+
_CORE_MODULES = (
|
|
25
|
+
"tico.quantization.wrapq.wrappers.quant_elementwise",
|
|
26
|
+
"tico.quantization.wrapq.wrappers.nn.quant_layernorm",
|
|
27
|
+
"tico.quantization.wrapq.wrappers.nn.quant_linear",
|
|
28
|
+
"tico.quantization.wrapq.wrappers.nn.quant_silu",
|
|
29
|
+
# llama
|
|
30
|
+
"tico.quantization.wrapq.wrappers.llama.quant_attn",
|
|
31
|
+
"tico.quantization.wrapq.wrappers.llama.quant_decoder_layer",
|
|
32
|
+
"tico.quantization.wrapq.wrappers.llama.quant_mlp",
|
|
33
|
+
# fairseq
|
|
34
|
+
"tico.quantization.wrapq.wrappers.fairseq.quant_decoder_layer",
|
|
35
|
+
"tico.quantization.wrapq.wrappers.fairseq.quant_encoder",
|
|
36
|
+
"tico.quantization.wrapq.wrappers.fairseq.quant_encoder_layer",
|
|
37
|
+
"tico.quantization.wrapq.wrappers.fairseq.quant_mha",
|
|
38
|
+
# add future core wrappers here
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def _lazy_init():
|
|
43
|
+
"""
|
|
44
|
+
Deferred one-shot import of "core wrapper modules".
|
|
45
|
+
|
|
46
|
+
Why not import everything when the program first starts?
|
|
47
|
+
--------------------------------------------------
|
|
48
|
+
* **Avoid circular-import hell**
|
|
49
|
+
Core wrappers often import `PTQWrapper`, which in turn calls
|
|
50
|
+
`registry.lookup()`. Importing those files eagerly here would create a
|
|
51
|
+
cycle (`registry → wrapper → registry`). Delaying the import until the
|
|
52
|
+
*first* `lookup()` call lets Python finish constructing the registry
|
|
53
|
+
module before any wrapper files are touched.
|
|
54
|
+
|
|
55
|
+
* **Cold-start speed**
|
|
56
|
+
Most user code never wraps layers explicitly; they only hit
|
|
57
|
+
`PTQWrapper` if they are doing quantization. Deferring half-a-dozen
|
|
58
|
+
heavyweight `import torch …` files until they are really needed
|
|
59
|
+
reduces library start-up latency in the common path.
|
|
60
|
+
|
|
61
|
+
* **Optional dependencies**
|
|
62
|
+
Core wrappers listed in `_CORE_MODULES` are chosen to be dependency-free
|
|
63
|
+
(pure PyTorch). Anything that needs `transformers`, `torchvision`,
|
|
64
|
+
etc. uses the `@try_register()` decorator inside its own module. Those
|
|
65
|
+
optional modules are *not* imported here, so users without the extra
|
|
66
|
+
packages still get a clean import.
|
|
67
|
+
|
|
68
|
+
Implementation notes
|
|
69
|
+
--------------------
|
|
70
|
+
* `_IMPORT_ONCE` guard ensures we execute the import loop only once,
|
|
71
|
+
even if `lookup()` is called from multiple threads.
|
|
72
|
+
* Each path in `_CORE_MODULES` is a "fully-qualified module string"
|
|
73
|
+
(e.g. "ptq.wrappers.linear_quant"). Importing the module runs all
|
|
74
|
+
its `@register(nn.Layer)` decorators, populating `_WRAPPERS`.
|
|
75
|
+
* After the first call the function becomes a cheap constant-time no-op.
|
|
76
|
+
"""
|
|
77
|
+
global _IMPORT_ONCE
|
|
78
|
+
if _IMPORT_ONCE:
|
|
79
|
+
return
|
|
80
|
+
for mod in _CORE_MODULES:
|
|
81
|
+
__import__(mod) # triggers decorators
|
|
82
|
+
_IMPORT_ONCE = True
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
# ───────────────────────────── decorator for always-present classes
|
|
86
|
+
def register(
|
|
87
|
+
fp_cls: Type[nn.Module],
|
|
88
|
+
) -> Callable[[Type[QuantModuleBase]], Type[QuantModuleBase]]:
|
|
89
|
+
def _decorator(quant_cls: Type[QuantModuleBase]):
|
|
90
|
+
_WRAPPERS[fp_cls] = quant_cls
|
|
91
|
+
return quant_cls
|
|
92
|
+
|
|
93
|
+
return _decorator
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
# ───────────────────────────── conditional decorator
|
|
97
|
+
def try_register(
|
|
98
|
+
*paths: str,
|
|
99
|
+
) -> Callable[[Type[QuantModuleBase]], Type[QuantModuleBase]]:
|
|
100
|
+
"""
|
|
101
|
+
@try_register("transformers.models.llama.modeling_llama.LlamaMLP")
|
|
102
|
+
|
|
103
|
+
• If import succeeds → behave like `@register`
|
|
104
|
+
• If module/class not found → become a NO-OP
|
|
105
|
+
"""
|
|
106
|
+
|
|
107
|
+
def _decorator(quant_cls: Type[QuantModuleBase]):
|
|
108
|
+
for path in paths:
|
|
109
|
+
module_name, _, cls_name = path.rpartition(".")
|
|
110
|
+
try:
|
|
111
|
+
mod = importlib.import_module(module_name)
|
|
112
|
+
fp_cls = getattr(mod, cls_name)
|
|
113
|
+
_WRAPPERS[fp_cls] = quant_cls
|
|
114
|
+
except (ModuleNotFoundError, AttributeError):
|
|
115
|
+
# optional dep missing or class renamed – skip silently
|
|
116
|
+
pass
|
|
117
|
+
return quant_cls
|
|
118
|
+
|
|
119
|
+
return _decorator
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
# ───────────────────────────── lookup
|
|
123
|
+
def lookup(fp_cls: Type[nn.Module]) -> Type[QuantModuleBase] | None:
|
|
124
|
+
_lazy_init()
|
|
125
|
+
return _WRAPPERS.get(fp_cls)
|
tico/serialize/circle_graph.py
CHANGED
|
@@ -24,9 +24,10 @@ from torch._subclasses.fake_tensor import FakeTensor
|
|
|
24
24
|
|
|
25
25
|
from tico.serialize.circle_mapping import (
|
|
26
26
|
extract_circle_dtype,
|
|
27
|
-
|
|
27
|
+
extract_circle_shape,
|
|
28
28
|
str_to_circle_dtype,
|
|
29
29
|
to_circle_dtype,
|
|
30
|
+
to_circle_shape,
|
|
30
31
|
)
|
|
31
32
|
from tico.serialize.pack import pack_buffer
|
|
32
33
|
from tico.serialize.quant_param import QPARAM_KEY, QuantParam
|
|
@@ -151,7 +152,8 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
151
152
|
self.name_to_node[tensor.name] = node
|
|
152
153
|
assert node.meta.get("val") is not None
|
|
153
154
|
tensor.type = extract_circle_dtype(node)
|
|
154
|
-
tensor.shape =
|
|
155
|
+
tensor.shape, tensor.shapeSignature = extract_circle_shape(node) # type: ignore[assignment]
|
|
156
|
+
|
|
155
157
|
if QPARAM_KEY in node.meta:
|
|
156
158
|
tensor.quantization = to_circle_qparam(node.meta[QPARAM_KEY])
|
|
157
159
|
tensor.type = str_to_circle_dtype(node.meta[QPARAM_KEY].dtype)
|
|
@@ -185,7 +187,7 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
185
187
|
torch_t = torch.as_tensor(data=data)
|
|
186
188
|
torch_t_shape = list(torch_t.size())
|
|
187
189
|
tensor.type = to_circle_dtype(torch_dtype=torch_t.dtype)
|
|
188
|
-
tensor.shape = torch_t_shape
|
|
190
|
+
tensor.shape, tensor.shapeSignature = to_circle_shape(torch_t_shape)
|
|
189
191
|
|
|
190
192
|
buffer = circle.Buffer.BufferT()
|
|
191
193
|
buffer.data = torch_t.flatten().cpu().numpy().view(np.uint8) # type: ignore[assignment]
|
|
@@ -199,6 +201,7 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
199
201
|
self,
|
|
200
202
|
prefix: str,
|
|
201
203
|
shape: List[int],
|
|
204
|
+
shape_signature: Optional[List[int]],
|
|
202
205
|
dtype: int,
|
|
203
206
|
qparam: Optional[QuantParam] = None,
|
|
204
207
|
source_node: Optional[torch.fx.Node] = None,
|
|
@@ -221,6 +224,8 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
221
224
|
A name prefix used to generate a unique tensor name.
|
|
222
225
|
shape : List[int]
|
|
223
226
|
The shape of the tensor.
|
|
227
|
+
shape_signature : Optional[List[int]]
|
|
228
|
+
The shape signature of the tensor to express Dynamic Shape. Defaults to `None` for Static Shape.
|
|
224
229
|
dtype : int
|
|
225
230
|
The Circle-compatible dtype of the tensor. Use `to_circle_dtype()` to convert.
|
|
226
231
|
qparam : Optional[QuantParam]
|
|
@@ -241,6 +246,9 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
241
246
|
if source_node is not None:
|
|
242
247
|
self.name_to_node[tensor.name] = source_node
|
|
243
248
|
tensor.shape = shape
|
|
249
|
+
if shape_signature is not None:
|
|
250
|
+
tensor.shapeSignature = shape_signature
|
|
251
|
+
|
|
244
252
|
if qparam is not None:
|
|
245
253
|
tensor.quantization = to_circle_qparam(qparam)
|
|
246
254
|
tensor.type = str_to_circle_dtype(qparam.dtype)
|
|
@@ -305,7 +313,7 @@ class CircleSubgraph(circle.SubGraph.SubGraphT):
|
|
|
305
313
|
self, node: Union[torch.fx.Node, circle.Tensor.TensorT, ConstData]
|
|
306
314
|
) -> int:
|
|
307
315
|
# return -1 if node is None. This is for generating CircleOutputExclude
|
|
308
|
-
if node
|
|
316
|
+
if node is None:
|
|
309
317
|
return -1
|
|
310
318
|
|
|
311
319
|
if hasattr(node, "name") and node.name in self.name_to_tid:
|
tico/serialize/circle_mapping.py
CHANGED
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Tuple, TYPE_CHECKING, Union
|
|
15
|
+
from typing import List, Optional, Sequence, Tuple, TYPE_CHECKING, Union
|
|
16
16
|
|
|
17
17
|
if TYPE_CHECKING:
|
|
18
18
|
import torch.fx
|
|
@@ -128,6 +128,79 @@ def extract_shape(node: torch.fx.Node) -> torch.Size:
|
|
|
128
128
|
return val_shape
|
|
129
129
|
|
|
130
130
|
|
|
131
|
+
def extract_circle_shape(node: torch.fx.Node) -> Tuple[List[int], Optional[List[int]]]:
|
|
132
|
+
return to_circle_shape(extract_shape(node))
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def to_circle_shape(
|
|
136
|
+
torch_shape: Union[
|
|
137
|
+
torch.Size, Sequence[int | torch.SymInt]
|
|
138
|
+
], # Sequence[int | torch.SymInt] is added for type covariance
|
|
139
|
+
) -> Tuple[List[int], Optional[List[int]]]:
|
|
140
|
+
|
|
141
|
+
if any(isinstance(s, torch.SymInt) for s in torch_shape):
|
|
142
|
+
# Follow dynamic shape spec
|
|
143
|
+
shape = []
|
|
144
|
+
shape_signature = []
|
|
145
|
+
for s in torch_shape:
|
|
146
|
+
if isinstance(s, torch.SymInt):
|
|
147
|
+
shape.append(1)
|
|
148
|
+
shape_signature.append(-1)
|
|
149
|
+
elif isinstance(s, int):
|
|
150
|
+
shape.append(s)
|
|
151
|
+
shape_signature.append(s)
|
|
152
|
+
else:
|
|
153
|
+
raise RuntimeError(f"Unsupported shape {torch_shape}")
|
|
154
|
+
return shape, shape_signature
|
|
155
|
+
else:
|
|
156
|
+
# Follow static shape spec
|
|
157
|
+
shape = []
|
|
158
|
+
shape_signature = None
|
|
159
|
+
for s in torch_shape:
|
|
160
|
+
if isinstance(s, int):
|
|
161
|
+
shape.append(s)
|
|
162
|
+
else:
|
|
163
|
+
assert False, "Cannot reach here"
|
|
164
|
+
return shape, shape_signature
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
def validate_circle_shape(shape: List[int], shape_signature: Optional[List[int]]):
|
|
168
|
+
"""
|
|
169
|
+
Validate circle tensor shape and shape_signature.
|
|
170
|
+
@ref https://github.com/Samsung/TICO/issues/244
|
|
171
|
+
"""
|
|
172
|
+
if shape_signature is not None:
|
|
173
|
+
if len(shape_signature) == 0:
|
|
174
|
+
raise ValueError(
|
|
175
|
+
"Invalid circle shape: shape_signature must not be an empty list. "
|
|
176
|
+
"For static shapes, use None instead of []."
|
|
177
|
+
)
|
|
178
|
+
if len(shape) != len(shape_signature):
|
|
179
|
+
raise ValueError(
|
|
180
|
+
f"Invalid circle shape: shape and shape_signature must have same length: {shape} {shape_signature}"
|
|
181
|
+
)
|
|
182
|
+
if not all(isinstance(s, int) for s in shape_signature):
|
|
183
|
+
raise ValueError(
|
|
184
|
+
f"circle tensor shape_signature must be all integer values. {shape_signature}"
|
|
185
|
+
)
|
|
186
|
+
for s, ss in zip(shape, shape_signature):
|
|
187
|
+
if ss == -1:
|
|
188
|
+
# dynamic shape dimension
|
|
189
|
+
if s != 1:
|
|
190
|
+
raise ValueError(
|
|
191
|
+
f"Invalid circle shape: {s} {ss} {shape} {shape_signature}"
|
|
192
|
+
)
|
|
193
|
+
else:
|
|
194
|
+
# static shape dimension
|
|
195
|
+
if s != ss:
|
|
196
|
+
raise ValueError(
|
|
197
|
+
f"Invalid circle shape: {s} {ss} {shape} {shape_signature}"
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
if not all(isinstance(s, int) for s in shape):
|
|
201
|
+
raise ValueError(f"circle tensor shape must be all integer values. {shape}")
|
|
202
|
+
|
|
203
|
+
|
|
131
204
|
# Return stride of node
|
|
132
205
|
def extract_stride(node: torch.fx.Node) -> Tuple[int, ...]:
|
|
133
206
|
assert node.meta is not None
|
|
@@ -157,7 +230,8 @@ def check_if_i32_range(axis: Union[list, int]):
|
|
|
157
230
|
return all(INT32_MIN <= val <= INT32_MAX for val in values)
|
|
158
231
|
|
|
159
232
|
|
|
160
|
-
|
|
233
|
+
# TODO: Revisit this dtype legalization function as it breaks SRP
|
|
234
|
+
def circle_legalize_dtype_to(values, *, dtype: torch.dtype) -> torch.Tensor:
|
|
161
235
|
"""
|
|
162
236
|
Legalize data types from `torch.int64` to `torch.int32`.
|
|
163
237
|
|