teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (200) hide show
  1. teradataml/LICENSE.pdf +0 -0
  2. teradataml/README.md +112 -0
  3. teradataml/__init__.py +6 -3
  4. teradataml/_version.py +1 -1
  5. teradataml/analytics/__init__.py +3 -2
  6. teradataml/analytics/analytic_function_executor.py +224 -16
  7. teradataml/analytics/analytic_query_generator.py +92 -0
  8. teradataml/analytics/byom/__init__.py +3 -2
  9. teradataml/analytics/json_parser/metadata.py +1 -0
  10. teradataml/analytics/json_parser/utils.py +6 -4
  11. teradataml/analytics/meta_class.py +40 -1
  12. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  13. teradataml/analytics/sqle/__init__.py +10 -2
  14. teradataml/analytics/table_operator/__init__.py +3 -2
  15. teradataml/analytics/uaf/__init__.py +21 -2
  16. teradataml/analytics/utils.py +62 -1
  17. teradataml/analytics/valib.py +1 -1
  18. teradataml/automl/__init__.py +1502 -323
  19. teradataml/automl/custom_json_utils.py +139 -61
  20. teradataml/automl/data_preparation.py +245 -306
  21. teradataml/automl/data_transformation.py +32 -12
  22. teradataml/automl/feature_engineering.py +313 -82
  23. teradataml/automl/model_evaluation.py +44 -35
  24. teradataml/automl/model_training.py +109 -146
  25. teradataml/catalog/byom.py +8 -8
  26. teradataml/clients/pkce_client.py +1 -1
  27. teradataml/common/constants.py +37 -0
  28. teradataml/common/deprecations.py +13 -7
  29. teradataml/common/garbagecollector.py +151 -120
  30. teradataml/common/messagecodes.py +4 -1
  31. teradataml/common/messages.py +2 -1
  32. teradataml/common/sqlbundle.py +1 -1
  33. teradataml/common/utils.py +97 -11
  34. teradataml/common/wrapper_utils.py +1 -1
  35. teradataml/context/context.py +72 -2
  36. teradataml/data/complaints_test_tokenized.csv +353 -0
  37. teradataml/data/complaints_tokens_model.csv +348 -0
  38. teradataml/data/covid_confirm_sd.csv +83 -0
  39. teradataml/data/dataframe_example.json +10 -0
  40. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  41. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  42. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  43. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  44. teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
  45. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  46. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  47. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  48. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  49. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  50. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  51. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  52. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  53. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  54. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  55. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  56. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  57. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  58. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  59. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  60. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  61. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  62. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  63. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  64. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  65. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  66. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  67. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  68. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  69. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  70. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  71. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  72. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  74. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  75. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  76. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  77. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  78. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  79. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  80. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  81. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  82. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  83. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  84. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  85. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  86. teradataml/data/dwt2d_dataTable.csv +65 -0
  87. teradataml/data/dwt_dataTable.csv +8 -0
  88. teradataml/data/dwt_filterTable.csv +3 -0
  89. teradataml/data/finance_data4.csv +13 -0
  90. teradataml/data/grocery_transaction.csv +19 -0
  91. teradataml/data/idwt2d_dataTable.csv +5 -0
  92. teradataml/data/idwt_dataTable.csv +8 -0
  93. teradataml/data/idwt_filterTable.csv +3 -0
  94. teradataml/data/interval_data.csv +5 -0
  95. teradataml/data/jsons/paired_functions.json +14 -0
  96. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  97. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  98. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  99. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  100. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  101. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  102. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  103. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  104. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  105. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  106. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  107. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  108. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  109. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  110. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  111. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  112. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  113. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  114. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  115. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  116. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  117. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  118. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  119. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  120. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  121. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  122. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  123. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  124. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  125. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  126. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  127. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  128. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  129. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  130. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  131. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  132. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  133. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  134. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  135. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  136. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  137. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  138. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  139. teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
  140. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  141. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  142. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  143. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  144. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  145. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
  146. teradataml/data/load_example_data.py +8 -2
  147. teradataml/data/naivebayestextclassifier_example.json +1 -1
  148. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  149. teradataml/data/peppers.png +0 -0
  150. teradataml/data/real_values.csv +14 -0
  151. teradataml/data/sax_example.json +8 -0
  152. teradataml/data/scripts/deploy_script.py +1 -1
  153. teradataml/data/scripts/sklearn/sklearn_fit.py +17 -10
  154. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +2 -2
  155. teradataml/data/scripts/sklearn/sklearn_function.template +30 -7
  156. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  157. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  158. teradataml/data/scripts/sklearn/sklearn_transform.py +55 -4
  159. teradataml/data/star_pivot.csv +8 -0
  160. teradataml/data/templates/open_source_ml.json +2 -1
  161. teradataml/data/teradataml_example.json +20 -1
  162. teradataml/data/timestamp_data.csv +4 -0
  163. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  164. teradataml/data/uaf_example.json +55 -1
  165. teradataml/data/unpivot_example.json +15 -0
  166. teradataml/data/url_data.csv +9 -0
  167. teradataml/data/windowdfft.csv +16 -0
  168. teradataml/dataframe/copy_to.py +1 -1
  169. teradataml/dataframe/data_transfer.py +5 -3
  170. teradataml/dataframe/dataframe.py +474 -41
  171. teradataml/dataframe/fastload.py +3 -3
  172. teradataml/dataframe/functions.py +339 -0
  173. teradataml/dataframe/row.py +160 -0
  174. teradataml/dataframe/setop.py +2 -2
  175. teradataml/dataframe/sql.py +658 -20
  176. teradataml/dataframe/window.py +1 -1
  177. teradataml/dbutils/dbutils.py +322 -16
  178. teradataml/geospatial/geodataframe.py +1 -1
  179. teradataml/geospatial/geodataframecolumn.py +1 -1
  180. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  181. teradataml/lib/aed_0_1.dll +0 -0
  182. teradataml/opensource/sklearn/_sklearn_wrapper.py +154 -69
  183. teradataml/options/__init__.py +3 -1
  184. teradataml/options/configure.py +14 -2
  185. teradataml/options/display.py +2 -2
  186. teradataml/plot/axis.py +4 -4
  187. teradataml/scriptmgmt/UserEnv.py +10 -6
  188. teradataml/scriptmgmt/lls_utils.py +3 -2
  189. teradataml/table_operators/Script.py +2 -2
  190. teradataml/table_operators/TableOperator.py +106 -20
  191. teradataml/table_operators/table_operator_util.py +88 -41
  192. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  193. teradataml/telemetry_utils/__init__.py +0 -0
  194. teradataml/telemetry_utils/queryband.py +52 -0
  195. teradataml/utils/validators.py +1 -1
  196. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +115 -2
  197. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +200 -140
  198. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
  199. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
  200. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
@@ -1,63 +1,63 @@
1
1
  teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
2
- teradataml/LICENSE.pdf,sha256=YAaz9284BsR7reNg2ez_CCccYhD3k8r7rTLaORDZ-HE,66827
3
- teradataml/README.md,sha256=jYLOg9VI4yMSf9yjVCTfywXLry6oURodHft_TBje7ao,106467
4
- teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
5
- teradataml/_version.py,sha256=mUUB6KxwOXJAtbPZoBNVSLnqHPhuKLi3LOA-2_LqdvA,364
2
+ teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
+ teradataml/README.md,sha256=1NuzbWZ9MHJ1_DyMH9_BIxMX5oW0eZ00wRa91ZTPNN4,112181
4
+ teradataml/__init__.py,sha256=HsXN5xaEH4P--Crk_dgtwo55qYY5EXoySjCbLSEiwPc,2632
5
+ teradataml/_version.py,sha256=ZFq5pHkj5kWUor01Hz7Xd_FEpIzt9XX1NetOr7Idj2M,364
6
6
  teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
7
  teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
8
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
- teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
10
- teradataml/analytics/analytic_function_executor.py,sha256=XMeJCSudqfOP0htOhZQUH6qcF4Ztp_V7uzeUeu4n6dY,92393
11
- teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
12
- teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
13
- teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
14
- teradataml/analytics/valib.py,sha256=7iyoxf-zK4-kM7RkCMXuOviZSSoVo1GDIaR8b1J4WWo,73589
9
+ teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
+ teradataml/analytics/analytic_function_executor.py,sha256=rIlvKzI2eFlWLqnv-_-DAyOzrvwRyQ0UNbjRenNgsVA,102419
11
+ teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
+ teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
+ teradataml/analytics/utils.py,sha256=yjfWYtj08kJ99bAL1WNsU5J7riioZrwH6YaNiSfywXU,30731
14
+ teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
15
15
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
16
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
- teradataml/analytics/byom/__init__.py,sha256=ViV7E_6d0RkbPcKQQ62Ar11-dMUwxf2Eg68TdYmCM6c,810
17
+ teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3B9x_i7M8,876
18
18
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
19
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
20
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
- teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
22
- teradataml/analytics/json_parser/utils.py,sha256=hYi2ZLuJbRaGGyIpLUvUWS4ohL2ohS2uPPUcLcH5jCQ,33425
23
- teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
21
+ teradataml/analytics/json_parser/metadata.py,sha256=LsbmSkOo6ubKVs60B9cwrZHouOkvejTWd3dbDgHWOXA,74371
22
+ teradataml/analytics/json_parser/utils.py,sha256=3Uy5LccVzWdlGkTKuSmvfh6aB0Mm-DX6xAMEUYwwtiI,33450
23
+ teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
24
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
25
+ teradataml/analytics/sqle/__init__.py,sha256=qNbIurro1KkEljSI_jFDq3tp9HaPYb385XhyQdzwdiI,4166
26
26
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
27
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
- teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
29
- teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
30
- teradataml/automl/__init__.py,sha256=cx55kRJ_Sv5XQZZ-Mce1BEDLTn5FXo-rKAkHt0xJ2lU,79825
31
- teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
32
- teradataml/automl/data_preparation.py,sha256=P4sVPNQIylByo6eby4ktwdgL7bvwhPoDNsKxdLVfxyA,44517
33
- teradataml/automl/data_transformation.py,sha256=KoFbZwp_lOTYcZRrc9q3t6m-jSmFWiDFZMVYI6bpMv0,41684
34
- teradataml/automl/feature_engineering.py,sha256=oQOLpj0vUL0BL_q2SZTjcD3SmbFIsbLU1QhQtUJf4kE,83273
28
+ teradataml/analytics/table_operator/__init__.py,sha256=KqQAvD_soft-xTDe_EBraPppWfwB4X0CNvPuq3Qwc0U,529
29
+ teradataml/analytics/uaf/__init__.py,sha256=M3wSKuyn5M5TmUfv0nOX28j4d5K5PrldH-FoYPbf20o,3017
30
+ teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
31
+ teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
+ teradataml/automl/data_preparation.py,sha256=2vqxsC-88OWenbmO8oU3KblK6X40fuRvRbLPI68H3Zw,41697
33
+ teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
+ teradataml/automl/feature_engineering.py,sha256=_zh_NZA-c9AMtaZOEnFRNJX6wJtzv-E5ypID_UO5p5A,94526
35
35
  teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
- teradataml/automl/model_evaluation.py,sha256=4F-ehLBYBKO5u7V3T4m_D81dWh47yfRk_RCghIlaPio,5689
37
- teradataml/automl/model_training.py,sha256=Qk4oRjxnb6-EbXHsN5OPScdgIR6lHylwdf9qvbKooq8,44145
36
+ teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
+ teradataml/automl/model_training.py,sha256=vfHK03Eujw3J3XTadKx1-MGkyZH7MvS_9_hwKdstTpM,41791
38
38
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
- teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
39
+ teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
40
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
41
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
42
42
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
43
  teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
44
- teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
44
+ teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
45
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
46
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=DQkD3BsYcZ_Q1Fkckgiumye4_yfavQrQuJyf4hGWL34,57892
49
- teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
48
+ teradataml/common/constants.py,sha256=P0UoGBaDnVJ_qDLLQ58rDohIXSkY5WQ0Z66pRHzyW78,59611
49
+ teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
50
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
- teradataml/common/garbagecollector.py,sha256=uPM2SPwti8xwnq4XntHK2ulgwLpLrUFsEl5_MfsNWug,26088
53
- teradataml/common/messagecodes.py,sha256=VAQdn3H71PkxobFSrcDoLWp7iiSKcjd-QIqbvQ1pWiE,28322
54
- teradataml/common/messages.py,sha256=dbzg_XVhjICy4KQdLpaPUgK9QEGj-xTO6d8Zqzhsy08,17615
52
+ teradataml/common/garbagecollector.py,sha256=DIZjMsDgh57VIbJ6UrSmDSc0cE1manb2_sXplWloljg,28264
53
+ teradataml/common/messagecodes.py,sha256=kHzLAUROzdyXojkn9pWsqgL3XeAZ4u_xZ9FboiqGTvo,28583
54
+ teradataml/common/messages.py,sha256=NJ4biPRlX59quDj1wYNleZZz_lKwa4127DvJmBRj1vw,17728
55
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
56
+ teradataml/common/sqlbundle.py,sha256=z8WohDcoKvknTjDtLVsM16sPHlNdspMDH2WgH7D-gtY,23657
57
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=7f0BZSVTCWRtJ6SX48SJ-Nd7QtsWOUvSltw9wWfXNaw,89118
58
+ teradataml/common/utils.py,sha256=VOlEYLz_v7cxHthv-5bEeAM_DEJhe9ww3zW7a0InhHE,92376
59
59
  teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
60
- teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
60
+ teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
62
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
63
63
  teradataml/config/dummy_file2.cfg,sha256=3m0tBK8GnKV4jVwmwmaU9plZDGL-fI-bWTLBGvU6kpM,44
@@ -66,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=8eWoeDmrshWpOmHF0ZbS6XBavKM5AYTQZONQUqme7UY,43359
69
+ teradataml/context/context.py,sha256=MqaQLkKnbkquUatAfgNyWeuTSPTfuslyeZJmLOKv1Xw,45345
70
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -161,7 +161,9 @@ teradataml/data/clickstream1.csv,sha256=jBIkQJS6S8DIy2Bff4GOxC-nfSBSFzTNZBPZZvFb
161
161
  teradataml/data/closeness_example.json,sha256=oo5yYraaL95dYafGwLsxqauxbv6UzV77WqZTBrmBk3w,280
162
162
  teradataml/data/complaints.csv,sha256=8AIvzzvu-MTQOybNXhPq1dXhL9Pnelln8P_EktuEgA4,4299
163
163
  teradataml/data/complaints_mini.csv,sha256=CZlBGkpU3_WogxMkS-y19289VPtSA1_Z1Z-HRuGqYek,662
164
+ teradataml/data/complaints_test_tokenized.csv,sha256=cd66nK8vY5obXzRFoUklZow6VDfFeFZcOxuONTZ2Y74,4719
164
165
  teradataml/data/complaints_testtoken.csv,sha256=yKyhSZcS9zRrPbo-s05QJlrhf0aq_SYta4XB85Z5WXo,5045
166
+ teradataml/data/complaints_tokens_model.csv,sha256=rH2gm-RtWtTcAlt-ffBYkQXL7yvcgonFUaDhQW87i8c,11478
165
167
  teradataml/data/complaints_tokens_test.csv,sha256=qQp4t9-0CIvH5hYj3RFDjp81bII2M3Sw0gm_De8wmRE,4405
166
168
  teradataml/data/complaints_traintoken.csv,sha256=uK-EvfhRSPNXFvAOY1wPqRwvz28MJe-4G9y5DboJIuc,15718
167
169
  teradataml/data/computers_category.csv,sha256=9pV7pwdE65obb1tSptbjs_2HBAtHVNwE_6-pAB_Wykc,59745
@@ -172,6 +174,7 @@ teradataml/data/confusionmatrix_example.json,sha256=EUakqolq0Q3Iy2itpAXHDjdAOQ5F
172
174
  teradataml/data/conversion_event_table.csv,sha256=wAQh4lezO0FaslrxGdRC10M_TJWBIHW19UunBByu7Vg,52
173
175
  teradataml/data/corr_input.csv,sha256=yN8yIb7wktzmHQcEg9b9dBGQXREhhYddQ4vNxkbrlVI,982
174
176
  teradataml/data/correlation_example.json,sha256=YuVUAlILtBX_ecBLyv_VeexRd2pj0_7IzrNBTPa4vVs,217
177
+ teradataml/data/covid_confirm_sd.csv,sha256=sMeyZ8n-Rr2J2VIBhUk7BJN9c2X7EZGcH-dHNJaCO7Q,1424
175
178
  teradataml/data/coxhazardratio_example.json,sha256=vnu-HlxWL2mNillLBILkTZzfdrHqzoIZ_uvpXFQj_5s,1207
176
179
  teradataml/data/coxph_example.json,sha256=7D5kTyggIC5NqQS2ovMSMCCmGpcGQoMoQmsMSPakGLs,443
177
180
  teradataml/data/coxsurvival_example.json,sha256=av6ciraJe5zDHfgLFkO5aV_L7i9bLFICwhdWmKA771U,860
@@ -181,7 +184,7 @@ teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vf
181
184
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
182
185
  teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
183
186
  teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
184
- teradataml/data/dataframe_example.json,sha256=PMBl3s3eNuQ_kvPDTP5Zyzt8eAgdtLEa_8QHAc3N6p8,4005
187
+ teradataml/data/dataframe_example.json,sha256=gEPGGnR6qpx-b25-L0qwFl8Vjn1ldXDSc_SvVpTRMeE,4244
185
188
  teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
186
189
  teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
187
190
  teradataml/data/decisiontree_example.json,sha256=6DLmN9BeqnR1-4GlZJz1DlBGW4wwsBNASLno9j22fzs,560
@@ -196,8 +199,11 @@ teradataml/data/docperterm_table.csv,sha256=Qyr_b5wPThIiDS74oAgRbZKfdmKsLlOPkBQ4
196
199
  teradataml/data/dtw_example.json,sha256=0jxKZFpJZx94jfvjhUTQwJQSGm9PA0QWlEnm2UTFmv8,462
197
200
  teradataml/data/dtw_t1.csv,sha256=7OpuvHUwmbv-Ylu88uMk9uNo81Z2PKgjKPqEzyRS5Hg,218
198
201
  teradataml/data/dtw_t2.csv,sha256=W2s0a0x2_1MxO7FRQz-gaF5oJC_TS6SJ3CNpHpQ_zAM,70
202
+ teradataml/data/dwt2d_dataTable.csv,sha256=xVmyaCULz_haK0hAVdi4U6UqfsiR_dgkL5UXQZ7fMqk,842
199
203
  teradataml/data/dwt2d_example.json,sha256=67bBR9l__CYN-RFdoCqxUSwqSv9rKr5sBs6S-1CE5No,474
204
+ teradataml/data/dwt_dataTable.csv,sha256=U6R4VyD2NqR8FvQewseZ2rAiSq7CJcwokr7-mTTTqOA,89
200
205
  teradataml/data/dwt_example.json,sha256=GtsNvqmrLUJU2WfvVLHfb-jLyB-mLCAbPC2i7L20RxA,416
206
+ teradataml/data/dwt_filterTable.csv,sha256=LrJ6CZyXjCn6uLH-2caCyxH73MyWA9GGh_2OdRakXSQ,47
201
207
  teradataml/data/dwt_filter_dim.csv,sha256=C7XddFAS_XHPJNVwHThgtSG8HY0CABCcGGEX2V8FOn8,266
202
208
  teradataml/data/emission.csv,sha256=MiYR3p8wA2JWqkszuIB55yukdE5ByLSI7SHADRa5mcU,184
203
209
  teradataml/data/emp_table_by_dept.csv,sha256=r1dAEq4_kazrr17k9V_A2Y6yBV8471SKRoV8NiklVy8,597
@@ -207,6 +213,7 @@ teradataml/data/excluding_event_table.csv,sha256=127t4i5xtm2Hz5FF3WT9Bx_A12jCXqP
207
213
  teradataml/data/finance_data.csv,sha256=qPcVOUI6EI4kaD0ZWqktmxOTEAjS2Y6d8mSlEP8wwzU,265
208
214
  teradataml/data/finance_data2.csv,sha256=FywSdftZ3ZXM5At4ZwYnL0XpmoItmMSt7l8B92MCs5I,3712
209
215
  teradataml/data/finance_data3.csv,sha256=lp_irRnY5SosrYzEVxW4VB07vP5dP1FgIEJesjkQU6A,2358
216
+ teradataml/data/finance_data4.csv,sha256=VKIELdpH1JK70YzRyPb3-k5aInEN5idUny9X8lcQYtA,344
210
217
  teradataml/data/fish.csv,sha256=ja2iyemvEDRmdnASD2eC-pUAMgzIVGEJVVSsfjqrvg4,6022
211
218
  teradataml/data/fm_blood2ageandweight.csv,sha256=IBigbrDMap4hDdB9TiGlalN8EYRE7EKeUazHyvldxpY,495
212
219
  teradataml/data/fmeasure_example.json,sha256=tSXRX3n-02WPiBr_iZdscslV6Bh_FHsDdoiWHRS3Dwo,298
@@ -225,6 +232,7 @@ teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr
225
232
  teradataml/data/glml1l2predict_example.json,sha256=GZJpQ7dWM188f1spjmItIN5u1f_VCFI8cAShl4tbhdo,1782
226
233
  teradataml/data/glmpredict_example.json,sha256=LbPzvK5doOjsamOR5cUSHpg6XU0X-I-yliV3hDFsoBw,1911
227
234
  teradataml/data/gq_t1.csv,sha256=_iGiz61HKIk2BEvGFp_1REisSHFKkjhF0m15Qte2RYc,601
235
+ teradataml/data/grocery_transaction.csv,sha256=4lrRGTYp4S5_wx5MW9fxFgpRaO1iR5HaJ24LctOxj9o,702
228
236
  teradataml/data/hconvolve_complex_right.csv,sha256=VCdYl0iYVXuZV74GKtaBGlC_3JsbZPyRI-7AV6PQ_8g,103
229
237
  teradataml/data/hconvolve_complex_rightmulti.csv,sha256=9gHNIVxZmGADCcvNT7FVC6MhV2AqmRrJu0Khr22g9QI,245
230
238
  teradataml/data/histogram_example.json,sha256=T-5SgDcbo4lC-AajDQ0nb7LbOzoqOzzmRC8OkXI3iX0,241
@@ -248,6 +256,9 @@ teradataml/data/ibm_stock.csv,sha256=nY85WYi9rtYlM5eStAKVRVPIjYAMN4fZ-CVSzbS6pL4
248
256
  teradataml/data/ibm_stock1.csv,sha256=GZ7woXK6ss4UYhKxWyjWiFitS46GHT2D6Cp1YjSu4Zk,17747
249
257
  teradataml/data/identitymatch_example.json,sha256=EQnoTmGowYaDveMsmufATtecWdF3jG-vsW5H6z6eT1s,553
250
258
  teradataml/data/idf_table.csv,sha256=dPVvU7hx1ELtkAxnGDJFGMvF6-lgXO0OQiPnD_zEbkQ,97
259
+ teradataml/data/idwt2d_dataTable.csv,sha256=zsgl8I2iBIsBDFB42owpO_A_stL4obsDQLxkuTLHDlA,62
260
+ teradataml/data/idwt_dataTable.csv,sha256=WNWb4vq25iCVsDhB_LjBgQcmFy3ieaAavJZ-2IKtVpE,145
261
+ teradataml/data/idwt_filterTable.csv,sha256=1Q7zbHfuxrUUDw2uSYDp2H2E6OPD2FuiTOvD8KQDU3E,113
251
262
  teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0Yc,2483
252
263
  teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
253
264
  teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
@@ -255,6 +266,7 @@ teradataml/data/insect2Cols.csv,sha256=A8h4ng_It3rOBwJoxr4LtrDDD-GdjX1vl5Xi7hwsC
255
266
  teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
256
267
  teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
257
268
  teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
269
+ teradataml/data/interval_data.csv,sha256=P4_ts3swAPXgfVl8eRPCo49nR1gb1rvBfpf-16Vbzog,227
258
270
  teradataml/data/iris_altinput.csv,sha256=1XTmOumWhN5Q9ZmboJoNsMdsXTaZwRXvR8w6gjz4DYI,18290
259
271
  teradataml/data/iris_attribute_output.csv,sha256=R5UejlCRJTceL6Ht9F3g8HJoJlLcf4CMjzXQRtGqcTo,2012
260
272
  teradataml/data/iris_attribute_test.csv,sha256=Yl9ncbAGXHI7sbOalOM2JzRIWPCLtMsNjf_YzGhbwr4,2929
@@ -283,7 +295,7 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
283
295
  teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
284
296
  teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
285
297
  teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
286
- teradataml/data/load_example_data.py,sha256=A-NtbmsBPwBQNa6XwHRUSCs32_s1FkurgT9q-Tl2AN4,14272
298
+ teradataml/data/load_example_data.py,sha256=6fEDd5l87SfzAy6clQTwBM7PkNYhjaiY8-2XLotKcPI,14582
287
299
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
288
300
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
289
301
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
@@ -305,8 +317,8 @@ teradataml/data/mvdfft8.csv,sha256=Bi9J1hxbuzvNBbtzNqZETvJlx6RhZb5-_tQNoC3WMlo,2
305
317
  teradataml/data/naivebayes_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
306
318
  teradataml/data/naivebayespredict_example.json,sha256=yYjv-bSl7iutKbZB9FIobbIYdv0PasKlU4IUlipkNQM,521
307
319
  teradataml/data/naivebayestextclassifier2_example.json,sha256=_NP4_5G0wt1eruB9N7vfl4wNKhW_CXIsGmj4DGMuIA4,151
308
- teradataml/data/naivebayestextclassifier_example.json,sha256=a1oGhGAwCR1xGjka_aqgU3pI4XBxXO6mIcMHUWP8c7I,155
309
- teradataml/data/naivebayestextclassifierpredict_example.json,sha256=AlriKIoyTO8v7WnZte3J35lnpRiY_q32vK6aBb5pWI8,492
320
+ teradataml/data/naivebayestextclassifier_example.json,sha256=gXm9VzYPL-QHZeeOWuShDI1tQKmP8DcUhl0CPVbR_mg,151
321
+ teradataml/data/naivebayestextclassifierpredict_example.json,sha256=7B2FwLvprVe1w3MKPj4LJmTrItmxA6K5rsHAZa7Ycfs,813
310
322
  teradataml/data/name_Find_configure.csv,sha256=lYVIn0ZrjDVqQCTITzW3Y5u77yofpWWOhvdKstHSyvg,380
311
323
  teradataml/data/namedentityfinder_example.json,sha256=JTHyoARLe05_zemppuXI_KPu_DzQEzOKLk-2wl5XWw8,354
312
324
  teradataml/data/namedentityfinderevaluator_example.json,sha256=7q3Vfzr8yCe-B0taXNlljn3pkap5NP04ayM2V91MFoc,260
@@ -346,6 +358,7 @@ teradataml/data/pagerank_example.json,sha256=1DhseHJJhzxjyE6hukmBVyXkEN6EVNO3K1w
346
358
  teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-EujTvNk,3000
347
359
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
348
360
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
361
+ teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
349
362
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
350
363
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
351
364
  teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
@@ -357,6 +370,7 @@ teradataml/data/production_data2.csv,sha256=Zo3VRoi9_sR4y10nfxNznw3CqMzWQQi28ROB
357
370
  teradataml/data/randomsample_example.json,sha256=TNbECMoF7cZq1kIIbVrVyzNlTBxrEPwCo30O2yQS878,800
358
371
  teradataml/data/randomwalksample_example.json,sha256=v9liCFqTVqNiXnpqmvC0RNWyUdZ-Tx5Et2FwhuVAOls,128
359
372
  teradataml/data/rank_table.csv,sha256=oazTlhOAA4C9rNBcHuJa7gOmftO2vmf3bevxZC7jeJw,100
373
+ teradataml/data/real_values.csv,sha256=UJCbvU6Ztm8k4_AA16MCgtAyQTBvmrXmAbJ2ZkT9n4c,444
360
374
  teradataml/data/ref_mobile_data.csv,sha256=mJcSoKQfS6t177wq60ygMXa1LI8O9B62vVj9PjhNmeI,106
361
375
  teradataml/data/ref_mobile_data_dense.csv,sha256=Bm6C74aeHApPaQr7KeagYVi8tPJ3mQqW0EdAp01IroU,63
362
376
  teradataml/data/ref_url.csv,sha256=nXDagdEJ7Hn94hdss2xa-JbHBMbZ8EmekrQJuX8079Q,850
@@ -374,7 +388,7 @@ teradataml/data/sample_cities.csv,sha256=4Gq6zh3bkMqxIvb_Y_Zt5bAZqzSvUBMbyzD8Wez
374
388
  teradataml/data/sample_shapes.csv,sha256=TsewEbNMysCM2dVbdn81fSBRQCmZ2Vo99izJ01Pk5sk,2672
375
389
  teradataml/data/sample_streets.csv,sha256=_LJeoG7nH6wHGsQFldOn-O3a2Morm-Hg69o0qbvpG18,123
376
390
  teradataml/data/sampling_example.json,sha256=pnB1Lzwt5baZIBDU0sMLKqnGDzcOoVQ-5X26PZSboDs,269
377
- teradataml/data/sax_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
391
+ teradataml/data/sax_example.json,sha256=y7hnQ7NeCr_bgGHLOzNKUKnaVzDUNSD4J6skU5FoPiQ,326
378
392
  teradataml/data/scale_attributes.csv,sha256=3OC7BRqhQohXO9OYfjyzYY_K1G-gs1Y6KdMV1MmONRk,37
379
393
  teradataml/data/scale_example.json,sha256=2KJEsG7CXoXkQD5qT_x9BtmdD1vkRwa2aij53r0VvSs,2152
380
394
  teradataml/data/scale_housing.csv,sha256=yD016RxlF2ldgv6-C8z-liooe_icioZNxiFEjQjRQqc,363
@@ -411,6 +425,7 @@ teradataml/data/sparse_iris_attribute.csv,sha256=HK5JnSw0Z0h_RWSiyhZQmd-v0tftDDF
411
425
  teradataml/data/sparse_iris_test.csv,sha256=oaekgs-9pgabMXG4LFOK-hFvsUKKGaSsQfwiEKDygQ4,3260
412
426
  teradataml/data/sparse_iris_train.csv,sha256=ojGhZQAscHKcv3rciUqA2Bptr5t2qFs0ENYmghYE9Zg,21708
413
427
  teradataml/data/star1.csv,sha256=QS8CfUfCRbLV0mwpTp3d_Z9yxl_7kivC2gu-Bz74v7Y,147
428
+ teradataml/data/star_pivot.csv,sha256=dHLEwmvjFib0Hu_fmQK716kJNzGpmV_ikw4L2x62uAc,212
414
429
  teradataml/data/state_transition.csv,sha256=UFLpdy4Z2fTTdXOw1t4iBOZKzWdm_kYneMQdYrQEYPE,99
415
430
  teradataml/data/stock_data.csv,sha256=ViyRqN2dSi22TVi1IqSP8Wl33k4FHZNBcnZFGuy-m6Q,1569
416
431
  teradataml/data/stock_movement.csv,sha256=LAINEFLRqaAVTl5iB1zPK6cENtSgzgwmsoTXUkG7oSs,129698
@@ -432,7 +447,7 @@ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqr
432
447
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
433
448
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
434
449
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
435
- teradataml/data/teradataml_example.json,sha256=H1cfD6eJH8uv8R9DWs-00TbIEQeEN5owExEHhWyko6M,41250
450
+ teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
436
451
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
437
452
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
438
453
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -457,7 +472,9 @@ teradataml/data/time_table1.csv,sha256=8BqrLSZ02WKQuYk3iyFOjV-n42iKjssNRsdZUdZkd
457
472
  teradataml/data/time_table2.csv,sha256=kknBm8lyO1bS7dIig4xoMvDKmHCuj1QU1cY45snWv18,357
458
473
  teradataml/data/timeseriesdata.csv,sha256=EF_JDM1aYDhrX2Qz1kxvJwKobB-7xv9e-CjPv2EiUfA,29650
459
474
  teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6P6ey_uXuCMg,2824
475
+ teradataml/data/timestamp_data.csv,sha256=KcV3J8qNfj2-EwQlNaG9uGkCTNjBKE21nSfIAj3Dgd4,281
460
476
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
477
+ teradataml/data/titanic_dataset_unpivoted.csv,sha256=NsU8OJIn6bmCCgmOx4lTy7-pxTqbncADzXpWgrqEhI8,350
461
478
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
462
479
  teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
463
480
  teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
@@ -467,11 +484,12 @@ teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOj
467
484
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
468
485
  teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
469
486
  teradataml/data/twod_climate_data.csv,sha256=hjKs1evHoAWWEiYVcncyZvwkDw03M_2yxE5QF4-Qipw,4310
470
- teradataml/data/uaf_example.json,sha256=OWD_dYyNWOSeiAIqEa46lyIKWdebitwrg5mwGQ3mDSU,11355
487
+ teradataml/data/uaf_example.json,sha256=HFGX0hQmsEq2VxFP9By-kVWMErk4qhzNpvFhNuwUQh0,12461
471
488
  teradataml/data/univariatestatistics_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
472
489
  teradataml/data/unpack_example.json,sha256=5-v3zdRXoSgVuQbL0sQTQ-n2d-KhdFpRdjm83DhWM8g,186
473
- teradataml/data/unpivot_example.json,sha256=luDCJgs0k5uf5HXi0d4ZSMR3URsZbuSSR0ywI3cyH7M,185
490
+ teradataml/data/unpivot_example.json,sha256=LJP--etfQ56RASpoQ8Ozvgi2AMpTl6M5eKmMi5OhKTc,566
474
491
  teradataml/data/unpivot_input.csv,sha256=80W9AQhe_5-JULJA_SJXJbi-lV-6pkfOJ6bygb_oZL8,294
492
+ teradataml/data/url_data.csv,sha256=zIpqkGUxPsv-62ncrjvM9TUf3l8FRMZTlN1I9N1j3_s,536
475
493
  teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLStnY,1056
476
494
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
477
495
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
@@ -485,6 +503,7 @@ teradataml/data/waveletTable.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H
485
503
  teradataml/data/waveletTable2.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
486
504
  teradataml/data/weightedmovavg_example.json,sha256=Gc592H0CHcq9f-2we_9RvrBJ9E9A8_HD5f3mHnm4n3o,153
487
505
  teradataml/data/wft_testing.csv,sha256=2g56ogivANGHMrle1MMfY5OGQeHwxnox1inRl88dPlI,422
506
+ teradataml/data/windowdfft.csv,sha256=XuHRQt098Go1vaf85z-b9ITr8AQ9Y_RCENlFfSY4fKU,361
488
507
  teradataml/data/wine_data.csv,sha256=ttv5ymiLcNmi678dPxMSvKd73ZuQ-vwkzXEkktzjfQ0,89796
489
508
  teradataml/data/word_embed_input_table1.csv,sha256=47fOsMTC4GC0-t5QQDeYqnx2kwNkxL73HEuXf7ZB08U,220
490
509
  teradataml/data/word_embed_input_table2.csv,sha256=y3OxXnCf75fVchZ5FpSyzymmvk8HJeodcwupOqc4JIk,95
@@ -558,6 +577,7 @@ teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZ
558
577
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
559
578
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
560
579
  teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
580
+ teradataml/data/docs/sqle/docs_17_20/CFilter.py,sha256=Jx1fEeAc4NisKHr5V4zeV5D9syLZ-ZeWmB-AjRM63g0,5626
561
581
  teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTGdc4uwJsFoZiDkCXfqvkgWIGwhGoOs,3673
562
582
  teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
563
583
  teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
@@ -584,6 +604,7 @@ teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMd
584
604
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
585
605
  teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
586
606
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
607
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=TS-sJeSR3cWwXWhSwTaPBNF-QSDEtPTQ_hbIGGsqWOA,7653
587
608
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
588
609
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
589
610
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
@@ -596,9 +617,10 @@ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=V-dnV9Oo_yCyXUe
596
617
  teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=RqX_iobIa9vm9f5hb-OLDO4hDTIRyvZXlEQHyyYT7YY,5425
597
618
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
598
619
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
599
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
620
+ teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=qS_sCHXFizud3G3c6f6a_0ESvRsM5Bz_B0pVjy1WPYs,8385
600
621
  teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=IWNif30agfXyuPdeLvNtwmlQm_iEfYKkWz-KM391ivQ,5465
601
622
  teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1FpgN9Au10zKeIh8,5376
623
+ teradataml/data/docs/sqle/docs_17_20/Pivoting.py,sha256=N9f408SvUn3bpFBeFl_3GbqhIfwY9Xr_bwpLoLZ2nt8,12815
602
624
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
603
625
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
604
626
  teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
@@ -617,6 +639,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
617
639
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
618
640
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
619
641
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
642
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=u90DmJCuCSOG4nwIRGF1XzL8JApeNlEqOY1Owoa83OQ,8686
620
643
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
621
644
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
622
645
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -624,6 +647,8 @@ teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPS
624
647
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
625
648
  teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
626
649
  teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
650
+ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=PTVf_P88on9r_l92fTpsna3PXrJocSnTEesKf8Ep6pE,9370
651
+ teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
627
652
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
628
653
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
629
654
  teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
@@ -631,6 +656,7 @@ teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaU
631
656
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
632
657
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
633
658
  teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
659
+ teradataml/data/docs/sqle/docs_17_20/Unpivoting.py,sha256=dl8Y7lkT2Dd_AuV6P0pfBdviYFZddu8z1odRlooheIo,9080
634
660
  teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_dEZzKK5rbNFcW243DK1g79f-hE,8259
635
661
  teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUbFdorbHn4_s55XorIq7I,3455
636
662
  teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
@@ -652,59 +678,70 @@ teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VL
652
678
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
653
679
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
654
680
  teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
655
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=N-BB1qSRhO2xS3RqyVYs9R1nx4NJeN27SF0hUBGXbOY,8045
656
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=UESO1WnfM25AL_rQ1-2GTvwgJJAQADfsNAD43qCk7jQ,16782
657
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=x0LYzPOIHAE_7Q9DNz-fFoLjF3vHujdQvPdM6XVMci4,6185
658
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=Lq_17JlqHrjrR4sN9EWrGQTVAMC_dbrC2WHSWAZSOZQ,6906
681
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=-s0sm_E-IS9PC3igu9jGIl_ns5lC_kOk4iNWQ9IrbhE,7691
682
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=88KujTMVra_Bb9SSyWmecF2QA3xzqUwwYNdFVvhrwFE,16782
683
+ teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=KPRkOCAeQysFQO6HEjhJpiB2PlfCBf8tqkw3hM4S4Gs,7612
684
+ teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=xwnoDwKQ1oWJ7OSiJmMLO-qLA-ppgl5zSsPJ2_ptvi4,6974
685
+ teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=WsGyT_F4USv6ya0ROTl-YN0rq4oGo3XEpIQn-WSRTUY,12426
686
+ teradataml/data/docs/uaf/docs_17_20/AutoArima.py,sha256=Jo8DtwfR5XPcKnshD94NRUMA_7z8feGpnk791zLAh4s,13683
659
687
  teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
660
688
  teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
661
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=Noku5_OeqCOY7s-pvNbcsnC1nx_fQSLEwp0uhwOaLU4,7950
662
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=Jk2p5D76cL33_lV0oLYcWKsgMEH8FP1xiZDTbav1rRQ,7594
663
- teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=8vEgf4Mc6TQuFwudUMoOYbWAuLvou2gvoyEvxDqNfQk,11016
664
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=PYA5QVi9BOjTOyK23BImYTMOZUJEnGY4JIoScL0sJfc,10307
665
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=n2PSxPFKoZ64HwITi3WGnzQx2CHKrMQ-ztrAmkQwl-o,8393
689
+ teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=xrQZwpNB4RzxujJ4UTuCvAMNCw8EaMX1J5HwByeD85k,7994
690
+ teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=DF2uVAREW13rSOd2NScIKb1a30LISeFv9CSO_oBk0Xc,7605
691
+ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0-HlJC3-0Op6p4WTtGs,11093
692
+ teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
693
+ teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
666
694
  teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
667
695
  teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
668
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=yBlLiQqoYhiBDW5ze4Ghjwt0iuPFSuudxTMDe3qxJJI,9444
696
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=AyinWi8Lehd7BgmeEpKKw7QDnXDJMVwQhWlAJDE0aqo,9452
669
697
  teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
670
698
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
671
699
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
700
+ teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
701
+ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
672
702
  teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=fHNNRwhDVUh7ZszoXK4NH0-ckRJzVO1fqnSEFuvYRGQ,5872
673
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=9fw7rY0xKwyIiwMcqJiAOunrZgMvWvj2uzuGGIHVFGA,7873
674
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=PuYPtJjQQzAra-HY7qIKznu9srtQwdxsiViW5osiJVY,9313
703
+ teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
704
+ teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
705
+ teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
675
706
  teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
676
707
  teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
677
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=9X3y7YZHgNoyEUc8v5m1UVx7ezi86K_HNSsnmDfiLwE,6037
678
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=rODhub2j2L3S7D3lWRADm8gBehTn-65Z86jnw5Rq9e4,10057
679
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=qfWNhqwCT8B7VabcmoamxUD4I5BBTyC60WBL_tv_aY0,11109
708
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=yqDiMlYPAeKgQ6aflD-nEuQLwPddqCjzC6VN7t2Ll_8,6036
709
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=ANe0_6uaiuLsRgGt2-FRwofirq8nxK2OnNdtJ0NuTCc,8923
710
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=7VDJCyPvL4jXaaWeO9iBk_rMCPYoFPLU8zb1m-kcFZ8,11096
680
711
  teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
681
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=ZtrhFHCO6ki6xhvDU_RSESiqTbEbe2wKdEZ8wWOeoFA,8711
712
+ teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=d-Syxypd40wtLppuvq6QEW29LOo8nqqcjXMDjWy-sB8,8437
713
+ teradataml/data/docs/uaf/docs_17_20/IDWT.py,sha256=tQpomLX8hPO0-moPKOZfHYYh6Z0fGu7U5OESnkMvq2s,9846
714
+ teradataml/data/docs/uaf/docs_17_20/IDWT2D.py,sha256=X1HKTz0B5QTUr7LKC_F_Ai8a2WSEhlImKX-HegW-lI0,9506
715
+ teradataml/data/docs/uaf/docs_17_20/IQR.py,sha256=TUhYaVU8BTbUQLrUil_cKWsafkNWZgIhm4Fdudd-L5M,5271
682
716
  teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
683
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=8ZbWkcJQyMuIOPc-63X9MDyS7QkxkBfcdn_wFKcWk4o,6343
684
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=DCsazuWDkRtEeUzCFzXs0dTe1AHWval2xCx1qVXWCrA,9424
685
- teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=AF6_5y0beT_s53fRHg3TiRmVCgDgffbVwtmC-x6g8HI,7121
717
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=54El1YgvQK79jDiNYtl5k1SMiIP5QrsT-8ZpYQfS5dE,6353
718
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=Y9w5SeANPADamCE85lbTy2sU_rXxLzZozZ3rFBqCm3M,9444
719
+ teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Kfb11dv1YhAVXBwQ4FwQrIF7QuTBMKKxm5SAMUZXYhk,7123
686
720
  teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
687
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=nNGMQP0TjXMn_rboSUFnVPIuR2UC0o-BTdFCqnaGepI,5867
721
+ teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=6C9efeXQIRjcrnAD3stwvXTsAXQppxroZxctqLFbzsM,12242
722
+ teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=-A5so6qYHsesJkRmcElL-fTgu7FAFJOkASLE0KCVET4,6161
688
723
  teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
689
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=xNltFshem8nXYHRgxmqUaRI3HeaxNYOhkY1aQ4JhulY,6628
690
- teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=jt5ZatO2GjwvxtBubf5tJB30zxEmMpfEz7k81jvRE8g,9864
691
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=7Gdr6orIAbwyfPkhZDGqiw5SNCxvs69p2_c6kzcmrV0,8571
724
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=2ShZR_0uqtTeoR0_fP-eQamuw2fINeXJA0gYUfDTIhw,6626
725
+ teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=LT7FiEIFgF59lBgb6cAwh292b0cX2LzM_TXTPHj85zI,9926
726
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=JfZXJqumaS4FiJLuWuxX2hW-0RL1RLLZkPEpwZQ0mSA,8585
692
727
  teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
693
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=PATwrXSyvJoq7l3jxJ9dvsUvYqWcfNeCx7L8WTs-OoQ,8999
728
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=OJ8V2lo9G99VwLZ_SVd8FHv8JzDooSR-E0VinDw5Ddc,9416
729
+ teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=VbxA0cJLpaayJxFAsifEjQgkNwukTia2vbixOEdRg14,9794
694
730
  teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
695
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=_Lc-2ROoZhLByZFDzFhRKvzZ_COtGgw1HWH0sflc8GA,6565
731
+ teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=Nx-DmS3U46MFu0Twr_WJimaSa8fXM0yaaJWsSz0WPbo,7275
696
732
  teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
697
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=LDIg0hSbAz2LPyywY9MBzGTGU-Zq9ERhhqGodAF4sQY,7475
733
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=NgGEJvjIIctWh_pm7acr00WjD-c9FpfxFi0arY3epJE,7485
698
734
  teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
699
735
  teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
700
736
  teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
701
737
  teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
702
738
  teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
703
739
  teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
704
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=UB0fT3Otgbex7ttpOSg1dYWHBDxBdXVX7MgW5gf8ZDg,7474
740
+ teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=wR4WdoR4zNfza1w4BNeeK7Qdmz_KvgnEYJ_2rfULpm4,7544
741
+ teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3j2CEd3SsQuCp31Y9QQ6A,15374
705
742
  teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
706
743
  teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8SsvxpcRv0hXD1zi0,146
707
- teradataml/data/jsons/paired_functions.json,sha256=B9T9Q8T9OicJspTcnid_HlXnXh0cRHCYTYMYJ_cUyaw,9496
744
+ teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
708
745
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
709
746
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
710
747
  teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
@@ -819,6 +856,7 @@ teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR
819
856
  teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
820
857
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
821
858
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
859
+ teradataml/data/jsons/sqle/17.20/TD_CFilter.json,sha256=GmljbjUsiPrinKRjgU29BFvndoo060T_tA8KSSHI2S0,4200
822
860
  teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=S5iSTpkJWGO07FkMlmv2KkRtkKcAt8GMdIkJF4Vt1Y4,1761
823
861
  teradataml/data/jsons/sqle/17.20/TD_Chisq.json,sha256=qL5cuRF06PBqkOQ82PNX-owsIFqggK34fnt0l6buHGo,2226
824
862
  teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json,sha256=bzCU-Xr87pF0knkcVxaXLRTV0bOVnDsft-PmyK59zRY,4859
@@ -842,11 +880,13 @@ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigc
842
880
  teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
843
881
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
844
882
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
883
+ teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json,sha256=aKa9bh7TVCavRYfE-uA4j3ckLkoNvNolE3q68ajcU30,6391
884
+ teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json,sha256=rG9eLlNyWNpIZSWNhj-9e5eltM7JH-sbabwXi564IP8,6938
845
885
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
846
886
  teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=ybn6aYRmo9dkBprs27ol8c6D4gxpJCLv8PuRIVctp1g,3458
847
887
  teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=rWq7tvhrOKdvsD97rrFs4RglPOC-JdidCunKAoShZgk,2708
848
888
  teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
849
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=1huR_7WgqbvjJvuMhGXtrVjVdF7runEa2Iu-aYFUUKo,14584
889
+ teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=Y44hitYBAMaGHAWBdHQUCJ4bAoHC2Fo35GjN2qrEQc4,14593
850
890
  teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json,sha256=le7Zk4oGzqZ1x3rK26HSNGqo4XWAHEq6EVk2zITkGsE,4564
851
891
  teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json,sha256=v11JoQOEK0qVUdBvqaqyzxwMNrNqhcDEduoxGRDyX_s,10628
852
892
  teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json,sha256=IkOOnnFzYkU8jjUWDconokmeGE1YE-hXBXHAMS_Nk_g,2364
@@ -854,6 +894,7 @@ teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json,sha256=1HHCS-jhwSStL
854
894
  teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json,sha256=Nq0xByI-gnrR5ykcgIj5Drjk1zO4vq4D5BUD2_df7zc,2701
855
895
  teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json,sha256=4SRXsKo0SsKjTeRatKdWITPcI9Jh-lmbDN5sin3o3Vc,7881
856
896
  teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
897
+ teradataml/data/jsons/sqle/17.20/TD_Pivoting.json,sha256=koFK5RqAL3jgl8TXon8fA0cfmUlZtMolwyIr-MwiybY,11896
857
898
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
858
899
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
859
900
  teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=C_ZGyq9pZb9HPpm-TEz2bnX_Z4vGzFo7RcVMgyu3_q8,4133
@@ -870,15 +911,18 @@ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5
870
911
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
871
912
  teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
872
913
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
914
+ teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=lievgkOWQII4bdQirHXo_OGFuexhTAocmV-SKQj5Rqs,7928
873
915
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
874
916
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
875
917
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
876
918
  teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
919
+ teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
877
920
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
878
921
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
879
922
  teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=uBK2ftzgYog6d3jGIP3JQXnbF-7EakupvjTl6xlvZEM,5925
880
923
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
881
924
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
925
+ teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
882
926
  teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=ytRPvQhDifsUCRS9MzPifqizyhlOh_DscvEGJ_mZQsk,6415
883
927
  teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
884
928
  teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
@@ -888,6 +932,7 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
888
932
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
889
933
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
890
934
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
935
+ teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
891
936
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
892
937
  teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
893
938
  teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=RxlbMg0c2MAv_SweZL6rB7Ew34zSdcJxF4lgxf2N4L4,15256
@@ -895,56 +940,66 @@ teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=DJu_Ux7VQV9EXIcuC
895
940
  teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=dofQigRkF9jKyYRO9dOQL5jKBwd9i4h02rs4UYBJkzM,18115
896
941
  teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=dXmnLi7pXayTjeZEIeBRCK8ysdmdLiXy8iHZx_LXdCM,23674
897
942
  teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=I-526Zymf3LdRZw1ojfD3MAZSqxkXD9JW0rs7BvOjRg,19158
898
- teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=POpdthnCbPHsKKTdj_CkcPPRqk5A_96cWN_yt9EWLdQ,6793
899
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=GdNukEl5Pw9Zd-7yKtNm1shTNztDNq7RqPhbJ_a0Lqk,25827
900
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=iBosTMDcyDUheKF4BBkZjoT4sg3b9WGo9k5XtZ35dXY,4636
901
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=LR7R1GJZF4Y2hrzV33nEa_elDuuqolBTu1i9FZdXi3g,8981
902
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=pnmN870DVtfmftHGWkAevTBjScdu2pQPALUVS3lz4Ic,10823
903
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=nttsu-3KAls_Bj3Qm4F0yD6lrvGXb4NhH8TSZv5l5b4,10730
904
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=Z0F-eOSJprRa_wuD5ojR7EfzP3bU2noP07vNGqF9JVo,4762
905
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=CsmtBwf3ZqZ7t-9nF4PHZzPud5TjHgqQ-n--ibRqHgo,8019
906
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=ujrK0Kpp9elbTKur_o6SOW7-wjuHaNAg0QSz48-Wmf4,4126
907
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=LEwJHCuC5-v-yvKHBiVxHZVvSMa1NMaPM-zRqEynsKE,3140
908
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=K9UVwsmUDNzosNKoXE-mqkOK16wuPpx92GgcRoWsE30,6224
909
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=ZxJfO2APYywfwDcdlYDcYFged5fwQdC786y5NBaRSCE,11353
910
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=hBt9lyUvjK6X5nu4Bf2s7NYwweC0qbuLHscXhmqr44Y,9149
911
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=omPVu4fFETeWQowNqkNiWWN3xSvRnX-KAhtULyM3ptQ,7799
912
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=VGiG_dbdRbHAjt6DqtvU9YTSIofOJy5yla5TqvYSLw8,7693
943
+ teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=sdCp6-xPkCTHyCN96bAVR6xivoAx3OC3oWPYHUBLq60,5952
944
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=tB1Ho7rq-yl3LEg0I0kU8njMobY9vNJgYMuH5rauvVk,25944
945
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=q5vLNz2QV6v1hljeoQs0Q7H7EbQRU88CuCxlv2ZPLr0,4616
946
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=7a3LWdfZfT6giCncb_nlojYR4Vfb-9uSq1IQedQxrWs,8947
947
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json,sha256=9WACTSwOqviy8eMaEFqfQSFu1h_-SAPfsCNqHf66JLI,17763
948
+ teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json,sha256=eiXVh7EwOfpscuAsNiv6PkyYUMwKWyT942qxpaQ1OBQ,20464
949
+ teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=Gt1m747wMwTYxHIHoN-Dn2o3Nf0RTmjmG_D8cQHLA3g,10803
950
+ teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=SYgMKxZg7t0eeFDdNS-QPxvybbXAkVs9ZShphmi7qts,10714
951
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=YCLN4ubYzIC9gwdMRQoi5gG9xpERfYp-yb0c_BGhBVk,4825
952
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=68r9C58FCUdHL8zygFzvuCVhfFBm__2Z6Fad7Tdn9Gs,7990
953
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=R26aQVFQIh_uG2OZe42n7uhJqYH1QUDKEYtSyUZrz2s,4117
954
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=Brbl68-J4n2KP3hC1lg33GZy3i6s7bhR1RBOjop9iYU,3128
955
+ teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=MFcD3UafWtVoiy6xu834Ru-cjvFxwnvoFwcqHOlny9k,6213
956
+ teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=_kpih5WRCU5UwZrYqI8lZM0ra4TQeyz7YlmdkqdYCpo,11345
957
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=foL65oFgS3b8ERqXA5K_oMBusoVMT1jUd77dZ3XN73o,9129
958
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=c7Bd_1anlfw-ZNbgc_L7KJWcUS8VQYGv-iL2cZ-T6mI,7797
959
+ teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=s1RrzJ_vdzoEip0DP9fr643D3KYt8rPc4kLnKLN-vtw,7689
913
960
  teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=WlrAJpViFPK0f4qeQSRfQ1_D1IaHARJN48S-SGh9FJ0,5225
914
961
  teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=HRBGm5GdjG0OYiYEuFKZEfm1t6DKrHn3Pv6BqD_9GGY,5371
915
- teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=Y8tpHFuXRcv2lStk9eTVLVU90qYrcIMTqe1YpVDkJnk,7246
962
+ teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=IqkbCHGZDOEdG6sno00CvdgdjccWEnsvnH1r4qnITjQ,7234
916
963
  teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=vkB6WUS_J0M2XQMoMGuQEmJ2kl6WeDeDpApWYhXodGg,5779
964
+ teradataml/data/jsons/uaf/17.20/TD_DWT.json,sha256=Ib2IZdhhhK4K780FGndUzuvQavH0ozhbOLhT49nLNUY,8872
965
+ teradataml/data/jsons/uaf/17.20/TD_DWT2D.json,sha256=mCVdd5ZkrU_IZsW-RtQbMumLx51rLX95nMbT2i5573U,8343
917
966
  teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json,sha256=yTB4R0SWx8vc3aF9WuWiXulF34WPfkpFu8KcacYPXh8,2149
918
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=3VHVfv8y9uXktmjOBCG44uJpvT8qjI3LLAgKGrU74f4,5886
967
+ teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=9Pyz-_T5rOYLA7O_GEpkGQAXASJMh1F4BudZwcjAxoo,5873
919
968
  teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json,sha256=LOkwRmdeLe0FumnhK5ftO0KRs9bxaM8VYoX8YFZgr-o,5294
920
969
  teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json,sha256=7Fo-52k5tu6RHnvT_9lTmubRVEuX_98ay073FSHN98Q,4749
921
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=Ou-TCd5RRDIoB9i9RjR9WMccSNj44SWZ9TQiPJiqBB8,8961
922
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json,sha256=Ja23hGQxoAydp3XQ4fYcAwLoOubUXTaTuB_WeARrelw,19472
970
+ teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=0W7OYQ0xCnfmqRH7cUQMig1hfHq_s-VcENaLyWXBsR8,8741
971
+ teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json,sha256=K1n7gDY9ck9a6ZcX8x7QbeV7rfL14xYCX5oU3j1Abho,19428
923
972
  teradataml/data/jsons/uaf/17.20/TD_IDFFT.json,sha256=BkBgjpBBZpp6qSMuhw2YO5kOj1IKvJqC9RvHry5QBk8,4011
924
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=YKIQ3O996UyFR_aGMFsH5YIkisrD4grXW450HwqYLLo,6660
973
+ teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=nfR75c9m4Bvk_Xi3OJSQWI-rvDO3u8nF8T4NmPJ1aDc,5954
974
+ teradataml/data/jsons/uaf/17.20/TD_IDWT.json,sha256=42MIoqKJJ4CE6YaUek_vEm5nomtCBWa0rJ-l2Qb-SyY,8392
975
+ teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json,sha256=2bueR5bFwzpSYE9sPE_2lLFsDzqDFJvECoDg-iXt6q8,7851
925
976
  teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json,sha256=RATfm1-DJtKXXSClyYC6QcSfuEE90SbGbq26lZ_rxdI,4325
926
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=iiTWO-H0IKeQJVkKUlhi3eoV0MgDn8B-PEc39iwVMv8,12171
927
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=3BYsHsKiUH7pVc8r2HSNDJpodj-azEGg9tSjHScIJCA,6148
928
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=vWiIp3FtYnbuGjshHUOtRTyK_CAuJx6sjBJ44wkticw,10516
977
+ teradataml/data/jsons/uaf/17.20/TD_IQR.json,sha256=gieHUb75US9MUqWMXeHbOhVINIfG0VDLA8Zqma60cUU,6073
978
+ teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=2uPXJsyDAqUjPF8Qf5H1Cgb8ZPiK7ucOR_kUE4BxtP4,12189
979
+ teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=aItXFIG0e32Qj1U27EKP3Ut69WBfxfy27dkXe1xnDUs,6148
980
+ teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=LEckadtGdcQvxD9oXqqLDHEy9zCQDge26sOk2LlNGoI,10538
981
+ teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json,sha256=x8e0qIl1zjMnFpd3t2sNaBQo6mqH5pTNpfVo5oqR1zQ,10506
929
982
  teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json,sha256=KsmRSYhBihA7uKRtjlZ2WAO9YHUs6eYO3gTi2cWBr20,4196
930
983
  teradataml/data/jsons/uaf/17.20/TD_MINFO.json,sha256=X2XxLdYC-oTQ-syXmqPxknzVsFGlpyUANqCyW-qqE9Y,4267
931
984
  teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json,sha256=hZpLpxritCt8ZrnJbhm0MuNKo9molN9aS4CouBBQJ_M,11978
932
- teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=Gug8WIeRIb8xuDCQCee34LLGuFr_U_a6dWbGQ267HlU,7587
985
+ teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=5CAN0HOaWGxQ5sezILWGWIQBaKBJ6UH_2JJYMuHNS_A,7072
933
986
  teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=Y2BejE5qpRqrjvqg6wM9-rHQtTlThMzLuMMTt5NZwSA,7070
934
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=oHUi8jl23EkxJBT_BbJ7FHpdWaVIcbUMVaxYM2g2fak,10486
987
+ teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=l3FV5T28DvSUvkoMtvsuiBxlswPi5NcduecoTgB2DbM,10531
935
988
  teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=aJ-3gSBvL5ZP-X2_PbosnSbQUHAJhkbr8nq35xsD8us,5080
936
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=c7uNyNzpqLYUbDk5taP4HEA8TIwk6RgSgKBDTZ6fl5o,10544
937
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=blmIxyPYHY6dHJ9ocaxYYCEU8LVtXbGsXsnih462jmw,7371
989
+ teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=R_oJNYdC28fRSdIhNMLRc2yGalBZRxQFrGluqmJ-Yyw,11684
990
+ teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=MtKvfUCZVy-gt0EpFXtUYMMq48Z2F8dalVvBlp5_9iU,7856
991
+ teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=U7r9HaGMYzOIhrMeC8tkXZLOLIZ4dD9IhzTk2avLfpk,8428
938
992
  teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=L0Cms4EvbgdMiUctSKl8iPTYL1UDt8AwImCTuPI3hEU,5600
939
993
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=HsrXUJttjDR6vsbzIjxcD_3QaOokL9Jo-Vlna4KIvSk,5259
940
994
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json,sha256=idQxesvWN2q6HttfBEkejupWIumUutpTPqWsnIkmQAQ,4604
941
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=UYXbEzmrjvQnj4ub-uLMyUWZKgmBOM3phtT8Cob6t34,10532
995
+ teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=R5zFJhQ63DRym2qVgvWoh6oyYRGBlyLknQRK1Ohr1uI,10530
942
996
  teradataml/data/jsons/uaf/17.20/TD_SINFO.json,sha256=SI9jiSrApW-JGEUNv2hDpchxmGVxY_I8X6VO88Mc4ZY,3745
943
997
  teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json,sha256=I9N0UExlLyOnNI8H_AKpkkaNJRm6JElqPUPtpPJ4EvE,9887
944
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=nAq4e8w7NwXPWdgkCt5zSGLoCghjO2ZIQLtq1zbouME,4876
945
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=znmiQhvXgtJDrDX6kWoUBVNEs2l3-7iM4AdhVX5zU6g,6837
946
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=jRqBfYA-WZdQy5lSO6YDynCmXFTL7IpUHKnzQ_Evp0w,4755
998
+ teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=rdohAD71rUtlQQvGHoLNUQPE8_7S4_c1K-c7ovz6GgA,4922
999
+ teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=pNZUHXVb9BjV_-_tVRiuG0mMxG0PIxT956YRqo_Fu18,6836
1000
+ teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=XsbOEduKsTkumHXh-DJvP0jbJ56Zydq_JFkhfNBTJcI,4753
947
1001
  teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=gaiixvAjMIms_hVJG9_WmBjK10f1wz8tCR6Y161SHZI,4800
1002
+ teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=TdcAkYbTvnRRfN2jJ7JmwUp19-CGXRDAbhazed8Rj70,23405
948
1003
  teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
949
1004
  teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
950
1005
  teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
@@ -967,90 +1022,95 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
967
1022
  teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
968
1023
  teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
969
1024
  teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
970
- teradataml/data/scripts/deploy_script.py,sha256=zDTBhIXifod2LK_f6JVDjOCgnpAteUaIjFH3sanHYIg,2469
1025
+ teradataml/data/scripts/deploy_script.py,sha256=ap99Pp0DWA32E7s7cedL84VIQEvvb4bAE6CnRr-hz0Q,2477
971
1026
  teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
972
1027
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
973
1028
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
974
1029
  teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
975
- teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=xwso_Oso5SKtxR3-xMfA5e7Ax7n8H42yjwkFNIkIsjM,6426
976
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=HCZLOEUkObc13CpqL4jhu1S36GQnTro-a56Atptg0gs,4976
977
- teradataml/data/scripts/sklearn/sklearn_function.template,sha256=iwBfT_ohX2k-BUEkJqPS4xVP6aDqu41GJJOQhLA5EBo,4419
1030
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=ZIe9WIOroGT5iCCedS8iNY5AZaMyL6j7SwaLo0zPak4,6650
1031
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=QOBt6fFS9qdkOYM_qYqWSpDDKuBxnnRJ_3uPHjlxjCY,4946
1032
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=d8xS7KSGHirsA3ogeQgoQayFinMBHJoYeZAYX9PodqI,5426
978
1033
  teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
979
- teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=JYORv2_A9W_amRrgfcNv7HifOFRNukSaOc9BxIwePbI,5948
980
- teradataml/data/scripts/sklearn/sklearn_score.py,sha256=KWqd1hvcJ2o41jE-oBLnfxNPhHjnM-ltHgM7GaLoAcI,4538
981
- teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=uHPclMehdoJzfIgK8QA1rCh1gOJqk9VYajFIDkkaVI4,7844
982
- teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
1034
+ teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1035
+ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1036
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=Cjz35WuC_IRmRWnMph6YpdngmA4ciadq0kDng9QzEiU,10107
1037
+ teradataml/data/templates/open_source_ml.json,sha256=V5eH98283NQcNahpfAvXNJgCP3M9fwU7asNrT2zXYYg,255
983
1038
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
984
- teradataml/dataframe/copy_to.py,sha256=vUmfruKAHLrURqDyBo-0DgCi2PZDHpRwGflnn9Fwros,76421
985
- teradataml/dataframe/data_transfer.py,sha256=uhyLodyZ37--QqdLUKW8Q1k0e1S3EOMKsb9QHfv4rXw,123602
986
- teradataml/dataframe/dataframe.py,sha256=kcKzwxOw7uXdXrQNy4tKX_-btEmY0pqRvIDfxk2qSTQ,934636
1039
+ teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1040
+ teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1041
+ teradataml/dataframe/dataframe.py,sha256=0C4QVUaHSk3xnUweedLLZgFHvv7h_UquxQAn9TG_l1s,956262
987
1042
  teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
988
- teradataml/dataframe/fastload.py,sha256=IhlCrmQ3MI_Sg6UHYKm-mxe7q6pj0bz90L7s8KVVC8I,41988
1043
+ teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1044
+ teradataml/dataframe/functions.py,sha256=sos_ERl17m6xdDHir8bp8qfSdX8r2Oto5muAWjo0oac,17550
989
1045
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
990
- teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
991
- teradataml/dataframe/sql.py,sha256=KrXTgEJvZjXt715OFTaFkC__W1kZ8Sc1PvHaTXuU9eU,602917
1046
+ teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1047
+ teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1048
+ teradataml/dataframe/sql.py,sha256=D8kvMqxP7C7G4Dvrlfcd4CRLSDpyeby-ioVjue7QNI4,638329
992
1049
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
993
1050
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
994
1051
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
995
1052
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
996
- teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
1053
+ teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
997
1054
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
998
- teradataml/dbutils/dbutils.py,sha256=cYPoSf1r_DyNCLcyLlUZz67G-avlfeKbRNzhwhHyeaI,47531
1055
+ teradataml/dbutils/dbutils.py,sha256=hdMrt_hnVleyRNHD1ymBoyd7OpvXppvNtEa3Iqr_WJ8,62139
999
1056
  teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1000
1057
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1001
1058
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1002
1059
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
1003
- teradataml/geospatial/geodataframe.py,sha256=cKnqjVBj1kkiAPqMw5w-PxrxLBhYXwq1ZV1SAZE4P-I,51399
1004
- teradataml/geospatial/geodataframecolumn.py,sha256=Yoe8GueOGoz6p1K1qMjwYzcg_K1hh9se4CMEq2JLrNU,16327
1060
+ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9TKuo3ajY,51397
1061
+ teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1005
1062
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1006
1063
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1007
- teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
1064
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1008
1065
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1009
1066
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1010
- teradataml/lib/aed_0_1.dll,sha256=8k_R1DftckFyr8mCP5WUsvmUaQGWUqRLaMNEuLrK3xk,3928816
1067
+ teradataml/lib/aed_0_1.dll,sha256=MydYBEPKmrydDFQdL2_ZiQ0QgOw2TOqjRIix_eMMNOQ,3928816
1011
1068
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1012
1069
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1013
1070
  teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
1014
1071
  teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
1015
1072
  teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
1016
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=Pkn5JkkEQtCOJiFoLZsXcWmlb7dEhwY6nVFYh28nLoY,83351
1073
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=CtZDle-0XrvJskaXYyr8-jVQuRcMkea7ntecGucFc6Y,87646
1017
1074
  teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1018
1075
  teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1019
- teradataml/options/__init__.py,sha256=dERjj_LvmsZen7qUrrv7Lqnmm7qYJo0dN0QJyCSFhtc,5736
1020
- teradataml/options/configure.py,sha256=hv1CqvIjScryDwPIuM0SHKBC9ZLe-N_fqlQZwqXfc0s,19779
1021
- teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
1076
+ teradataml/options/__init__.py,sha256=RaEdmCe-MnvdvnbezFBPj8pIbjoxpiZ3WWgZLiVYKRo,5872
1077
+ teradataml/options/configure.py,sha256=kUQc7shsbT2WXnuVPT82Q1jAXWetJxgcK-QUdvW_Idc,20518
1078
+ teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1022
1079
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1023
- teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
1080
+ teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
1024
1081
  teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1025
1082
  teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1026
1083
  teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1027
1084
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1028
1085
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1029
- teradataml/scriptmgmt/UserEnv.py,sha256=WwRdFduF5FrmHEYh8YRQrluJ3_7xXQ6yAsGZqIWw900,176869
1086
+ teradataml/scriptmgmt/UserEnv.py,sha256=gK4p1HEPV8l6mwfl9PDBdydY7OVNBk3hTsfeGGA3Sb4,176976
1030
1087
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1031
- teradataml/scriptmgmt/lls_utils.py,sha256=I7EgE2ljMXhnwPP2o5EKtikFf8_szbgftKt-KzavVw8,74553
1088
+ teradataml/scriptmgmt/lls_utils.py,sha256=Dzx__GwFlKc8AiiTs1k5TQnT6uZveckwARWTy3xWP0U,74623
1032
1089
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1033
1090
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1034
1091
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1035
1092
  teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1036
- teradataml/table_operators/Script.py,sha256=SLQhtfFeasQgBBD6H-SgOg8Nw8LhO9rLfGVeoIkhySM,77197
1037
- teradataml/table_operators/TableOperator.py,sha256=U2wHTCz4TIGCKnhPcYoAROM9fcqW14U4wRV9rVEPBK0,72180
1093
+ teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1094
+ teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1038
1095
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1039
1096
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1040
1097
  teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1041
1098
  teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1042
- teradataml/table_operators/table_operator_util.py,sha256=b9ndKX6Zz0SQuWiRzvYVKILIFpXX1HwgFtMwAIlhOcE,28404
1099
+ teradataml/table_operators/table_operator_util.py,sha256=3Hx13NNb_2wCfKM7mKhqhm__0MpHlPUrXyyxHIvPe3c,31645
1043
1100
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1044
1101
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1102
+ teradataml/table_operators/templates/dataframe_udf.template,sha256=kAr5FcafoUrGQs4aRjEj5E9sS69pa8msZ5UnaWMvx7s,2555
1045
1103
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1104
+ teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1105
+ teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1046
1106
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1047
1107
  teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26279
1048
1108
  teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1049
1109
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1050
1110
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1051
- teradataml/utils/validators.py,sha256=hmv9q9r6ctZI-rNs8QB3_zZ3owLA9tZM1iCKFthp9ac,92474
1052
- teradataml-20.0.0.1.dist-info/METADATA,sha256=Wz3cuVNzN9S3g8796pmxCwJfLjh0vTdwqGHhEoWdpUY,105532
1053
- teradataml-20.0.0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1054
- teradataml-20.0.0.1.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1055
- teradataml-20.0.0.1.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1056
- teradataml-20.0.0.1.dist-info/RECORD,,
1111
+ teradataml/utils/validators.py,sha256=tdNTPfGM9VY9tnfFlTe-i62Rg_ejXnPz7jHCgWg1P1Q,92491
1112
+ teradataml-20.0.0.2.dist-info/METADATA,sha256=Er74UlewHF_VukCR0108F55rX9lUVMUT5ML4Ee-0D6k,111166
1113
+ teradataml-20.0.0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1114
+ teradataml-20.0.0.2.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1115
+ teradataml-20.0.0.2.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1116
+ teradataml-20.0.0.2.dist-info/RECORD,,