teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +112 -0
- teradataml/__init__.py +6 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +224 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +1 -0
- teradataml/analytics/json_parser/utils.py +6 -4
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +10 -2
- teradataml/analytics/table_operator/__init__.py +3 -2
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +62 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +245 -306
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +313 -82
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +109 -146
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/constants.py +37 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +151 -120
- teradataml/common/messagecodes.py +4 -1
- teradataml/common/messages.py +2 -1
- teradataml/common/sqlbundle.py +1 -1
- teradataml/common/utils.py +97 -11
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +72 -2
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +10 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +197 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +208 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +400 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_fit.py +17 -10
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +2 -2
- teradataml/data/scripts/sklearn/sklearn_function.template +30 -7
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +55 -4
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/templates/open_source_ml.json +2 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +474 -41
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +339 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +658 -20
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +322 -16
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +154 -69
- teradataml/options/__init__.py +3 -1
- teradataml/options/configure.py +14 -2
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +10 -6
- teradataml/scriptmgmt/lls_utils.py +3 -2
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/table_operator_util.py +88 -41
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/validators.py +1 -1
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/METADATA +115 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/RECORD +200 -140
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
from teradatasqlalchemy.types import VARCHAR
|
|
2
|
+
from teradataml.utils.validators import _Validators
|
|
3
|
+
from teradataml.dataframe.sql import _SQLColumnExpression
|
|
4
|
+
from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT,
|
|
5
|
+
NUMBER)
|
|
6
|
+
from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
|
|
7
|
+
from teradatasqlalchemy import (CHAR, VARCHAR, CLOB)
|
|
8
|
+
from teradatasqlalchemy import (BYTE, VARBYTE, BLOB)
|
|
9
|
+
from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
|
|
10
|
+
from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
|
|
11
|
+
INTERVAL_DAY,INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
12
|
+
INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
|
|
13
|
+
INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
|
|
14
|
+
INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND,
|
|
15
|
+
INTERVAL_SECOND)
|
|
16
|
+
|
|
17
|
+
def udf(user_function=None, returns=VARCHAR(1024), env_name = None, delimiter=',', quotechar=None):
|
|
18
|
+
"""
|
|
19
|
+
DESCRIPTION:
|
|
20
|
+
Creates a user defined function (UDF).
|
|
21
|
+
|
|
22
|
+
PARAMETERS:
|
|
23
|
+
user_function:
|
|
24
|
+
Required Argument.
|
|
25
|
+
Specifies the user defined function to create a column for
|
|
26
|
+
teradataml DataFrame.
|
|
27
|
+
Types: function
|
|
28
|
+
Note:
|
|
29
|
+
1. Lambda Function are not supported.
|
|
30
|
+
|
|
31
|
+
returns:
|
|
32
|
+
Optional Argument.
|
|
33
|
+
Specifies the output column type.
|
|
34
|
+
Types: teradata type
|
|
35
|
+
Default: VARCHAR(1024)
|
|
36
|
+
|
|
37
|
+
env_name:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the name of the remote user environment or an object of
|
|
40
|
+
class UserEnv for VantageCloud Lake.
|
|
41
|
+
Types: str or oject of class UserEnv.
|
|
42
|
+
Note:
|
|
43
|
+
* One can set up a user environment with required packages using teradataml
|
|
44
|
+
Open Analytics APIs. If no ``env_name`` is provided, udf use the default
|
|
45
|
+
``openml_env`` user environment. This default environment has latest Python
|
|
46
|
+
and scikit-learn versions that are supported by Open Analytics Framework
|
|
47
|
+
at the time of creating environment.
|
|
48
|
+
|
|
49
|
+
delimiter:
|
|
50
|
+
Optional Argument.
|
|
51
|
+
Specifies a delimiter to use when reading columns from a row and
|
|
52
|
+
writing result columns.
|
|
53
|
+
Default value: ','
|
|
54
|
+
Types: str with one character
|
|
55
|
+
Notes:
|
|
56
|
+
* This argument cannot be same as "quotechar" argument.
|
|
57
|
+
* This argument cannot be a newline character.
|
|
58
|
+
* Use a different delimiter if categorial columns in the data contains
|
|
59
|
+
a character same as the delimiter.
|
|
60
|
+
|
|
61
|
+
quotechar:
|
|
62
|
+
Optional Argument.
|
|
63
|
+
Specifies a character that forces input of the user function
|
|
64
|
+
to be quoted using this specified character.
|
|
65
|
+
Using this argument enables the Advanced SQL Engine to
|
|
66
|
+
distinguish between NULL fields and empty strings.
|
|
67
|
+
A string with length zero is quoted, while NULL fields are not.
|
|
68
|
+
Default value: None
|
|
69
|
+
Types: str with one character
|
|
70
|
+
Notes:
|
|
71
|
+
* This argument cannot be same as "delimiter" argument.
|
|
72
|
+
* This argument cannot be a newline character.
|
|
73
|
+
|
|
74
|
+
RETURNS:
|
|
75
|
+
ColumnExpression
|
|
76
|
+
|
|
77
|
+
RAISES:
|
|
78
|
+
TeradataMLException
|
|
79
|
+
|
|
80
|
+
NOTES:
|
|
81
|
+
1. While working on date and time data types one must format these to supported formats.
|
|
82
|
+
(See Requisite Input and Output Structures in Open Analytics Framework for more details.)
|
|
83
|
+
2. Required packages to run the user defined function must be installed in remote user
|
|
84
|
+
environment using install_lib function Of UserEnv class. Import statements of these
|
|
85
|
+
packages should be inside the user defined function itself.
|
|
86
|
+
3. One can't call a regular function defined outside the udf from the user defined function.
|
|
87
|
+
The function definition and call must be inside the udf. Look at Example 9 to understand more.
|
|
88
|
+
|
|
89
|
+
EXAMPLES:
|
|
90
|
+
# Load the data to run the example.
|
|
91
|
+
>>> load_example_data("dataframe", "sales")
|
|
92
|
+
|
|
93
|
+
# Create a DataFrame on 'sales' table.
|
|
94
|
+
>>> df = DataFrame("sales")
|
|
95
|
+
>>> df
|
|
96
|
+
Feb Jan Mar Apr datetime
|
|
97
|
+
accounts
|
|
98
|
+
Yellow Inc 90.0 NaN NaN NaN 04/01/2017
|
|
99
|
+
Jones LLC 200.0 150.0 140.0 180.0 04/01/2017
|
|
100
|
+
Red Inc 200.0 150.0 140.0 NaN 04/01/2017
|
|
101
|
+
Alpha Co 210.0 200.0 215.0 250.0 04/01/2017
|
|
102
|
+
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
|
|
103
|
+
Orange Inc 210.0 NaN NaN 250.0 04/01/2017
|
|
104
|
+
|
|
105
|
+
# Example 1: Create the user defined function to get the values in 'accounts'
|
|
106
|
+
# to upper case without passing returns argument.
|
|
107
|
+
>>> from teradataml.dataframe.functions import udf
|
|
108
|
+
>>> @udf
|
|
109
|
+
... def to_upper(s):
|
|
110
|
+
... if s is not None:
|
|
111
|
+
... return s.upper()
|
|
112
|
+
>>>
|
|
113
|
+
# Assign the Column Expression returned by user defined function
|
|
114
|
+
# to the DataFrame.
|
|
115
|
+
>>> res = df.assign(upper_stats = to_upper('accounts'))
|
|
116
|
+
>>> res
|
|
117
|
+
Feb Jan Mar Apr datetime upper_stats
|
|
118
|
+
accounts
|
|
119
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
|
|
120
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
|
|
121
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
|
|
122
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
|
|
123
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
|
|
124
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
|
|
125
|
+
>>>
|
|
126
|
+
|
|
127
|
+
# Example 2: Create a user defined function to add length of string values in column
|
|
128
|
+
# 'accounts' with column 'Feb' and store the result in Integer type column.
|
|
129
|
+
>>> from teradatasqlalchemy.types import INTEGER
|
|
130
|
+
>>> @udf(returns=INTEGER())
|
|
131
|
+
... def sum(x, y):
|
|
132
|
+
... return len(x)+y
|
|
133
|
+
>>>
|
|
134
|
+
# Assign the Column Expression returned by user defined function
|
|
135
|
+
# to the DataFrame.
|
|
136
|
+
>>> res = df.assign(len_sum = sum('accounts', 'Feb'))
|
|
137
|
+
>>> res
|
|
138
|
+
Feb Jan Mar Apr datetime len_sum
|
|
139
|
+
accounts
|
|
140
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 218
|
|
141
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 98
|
|
142
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 100
|
|
143
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 209
|
|
144
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 220
|
|
145
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 207
|
|
146
|
+
>>>
|
|
147
|
+
|
|
148
|
+
# Example 3: Create a function to get the values in 'accounts' to upper case
|
|
149
|
+
# and pass it to udf as parameter to create a user defined function.
|
|
150
|
+
>>> from teradataml.dataframe.functions import udf
|
|
151
|
+
>>> def to_upper(s):
|
|
152
|
+
... if s is not None:
|
|
153
|
+
... return s.upper()
|
|
154
|
+
>>> upper_case = udf(to_upper)
|
|
155
|
+
>>>
|
|
156
|
+
# Assign the Column Expression returned by user defined function
|
|
157
|
+
# to the DataFrame.
|
|
158
|
+
>>> res = df.assign(upper_stats = upper_case('accounts'))
|
|
159
|
+
>>> res
|
|
160
|
+
Feb Jan Mar Apr datetime upper_stats
|
|
161
|
+
accounts
|
|
162
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
|
|
163
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
|
|
164
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
|
|
165
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
|
|
166
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
|
|
167
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
|
|
168
|
+
>>>
|
|
169
|
+
|
|
170
|
+
# Example 4: Create a user defined function to add 4 to the 'datetime' column
|
|
171
|
+
# and store the result in DATE type column.
|
|
172
|
+
>>> from teradatasqlalchemy.types import DATE
|
|
173
|
+
>>> import datetime
|
|
174
|
+
>>> @udf(returns=DATE())
|
|
175
|
+
... def add_date(x, y):
|
|
176
|
+
... return (datetime.datetime.strptime(x, "%y/%m/%d")+datetime.timedelta(y)).strftime("%y/%m/%d")
|
|
177
|
+
>>>
|
|
178
|
+
# Assign the Column Expression returned by user defined function
|
|
179
|
+
# to the DataFrame.
|
|
180
|
+
>>> res = df.assign(new_date = add_date('datetime', 4))
|
|
181
|
+
>>> res
|
|
182
|
+
Feb Jan Mar Apr datetime new_date
|
|
183
|
+
accounts
|
|
184
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 17/01/08
|
|
185
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 17/01/08
|
|
186
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 17/01/08
|
|
187
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 17/01/08
|
|
188
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 17/01/08
|
|
189
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 17/01/08
|
|
190
|
+
|
|
191
|
+
# Example 5: Create a user defined function to add 4 to the 'datetime' column
|
|
192
|
+
# without passing returns argument.
|
|
193
|
+
>>> from teradatasqlalchemy.types import DATE
|
|
194
|
+
>>> import datetime
|
|
195
|
+
>>> @udf
|
|
196
|
+
... def add_date(x, y):
|
|
197
|
+
... return (datetime.datetime.strptime(x, "%y/%m/%d")+datetime.timedelta(y))
|
|
198
|
+
>>>
|
|
199
|
+
# Assign the Column Expression returned by user defined function
|
|
200
|
+
# to the DataFrame.
|
|
201
|
+
>>> res = df.assign(new_date = add_date('datetime', 4))
|
|
202
|
+
>>> res
|
|
203
|
+
Feb Jan Mar Apr datetime new_date
|
|
204
|
+
accounts
|
|
205
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 2017-01-08 00:00:00
|
|
206
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 2017-01-08 00:00:00
|
|
207
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 2017-01-08 00:00:00
|
|
208
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 2017-01-08 00:00:00
|
|
209
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 2017-01-08 00:00:00
|
|
210
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2017-01-08 00:00:00
|
|
211
|
+
|
|
212
|
+
# Example 6: Create a two user defined function to 'to_upper' and 'sum',
|
|
213
|
+
# 'to_upper' to get the values in 'accounts' to upper case and
|
|
214
|
+
# 'sum' to add length of string values in column 'accounts'
|
|
215
|
+
# with column 'Feb' and store the result in Integer type column.
|
|
216
|
+
>>> @udf
|
|
217
|
+
... def to_upper(s):
|
|
218
|
+
... if s is not None:
|
|
219
|
+
... return s.upper()
|
|
220
|
+
>>>
|
|
221
|
+
>>> from teradatasqlalchemy.types import INTEGER
|
|
222
|
+
>>> @udf(returns=INTEGER())
|
|
223
|
+
... def sum(x, y):
|
|
224
|
+
... return len(x)+y
|
|
225
|
+
>>>
|
|
226
|
+
# Assign the both Column Expression returned by user defined functions
|
|
227
|
+
# to the DataFrame.
|
|
228
|
+
>>> res = df.assign(upper_stats = to_upper('accounts'), len_sum = sum('accounts', 'Feb'))
|
|
229
|
+
>>> res
|
|
230
|
+
Feb Jan Mar Apr datetime upper_stats len_sum
|
|
231
|
+
accounts
|
|
232
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC 98
|
|
233
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC 207
|
|
234
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC 100
|
|
235
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC 209
|
|
236
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC 220
|
|
237
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO 218
|
|
238
|
+
>>>
|
|
239
|
+
|
|
240
|
+
# Example 7: Convert the values is 'accounts' column to upper case using a user
|
|
241
|
+
# defined function on Vantage Cloud Lake.
|
|
242
|
+
# Create a Python 3.10.5 environment with given name and description in Vantage.
|
|
243
|
+
>>> env = create_env('test_udf', 'python_3.10.5', 'Test environment for UDF')
|
|
244
|
+
User environment 'test_udf' created.
|
|
245
|
+
>>>
|
|
246
|
+
# Create a user defined functions to 'to_upper' to get the values in upper case
|
|
247
|
+
# and pass the user env to run it on.
|
|
248
|
+
>>> from teradataml.dataframe.functions import udf
|
|
249
|
+
>>> @udf(env_name = env)
|
|
250
|
+
... def to_upper(s):
|
|
251
|
+
... if s is not None:
|
|
252
|
+
... return s.upper()
|
|
253
|
+
>>>
|
|
254
|
+
# Assign the Column Expression returned by user defined function
|
|
255
|
+
# to the DataFrame.
|
|
256
|
+
>>> df.assign(upper_stats = to_upper('accounts'))
|
|
257
|
+
Feb Jan Mar Apr datetime upper_stats
|
|
258
|
+
accounts
|
|
259
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
|
|
260
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
|
|
261
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
|
|
262
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
|
|
263
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
|
|
264
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
|
|
265
|
+
|
|
266
|
+
# Example 8: Create a user defined function to add 4 to the 'datetime' column
|
|
267
|
+
# and store the result in DATE type column on Vantage Cloud Lake.
|
|
268
|
+
>>> from teradatasqlalchemy.types import DATE
|
|
269
|
+
>>> import datetime
|
|
270
|
+
>>> @udf(returns=DATE())
|
|
271
|
+
... def add_date(x, y):
|
|
272
|
+
... return (datetime.datetime.strptime(x, "%Y-%m-%d")+datetime.timedelta(y)).strftime("%Y-%m-%d")
|
|
273
|
+
>>>
|
|
274
|
+
# Assign the Column Expression returned by user defined function
|
|
275
|
+
# to the DataFrame.
|
|
276
|
+
>>> res = df.assign(new_date = add_date('datetime', 4))
|
|
277
|
+
>>> res
|
|
278
|
+
Feb Jan Mar Apr datetime new_date
|
|
279
|
+
accounts
|
|
280
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 17/01/08
|
|
281
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 17/01/08
|
|
282
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 17/01/08
|
|
283
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 17/01/08
|
|
284
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 17/01/08
|
|
285
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 17/01/08
|
|
286
|
+
>>>
|
|
287
|
+
|
|
288
|
+
# Example 9: Define a function 'inner_add_date' inside the udf to create a
|
|
289
|
+
# date object by passing year, month, and day and add 1 to that date.
|
|
290
|
+
# Call this function inside the user defined function.
|
|
291
|
+
>>> @udf
|
|
292
|
+
... def add_date(y,m,d):
|
|
293
|
+
... import datetime
|
|
294
|
+
... def inner_add_date(y,m,d):
|
|
295
|
+
... return datetime.date(y,m,d) + datetime.timedelta(1)
|
|
296
|
+
... return inner_add_date(y,m,d)
|
|
297
|
+
|
|
298
|
+
# Assign the Column Expression returned by user defined function
|
|
299
|
+
# to the DataFrame.
|
|
300
|
+
>>> res = df.assign(new_date = add_date(2021, 10, 5))
|
|
301
|
+
>>> res
|
|
302
|
+
Feb Jan Mar Apr datetime new_date
|
|
303
|
+
accounts
|
|
304
|
+
Jones LLC 200.0 150.0 140.0 180.0 17/01/04 2021-10-06
|
|
305
|
+
Blue Inc 90.0 50.0 95.0 101.0 17/01/04 2021-10-06
|
|
306
|
+
Yellow Inc 90.0 NaN NaN NaN 17/01/04 2021-10-06
|
|
307
|
+
Orange Inc 210.0 NaN NaN 250.0 17/01/04 2021-10-06
|
|
308
|
+
Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2021-10-06
|
|
309
|
+
Red Inc 200.0 150.0 140.0 NaN 17/01/04 2021-10-06
|
|
310
|
+
>>>
|
|
311
|
+
"""
|
|
312
|
+
|
|
313
|
+
allowed_datatypes = (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER,
|
|
314
|
+
TIMESTAMP, DATE, TIME, CHAR, VARCHAR, CLOB, BYTE, VARBYTE,
|
|
315
|
+
BLOB, PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP,
|
|
316
|
+
INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
|
|
317
|
+
INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
318
|
+
INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
|
|
319
|
+
INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
|
|
320
|
+
INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
# Validate datatypes in returns.
|
|
324
|
+
_Validators._validate_function_arguments([["returns", returns, False, allowed_datatypes]])
|
|
325
|
+
|
|
326
|
+
# Notation: @udf(returnType=INTEGER())
|
|
327
|
+
if user_function is None:
|
|
328
|
+
def wrapper(f):
|
|
329
|
+
def func_(*args):
|
|
330
|
+
return _SQLColumnExpression(expression=None, udf=f, udf_type=returns, udf_args=args,\
|
|
331
|
+
env_name=env_name, delimiter=delimiter, quotechar=quotechar)
|
|
332
|
+
return func_
|
|
333
|
+
return wrapper
|
|
334
|
+
# Notation: @udf
|
|
335
|
+
else:
|
|
336
|
+
def func_(*args):
|
|
337
|
+
return _SQLColumnExpression(expression=None, udf=user_function, udf_type=returns, udf_args=args,\
|
|
338
|
+
env_name=env_name, delimiter=delimiter, quotechar=quotechar)
|
|
339
|
+
return func_
|
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Unpublished work.
|
|
3
|
+
Copyright (c) 2021 by Teradata Corporation. All rights reserved.
|
|
4
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
|
|
6
|
+
Primary Owner: pradeep.garre@teradata.com
|
|
7
|
+
Secondary Owner: PankajVinod.Purandare@teradata.com
|
|
8
|
+
|
|
9
|
+
This file implements the Row for teradataml DataFrame.
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class _Row:
|
|
14
|
+
""" Class for representing a row in teradataml DataFrame. """
|
|
15
|
+
def __init__(self, columns, values):
|
|
16
|
+
"""
|
|
17
|
+
DESCRIPTION:
|
|
18
|
+
Constructor for creating Row object.
|
|
19
|
+
|
|
20
|
+
PARAMETERS:
|
|
21
|
+
columns:
|
|
22
|
+
Required Argument.
|
|
23
|
+
Specifies the name(s) of the columns for the corresponding
|
|
24
|
+
teradataml DataFrame.
|
|
25
|
+
Types: list
|
|
26
|
+
|
|
27
|
+
values:
|
|
28
|
+
Required Argument.
|
|
29
|
+
Specifies the corresponding values for the columns.
|
|
30
|
+
Types: list
|
|
31
|
+
|
|
32
|
+
RAISES:
|
|
33
|
+
None
|
|
34
|
+
|
|
35
|
+
EXAMPLES:
|
|
36
|
+
|
|
37
|
+
# Example 1: Create a Row for columns 'a', 'b', 'c' and corresponding values 'p', 'q', 'r'.
|
|
38
|
+
>>> from teradataml.utils.utils import Row
|
|
39
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
40
|
+
"""
|
|
41
|
+
self.__data = dict(zip(columns, values))
|
|
42
|
+
self.__values = values
|
|
43
|
+
|
|
44
|
+
# Create a function _asdict similar to namedtuple._asdict
|
|
45
|
+
self._asdict = lambda: self.__data
|
|
46
|
+
|
|
47
|
+
def __getattr__(self, item):
|
|
48
|
+
"""
|
|
49
|
+
DESCRIPTION:
|
|
50
|
+
Retrieve the corresponding value for column
|
|
51
|
+
using dot(.) notation.
|
|
52
|
+
|
|
53
|
+
PARAMETERS:
|
|
54
|
+
item:
|
|
55
|
+
Required Argument.
|
|
56
|
+
Specifies name of the column.
|
|
57
|
+
Types: str
|
|
58
|
+
|
|
59
|
+
RETURNS:
|
|
60
|
+
str OR int OR float OR datetime
|
|
61
|
+
|
|
62
|
+
EXAMPLES:
|
|
63
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
64
|
+
>>> row.a
|
|
65
|
+
"""
|
|
66
|
+
# Check if item is a valid column or not. If yes, proceed. Otherwise raise error.
|
|
67
|
+
if item in self.__data:
|
|
68
|
+
return self.__data[item]
|
|
69
|
+
|
|
70
|
+
raise AttributeError("'Row' object has no attribute '{}'".format(item))
|
|
71
|
+
|
|
72
|
+
def __getitem__(self, item):
|
|
73
|
+
"""
|
|
74
|
+
DESCRIPTION:
|
|
75
|
+
Retrieve the corresponding value for column
|
|
76
|
+
using square bracket([]) notation.
|
|
77
|
+
|
|
78
|
+
PARAMETERS:
|
|
79
|
+
item:
|
|
80
|
+
Required Argument.
|
|
81
|
+
Specifies the name or the index of the column.
|
|
82
|
+
Types: str
|
|
83
|
+
|
|
84
|
+
RETURNS:
|
|
85
|
+
str OR int OR float OR datetime
|
|
86
|
+
|
|
87
|
+
EXAMPLES:
|
|
88
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
89
|
+
>>> row['a']
|
|
90
|
+
'p'
|
|
91
|
+
>>> row[1]
|
|
92
|
+
'q'
|
|
93
|
+
"""
|
|
94
|
+
# User's can retrieve the value of a column either by using name of the
|
|
95
|
+
# column or by index of column position.
|
|
96
|
+
if isinstance(item, int):
|
|
97
|
+
|
|
98
|
+
# Check if sourced index is valid or not.
|
|
99
|
+
if item >= len(self.__values):
|
|
100
|
+
raise IndexError("tuple index out of range")
|
|
101
|
+
|
|
102
|
+
return self.__values[item]
|
|
103
|
+
|
|
104
|
+
# If it is a string, retrieve it from here. Otherwise, raise error.
|
|
105
|
+
if item in self.__data:
|
|
106
|
+
return self.__data[item]
|
|
107
|
+
|
|
108
|
+
raise AttributeError("'Row' object has no attribute '{}'".format(item))
|
|
109
|
+
|
|
110
|
+
def __dir__(self):
|
|
111
|
+
"""
|
|
112
|
+
DESCRIPTION:
|
|
113
|
+
Provide the suggestions for column names.
|
|
114
|
+
|
|
115
|
+
PARAMETERS:
|
|
116
|
+
None
|
|
117
|
+
|
|
118
|
+
RETURNS:
|
|
119
|
+
tuple
|
|
120
|
+
|
|
121
|
+
EXAMPLES:
|
|
122
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
123
|
+
>>> dir(row)
|
|
124
|
+
"""
|
|
125
|
+
return tuple(col for col in self.__data)
|
|
126
|
+
|
|
127
|
+
def __str__(self):
|
|
128
|
+
"""
|
|
129
|
+
DESCRIPTION:
|
|
130
|
+
Returns the string representation of _Row object.
|
|
131
|
+
|
|
132
|
+
PARAMETERS:
|
|
133
|
+
None
|
|
134
|
+
|
|
135
|
+
RETURNS:
|
|
136
|
+
tuple
|
|
137
|
+
|
|
138
|
+
EXAMPLES:
|
|
139
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
140
|
+
>>> print(row)
|
|
141
|
+
"""
|
|
142
|
+
return self.__repr__()
|
|
143
|
+
|
|
144
|
+
def __repr__(self):
|
|
145
|
+
"""
|
|
146
|
+
DESCRIPTION:
|
|
147
|
+
Returns the string representation of _Row object.
|
|
148
|
+
|
|
149
|
+
PARAMETERS:
|
|
150
|
+
None
|
|
151
|
+
|
|
152
|
+
RETURNS:
|
|
153
|
+
tuple
|
|
154
|
+
|
|
155
|
+
EXAMPLES:
|
|
156
|
+
>>> row = Row(columns=['a', 'b', 'c'], values=['p', 'q', 'r'])
|
|
157
|
+
>>> print(row)
|
|
158
|
+
"""
|
|
159
|
+
columns_values = ", ".join(("{}={}".format(col, repr(val)) for col, val in self.__data.items()))
|
|
160
|
+
return "Row({})".format(columns_values)
|
teradataml/dataframe/setop.py
CHANGED
|
@@ -24,7 +24,7 @@ from teradatasqlalchemy.dialect import dialect as td_dialect, TeradataTypeCompil
|
|
|
24
24
|
from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
|
|
25
25
|
from teradatasql import OperationalError
|
|
26
26
|
|
|
27
|
-
from
|
|
27
|
+
from teradataml.telemetry_utils.queryband import collect_queryband
|
|
28
28
|
|
|
29
29
|
module = importlib.import_module("teradataml")
|
|
30
30
|
|
|
@@ -963,7 +963,7 @@ def td_minus(df_list, allow_duplicates=True):
|
|
|
963
963
|
awu_matrix = []
|
|
964
964
|
awu_matrix.append(["df_list", df_list, False, (list)])
|
|
965
965
|
awu_matrix.append(["allow_duplicates", allow_duplicates, False, (bool)])
|
|
966
|
-
setop_type = 'td_except' if (inspect.stack()[
|
|
966
|
+
setop_type = 'td_except' if (inspect.stack()[3][3] and inspect.stack()[3][3] == 'td_except') else 'td_minus'
|
|
967
967
|
operation = 'minus'
|
|
968
968
|
|
|
969
969
|
# Validate Set operator arguments
|