tensorcircuit-nightly 1.2.0.dev20250326__py3-none-any.whl → 1.4.0.dev20251128__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +100 -4
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +157 -98
- tensorcircuit/circuit.py +115 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +105 -23
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +733 -153
- tensorcircuit/fgs.py +254 -73
- tensorcircuit/gates.py +66 -22
- tensorcircuit/interfaces/jax.py +5 -3
- tensorcircuit/interfaces/tensortrans.py +6 -2
- tensorcircuit/interfaces/torch.py +14 -4
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +154 -65
- tensorcircuit/quantum.py +698 -134
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +131 -18
- tensorcircuit/results/readout_mitigation.py +4 -1
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +29 -17
- tensorcircuit/templates/__init__.py +2 -0
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +174 -0
- tensorcircuit/templates/lattice.py +1789 -0
- tensorcircuit/timeevol.py +896 -0
- tensorcircuit/translation.py +10 -3
- tensorcircuit/utils.py +7 -0
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/METADATA +66 -29
- tensorcircuit_nightly-1.4.0.dev20251128.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/WHEEL +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.2.0.dev20250326.dist-info/RECORD +0 -118
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1699
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -310
- tests/test_gates.py +0 -156
- tests/test_interfaces.py +0 -562
- tests/test_keras.py +0 -160
- tests/test_miscs.py +0 -282
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -380
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -217
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/licenses/LICENSE +0 -0
tests/test_interfaces.py
DELETED
|
@@ -1,562 +0,0 @@
|
|
|
1
|
-
# pylint: disable=invalid-name
|
|
2
|
-
|
|
3
|
-
import os
|
|
4
|
-
import sys
|
|
5
|
-
from functools import partial
|
|
6
|
-
import pytest
|
|
7
|
-
from pytest_lazyfixture import lazy_fixture as lf
|
|
8
|
-
from scipy import optimize
|
|
9
|
-
import tensorflow as tf
|
|
10
|
-
import jax
|
|
11
|
-
from jax import numpy as jnp
|
|
12
|
-
|
|
13
|
-
thisfile = os.path.abspath(__file__)
|
|
14
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
15
|
-
|
|
16
|
-
sys.path.insert(0, modulepath)
|
|
17
|
-
|
|
18
|
-
try:
|
|
19
|
-
import torch
|
|
20
|
-
|
|
21
|
-
is_torch = True
|
|
22
|
-
except ImportError:
|
|
23
|
-
is_torch = False
|
|
24
|
-
|
|
25
|
-
import numpy as np
|
|
26
|
-
import tensorcircuit as tc
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
@pytest.mark.skipif(is_torch is False, reason="torch not installed")
|
|
30
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
31
|
-
def test_torch_interface(backend):
|
|
32
|
-
n = 4
|
|
33
|
-
|
|
34
|
-
def f(param):
|
|
35
|
-
c = tc.Circuit(n)
|
|
36
|
-
c = tc.templates.blocks.example_block(c, param)
|
|
37
|
-
loss = c.expectation(
|
|
38
|
-
[
|
|
39
|
-
tc.gates.x(),
|
|
40
|
-
[
|
|
41
|
-
1,
|
|
42
|
-
],
|
|
43
|
-
]
|
|
44
|
-
)
|
|
45
|
-
return tc.backend.real(loss)
|
|
46
|
-
|
|
47
|
-
f_jit = tc.backend.jit(f)
|
|
48
|
-
|
|
49
|
-
f_jit_torch = tc.interfaces.torch_interface(f_jit, enable_dlpack=True)
|
|
50
|
-
|
|
51
|
-
param = torch.ones([4, n], requires_grad=True)
|
|
52
|
-
l = f_jit_torch(param)
|
|
53
|
-
l = l**2
|
|
54
|
-
l.backward()
|
|
55
|
-
|
|
56
|
-
pg = param.grad
|
|
57
|
-
np.testing.assert_allclose(pg.shape, [4, n])
|
|
58
|
-
np.testing.assert_allclose(pg[0, 1], -2.146e-3, atol=1e-5)
|
|
59
|
-
|
|
60
|
-
def f2(paramzz, paramx):
|
|
61
|
-
c = tc.Circuit(n)
|
|
62
|
-
for i in range(n):
|
|
63
|
-
c.H(i)
|
|
64
|
-
for j in range(2):
|
|
65
|
-
for i in range(n - 1):
|
|
66
|
-
c.exp1(i, i + 1, unitary=tc.gates._zz_matrix, theta=paramzz[j, i])
|
|
67
|
-
for i in range(n):
|
|
68
|
-
c.rx(i, theta=paramx[j, i])
|
|
69
|
-
loss1 = c.expectation(
|
|
70
|
-
[
|
|
71
|
-
tc.gates.x(),
|
|
72
|
-
[
|
|
73
|
-
1,
|
|
74
|
-
],
|
|
75
|
-
]
|
|
76
|
-
)
|
|
77
|
-
loss2 = c.expectation(
|
|
78
|
-
[
|
|
79
|
-
tc.gates.x(),
|
|
80
|
-
[
|
|
81
|
-
2,
|
|
82
|
-
],
|
|
83
|
-
]
|
|
84
|
-
)
|
|
85
|
-
return tc.backend.real(loss1), tc.backend.real(loss2)
|
|
86
|
-
|
|
87
|
-
f2_torch = tc.interfaces.torch_interface(f2, jit=True, enable_dlpack=True)
|
|
88
|
-
|
|
89
|
-
paramzz = torch.ones([2, n], requires_grad=True)
|
|
90
|
-
paramx = torch.ones([2, n], requires_grad=True)
|
|
91
|
-
|
|
92
|
-
l1, l2 = f2_torch(paramzz, paramx)
|
|
93
|
-
l = l1 - l2
|
|
94
|
-
l.backward()
|
|
95
|
-
|
|
96
|
-
pg = paramzz.grad
|
|
97
|
-
np.testing.assert_allclose(pg.shape, [2, n])
|
|
98
|
-
np.testing.assert_allclose(pg[0, 0], -0.41609, atol=1e-5)
|
|
99
|
-
|
|
100
|
-
def f3(x):
|
|
101
|
-
return tc.backend.real(x**2)
|
|
102
|
-
|
|
103
|
-
f3_torch = tc.interfaces.torch_interface(f3)
|
|
104
|
-
param3 = torch.ones([2], dtype=torch.complex64, requires_grad=True)
|
|
105
|
-
l3 = f3_torch(param3)
|
|
106
|
-
l3 = torch.sum(l3)
|
|
107
|
-
l3.backward()
|
|
108
|
-
pg = param3.grad
|
|
109
|
-
np.testing.assert_allclose(pg, 2 * np.ones([2]).astype(np.complex64), atol=1e-5)
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
@pytest.mark.skipif(is_torch is False, reason="torch not installed")
|
|
113
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
114
|
-
def test_torch_interface_kws(backend):
|
|
115
|
-
def f(param, n):
|
|
116
|
-
c = tc.Circuit(n)
|
|
117
|
-
c = tc.templates.blocks.example_block(c, param)
|
|
118
|
-
loss = c.expectation(
|
|
119
|
-
[
|
|
120
|
-
tc.gates.x(),
|
|
121
|
-
[
|
|
122
|
-
1,
|
|
123
|
-
],
|
|
124
|
-
]
|
|
125
|
-
)
|
|
126
|
-
return tc.backend.real(loss)
|
|
127
|
-
|
|
128
|
-
f_jit_torch = tc.interfaces.torch_interface_kws(f, jit=True, enable_dlpack=True)
|
|
129
|
-
|
|
130
|
-
param = torch.ones([4, 4], requires_grad=True)
|
|
131
|
-
l = f_jit_torch(param, n=4)
|
|
132
|
-
l = l**2
|
|
133
|
-
l.backward()
|
|
134
|
-
|
|
135
|
-
pg = param.grad
|
|
136
|
-
np.testing.assert_allclose(pg.shape, [4, 4])
|
|
137
|
-
np.testing.assert_allclose(pg[0, 1], -2.146e-3, atol=1e-5)
|
|
138
|
-
|
|
139
|
-
def f2(paramzz, paramx, n, nlayer):
|
|
140
|
-
c = tc.Circuit(n)
|
|
141
|
-
for i in range(n):
|
|
142
|
-
c.H(i)
|
|
143
|
-
for j in range(nlayer): # 2
|
|
144
|
-
for i in range(n - 1):
|
|
145
|
-
c.exp1(i, i + 1, unitary=tc.gates._zz_matrix, theta=paramzz[j, i])
|
|
146
|
-
for i in range(n):
|
|
147
|
-
c.rx(i, theta=paramx[j, i])
|
|
148
|
-
loss1 = c.expectation(
|
|
149
|
-
[
|
|
150
|
-
tc.gates.x(),
|
|
151
|
-
[
|
|
152
|
-
1,
|
|
153
|
-
],
|
|
154
|
-
]
|
|
155
|
-
)
|
|
156
|
-
loss2 = c.expectation(
|
|
157
|
-
[
|
|
158
|
-
tc.gates.x(),
|
|
159
|
-
[
|
|
160
|
-
2,
|
|
161
|
-
],
|
|
162
|
-
]
|
|
163
|
-
)
|
|
164
|
-
return tc.backend.real(loss1), tc.backend.real(loss2)
|
|
165
|
-
|
|
166
|
-
f2_torch = tc.interfaces.torch_interface_kws(f2, jit=True, enable_dlpack=True)
|
|
167
|
-
|
|
168
|
-
paramzz = torch.ones([2, 4], requires_grad=True)
|
|
169
|
-
paramx = torch.ones([2, 4], requires_grad=True)
|
|
170
|
-
|
|
171
|
-
l1, l2 = f2_torch(paramzz, paramx, n=4, nlayer=2)
|
|
172
|
-
l = l1 - l2
|
|
173
|
-
l.backward()
|
|
174
|
-
|
|
175
|
-
pg = paramzz.grad
|
|
176
|
-
np.testing.assert_allclose(pg.shape, [2, 4])
|
|
177
|
-
np.testing.assert_allclose(pg[0, 0], -0.41609, atol=1e-5)
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
@pytest.mark.skipif(is_torch is False, reason="torch not installed")
|
|
181
|
-
@pytest.mark.xfail(
|
|
182
|
-
(int(tf.__version__.split(".")[1]) < 9)
|
|
183
|
-
or (int("".join(jax.__version__.split(".")[1:])) < 314),
|
|
184
|
-
reason="version too low for tf or jax",
|
|
185
|
-
)
|
|
186
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
187
|
-
def test_torch_interface_dlpack_complex(backend):
|
|
188
|
-
def f3(x):
|
|
189
|
-
return tc.backend.real(x**2)
|
|
190
|
-
|
|
191
|
-
f3_torch = tc.interfaces.torch_interface(f3, enable_dlpack=True)
|
|
192
|
-
param3 = torch.ones([2], dtype=torch.complex64, requires_grad=True)
|
|
193
|
-
l3 = f3_torch(param3)
|
|
194
|
-
l3 = torch.sum(l3)
|
|
195
|
-
l3.backward()
|
|
196
|
-
pg = param3.grad
|
|
197
|
-
np.testing.assert_allclose(pg, 2 * np.ones([2]).astype(np.complex64), atol=1e-5)
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
@pytest.mark.skipif(is_torch is False, reason="torch not installed")
|
|
201
|
-
@pytest.mark.xfail(reason="see comment link below")
|
|
202
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
203
|
-
def test_torch_interface_pytree(backend):
|
|
204
|
-
# pytree cannot support in pytorch autograd function...
|
|
205
|
-
# https://github.com/pytorch/pytorch/issues/55509
|
|
206
|
-
def f4(x):
|
|
207
|
-
return tc.backend.sum(x["a"] ** 2), tc.backend.sum(x["b"] ** 3)
|
|
208
|
-
|
|
209
|
-
f4_torch = tc.interfaces.torch_interface(f4, jit=False)
|
|
210
|
-
param4 = {
|
|
211
|
-
"a": torch.ones([2], requires_grad=True),
|
|
212
|
-
"b": torch.ones([2], requires_grad=True),
|
|
213
|
-
}
|
|
214
|
-
|
|
215
|
-
def f4_post(x):
|
|
216
|
-
r1, r2 = f4_torch(param4)
|
|
217
|
-
l4 = r1 + r2
|
|
218
|
-
return l4
|
|
219
|
-
|
|
220
|
-
pg = tc.get_backend("pytorch").grad(f4_post)(param4)
|
|
221
|
-
np.testing.assert_allclose(
|
|
222
|
-
pg["a"], 2 * np.ones([2]).astype(np.complex64), atol=1e-5
|
|
223
|
-
)
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
@pytest.mark.parametrize("backend", [lf("jaxb")])
|
|
227
|
-
def test_tf_interface(backend):
|
|
228
|
-
def f0(params):
|
|
229
|
-
c = tc.Circuit(1)
|
|
230
|
-
c.rx(0, theta=params[0])
|
|
231
|
-
c.ry(0, theta=params[1])
|
|
232
|
-
return tc.backend.real(c.expectation([tc.gates.z(), [0]]))
|
|
233
|
-
|
|
234
|
-
f = tc.interfaces.tf_interface(f0, ydtype=tf.float32, jit=True, enable_dlpack=True)
|
|
235
|
-
|
|
236
|
-
tfb = tc.get_backend("tensorflow")
|
|
237
|
-
grads = tfb.jit(tfb.grad(f))(tfb.ones([2], dtype="float32"))
|
|
238
|
-
np.testing.assert_allclose(
|
|
239
|
-
tfb.real(grads), np.array([-0.45464867, -0.45464873]), atol=1e-5
|
|
240
|
-
)
|
|
241
|
-
|
|
242
|
-
f = tc.interfaces.tf_interface(f0, ydtype="float32", jit=False)
|
|
243
|
-
|
|
244
|
-
grads = tfb.grad(f)(tf.ones([2]))
|
|
245
|
-
np.testing.assert_allclose(grads, np.array([-0.45464867, -0.45464873]), atol=1e-5)
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
@pytest.mark.parametrize("backend", [lf("jaxb")])
|
|
249
|
-
def test_tf_interface_2(backend):
|
|
250
|
-
def f1(a, b):
|
|
251
|
-
sa, sb = tc.backend.sum(a), tc.backend.sum(b)
|
|
252
|
-
return sa + sb, sa - sb
|
|
253
|
-
|
|
254
|
-
f = tc.interfaces.tf_interface(f1, ydtype=["float32", "float32"], jit=True)
|
|
255
|
-
|
|
256
|
-
def f_post(a, b):
|
|
257
|
-
p, m = f(a, b)
|
|
258
|
-
return p + m
|
|
259
|
-
|
|
260
|
-
tfb = tc.get_backend("tensorflow")
|
|
261
|
-
|
|
262
|
-
grads = tfb.jit(tfb.grad(f_post))(
|
|
263
|
-
tf.ones([2], dtype=tf.float32), tf.ones([2], dtype=tf.float32)
|
|
264
|
-
)
|
|
265
|
-
|
|
266
|
-
np.testing.assert_allclose(grads, 2 * np.ones([2]), atol=1e-5)
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
@pytest.mark.parametrize("backend", [lf("jaxb")])
|
|
270
|
-
def test_tf_interface_3(backend, highp):
|
|
271
|
-
def f1(a, b):
|
|
272
|
-
sa, sb = tc.backend.sum(a), tc.backend.sum(b)
|
|
273
|
-
return sa + sb
|
|
274
|
-
|
|
275
|
-
f = tc.interfaces.tf_interface(f1, ydtype="float64", jit=True)
|
|
276
|
-
|
|
277
|
-
tfb = tc.get_backend("tensorflow")
|
|
278
|
-
|
|
279
|
-
grads = tfb.jit(tfb.grad(f))(
|
|
280
|
-
tf.ones([2], dtype=tf.float64), tf.ones([2], dtype=tf.float64)
|
|
281
|
-
)
|
|
282
|
-
np.testing.assert_allclose(grads, np.ones([2]), atol=1e-5)
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
286
|
-
def test_scipy_interface(backend):
|
|
287
|
-
n = 3
|
|
288
|
-
|
|
289
|
-
def f(param):
|
|
290
|
-
c = tc.Circuit(n)
|
|
291
|
-
for i in range(n):
|
|
292
|
-
c.rx(i, theta=param[0, i])
|
|
293
|
-
c.rz(i, theta=param[1, i])
|
|
294
|
-
loss = c.expectation(
|
|
295
|
-
[
|
|
296
|
-
tc.gates.y(),
|
|
297
|
-
[
|
|
298
|
-
0,
|
|
299
|
-
],
|
|
300
|
-
]
|
|
301
|
-
)
|
|
302
|
-
return tc.backend.real(loss)
|
|
303
|
-
|
|
304
|
-
if tc.backend.name != "numpy":
|
|
305
|
-
f_scipy = tc.interfaces.scipy_optimize_interface(f, shape=[2, n])
|
|
306
|
-
r = optimize.minimize(f_scipy, np.zeros([2 * n]), method="L-BFGS-B", jac=True)
|
|
307
|
-
# L-BFGS-B may has issue with float32
|
|
308
|
-
# see: https://github.com/scipy/scipy/issues/5832
|
|
309
|
-
np.testing.assert_allclose(r["fun"], -1.0, atol=1e-5)
|
|
310
|
-
|
|
311
|
-
f_scipy = tc.interfaces.scipy_optimize_interface(f, shape=[2, n], gradient=False)
|
|
312
|
-
r = optimize.minimize(f_scipy, np.zeros([2 * n]), method="COBYLA")
|
|
313
|
-
np.testing.assert_allclose(r["fun"], -1.0, atol=1e-5)
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
@pytest.mark.parametrize("backend", [lf("torchb"), lf("tfb"), lf("jaxb")])
|
|
317
|
-
def test_numpy_interface(backend):
|
|
318
|
-
def f(params, n):
|
|
319
|
-
c = tc.Circuit(n)
|
|
320
|
-
for i in range(n):
|
|
321
|
-
c.rx(i, theta=params[i])
|
|
322
|
-
for i in range(n - 1):
|
|
323
|
-
c.cnot(i, i + 1)
|
|
324
|
-
r = tc.backend.real(c.expectation_ps(z=[n - 1]))
|
|
325
|
-
return r
|
|
326
|
-
|
|
327
|
-
n = 3
|
|
328
|
-
f_np = tc.interfaces.numpy_interface(f, jit=False)
|
|
329
|
-
r = f_np(np.ones([n]), n)
|
|
330
|
-
np.testing.assert_allclose(r, 0.1577285, atol=1e-5)
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
334
|
-
def test_args_transformation(backend):
|
|
335
|
-
ans = tc.interfaces.general_args_to_numpy(
|
|
336
|
-
(
|
|
337
|
-
tc.backend.ones([2]),
|
|
338
|
-
{
|
|
339
|
-
"a": tc.get_backend("tensorflow").ones([]),
|
|
340
|
-
"b": [tc.get_backend("numpy").zeros([2, 1])],
|
|
341
|
-
},
|
|
342
|
-
)
|
|
343
|
-
)
|
|
344
|
-
print(ans)
|
|
345
|
-
np.testing.assert_allclose(ans[1]["b"][0], np.zeros([2, 1], dtype=np.complex64))
|
|
346
|
-
ans1 = tc.interfaces.numpy_args_to_backend(
|
|
347
|
-
ans, target_backend="jax", dtype="float32"
|
|
348
|
-
)
|
|
349
|
-
print(ans1[1]["a"].dtype)
|
|
350
|
-
ans1 = tc.interfaces.numpy_args_to_backend(
|
|
351
|
-
ans,
|
|
352
|
-
target_backend="jax",
|
|
353
|
-
dtype=("complex64", {"a": "float32", "b": ["complex64"]}),
|
|
354
|
-
)
|
|
355
|
-
print(ans1[1]["a"].dtype)
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
359
|
-
def test_dlpack_transformation(backend):
|
|
360
|
-
blist = ["tensorflow", "jax"]
|
|
361
|
-
if is_torch is True:
|
|
362
|
-
blist.append("pytorch")
|
|
363
|
-
for b in blist:
|
|
364
|
-
ans = tc.interfaces.general_args_to_backend(
|
|
365
|
-
args=tc.backend.ones([2], dtype="float32"),
|
|
366
|
-
target_backend=b,
|
|
367
|
-
enable_dlpack=True,
|
|
368
|
-
)
|
|
369
|
-
ans = tc.interfaces.which_backend(ans).device_move(ans, "cpu")
|
|
370
|
-
np.testing.assert_allclose(ans, np.ones([2]))
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
374
|
-
def test_args_to_tensor(backend):
|
|
375
|
-
@partial(
|
|
376
|
-
tc.interfaces.args_to_tensor,
|
|
377
|
-
argnums=[0, 1, 2],
|
|
378
|
-
gate_to_tensor=True,
|
|
379
|
-
qop_to_tensor=True,
|
|
380
|
-
)
|
|
381
|
-
def f(a, b, c, d):
|
|
382
|
-
return a, b, c, d
|
|
383
|
-
|
|
384
|
-
r = f(np.ones([2]), tc.backend.ones([1, 2]), {"a": [tf.zeros([3])]}, np.ones([2]))
|
|
385
|
-
a = r[0]
|
|
386
|
-
b = r[1]
|
|
387
|
-
c = r[2]["a"][0]
|
|
388
|
-
d = r[3]
|
|
389
|
-
assert tc.interfaces.which_backend(a, return_backend=False) == tc.backend.name
|
|
390
|
-
assert tc.interfaces.which_backend(b, return_backend=False) == tc.backend.name
|
|
391
|
-
assert tc.interfaces.which_backend(c, return_backend=False) == tc.backend.name
|
|
392
|
-
assert tc.interfaces.which_backend(d, return_backend=False) == "numpy"
|
|
393
|
-
# print(f([np.ones([2]), np.ones([1])], {"a": np.ones([3])}))
|
|
394
|
-
# print(f([tc.Gate(np.ones([2, 2])), tc.Gate(np.ones([2, 2, 2, 2]))], np.ones([2])))
|
|
395
|
-
|
|
396
|
-
a, b, c, d = f(
|
|
397
|
-
[tc.Gate(np.ones([2, 2])), tc.Gate(np.ones([2, 2, 2, 2]))],
|
|
398
|
-
tc.QuOperator.from_tensor(np.ones([2, 2, 2, 2, 2, 2])),
|
|
399
|
-
np.ones([2, 2, 2, 2]),
|
|
400
|
-
tf.zeros([1, 2]),
|
|
401
|
-
)
|
|
402
|
-
assert tc.interfaces.which_backend(a[0], return_backend=False) == tc.backend.name
|
|
403
|
-
assert tc.backend.shape_tuple(a[1]) == (4, 4)
|
|
404
|
-
assert tc.interfaces.which_backend(b, return_backend=False) == tc.backend.name
|
|
405
|
-
assert tc.interfaces.which_backend(d, return_backend=False) == "tensorflow"
|
|
406
|
-
assert tc.backend.shape_tuple(b) == (8, 8)
|
|
407
|
-
assert tc.backend.shape_tuple(c) == (2, 2, 2, 2)
|
|
408
|
-
|
|
409
|
-
@partial(
|
|
410
|
-
tc.interfaces.args_to_tensor,
|
|
411
|
-
argnums=[0, 1, 2],
|
|
412
|
-
tensor_as_matrix=False,
|
|
413
|
-
gate_to_tensor=True,
|
|
414
|
-
gate_as_matrix=False,
|
|
415
|
-
qop_to_tensor=True,
|
|
416
|
-
qop_as_matrix=False,
|
|
417
|
-
)
|
|
418
|
-
def g(a, b, c):
|
|
419
|
-
return a, b, c
|
|
420
|
-
|
|
421
|
-
a, b, c = g(
|
|
422
|
-
[tc.Gate(np.ones([2, 2])), tc.Gate(np.ones([2, 2, 2, 2]))],
|
|
423
|
-
tc.QuOperator.from_tensor(np.ones([2, 2, 2, 2, 2, 2])),
|
|
424
|
-
np.ones([2, 2, 2, 2]),
|
|
425
|
-
)
|
|
426
|
-
|
|
427
|
-
assert tc.interfaces.which_backend(a[0], return_backend=False) == tc.backend.name
|
|
428
|
-
assert tc.backend.shape_tuple(a[1]) == (2, 2, 2, 2)
|
|
429
|
-
assert tc.backend.shape_tuple(b.eval()) == (2, 2, 2, 2, 2, 2)
|
|
430
|
-
assert tc.backend.shape_tuple(c) == (2, 2, 2, 2)
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
def test_jax_interface_basic(tfb):
|
|
434
|
-
|
|
435
|
-
def f(params):
|
|
436
|
-
c = tc.Circuit(1)
|
|
437
|
-
c.rx(0, theta=params[0])
|
|
438
|
-
c.ry(0, theta=params[1])
|
|
439
|
-
return tc.backend.real(c.expectation_ps(z=[0]))
|
|
440
|
-
|
|
441
|
-
f_jax = tc.interfaces.jax_interface(f, jit=True)
|
|
442
|
-
params = jnp.ones(2)
|
|
443
|
-
|
|
444
|
-
# Test forward pass
|
|
445
|
-
val = f_jax(params)
|
|
446
|
-
assert isinstance(val, jnp.ndarray)
|
|
447
|
-
np.testing.assert_allclose(val, 0.291927, atol=1e-5)
|
|
448
|
-
|
|
449
|
-
# Test gradient computation
|
|
450
|
-
val, grad = jax.value_and_grad(f_jax)(params)
|
|
451
|
-
assert isinstance(grad, jnp.ndarray)
|
|
452
|
-
assert grad.shape == params.shape
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
def test_jax_interface_multiple_inputs(tfb):
|
|
456
|
-
|
|
457
|
-
def f(params1, params2):
|
|
458
|
-
c = tc.Circuit(2)
|
|
459
|
-
c.rx(0, theta=params1[0])
|
|
460
|
-
c.ry(1, theta=params2[0])
|
|
461
|
-
return tc.backend.real(c.expectation([tc.gates.z(), [0]]))
|
|
462
|
-
|
|
463
|
-
f_jax = tc.interfaces.jax_interface(f, jit=False)
|
|
464
|
-
p1 = jnp.array([1.0])
|
|
465
|
-
p2 = jnp.array([2.0])
|
|
466
|
-
|
|
467
|
-
# Test forward pass
|
|
468
|
-
val = f_jax(p1, p2)
|
|
469
|
-
assert isinstance(val, jnp.ndarray)
|
|
470
|
-
|
|
471
|
-
# Test gradient computation
|
|
472
|
-
|
|
473
|
-
val, (grad1, grad2) = jax.value_and_grad(f_jax, argnums=(0, 1))(p1, p2)
|
|
474
|
-
assert isinstance(grad1, jnp.ndarray)
|
|
475
|
-
assert isinstance(grad2, jnp.ndarray)
|
|
476
|
-
assert grad1.shape == p1.shape
|
|
477
|
-
assert grad2.shape == p2.shape
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
@pytest.mark.skip(
|
|
481
|
-
reason="might fail when testing with other function",
|
|
482
|
-
)
|
|
483
|
-
def test_jax_interface_jit_dlpack(tfb):
|
|
484
|
-
|
|
485
|
-
def f(params):
|
|
486
|
-
c = tc.Circuit(2)
|
|
487
|
-
c.rx(range(2), theta=params)
|
|
488
|
-
return tc.backend.real(c.expectation([tc.gates.z(), [0]]))
|
|
489
|
-
|
|
490
|
-
# Test with JIT
|
|
491
|
-
f_jax = tc.interfaces.jax_interface(f, jit=True, enable_dlpack=True)
|
|
492
|
-
params = jnp.array([np.pi, np.pi], dtype=jnp.float32)
|
|
493
|
-
|
|
494
|
-
# First call compiles
|
|
495
|
-
val1 = f_jax(params)
|
|
496
|
-
# Second call should be faster
|
|
497
|
-
val2, gs = jax.value_and_grad(f_jax)(params)
|
|
498
|
-
|
|
499
|
-
assert isinstance(val1, jnp.ndarray)
|
|
500
|
-
assert isinstance(gs, jnp.ndarray)
|
|
501
|
-
np.testing.assert_allclose(val1, val2, atol=1e-5)
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
def test_jax_interface_pure_callback(tfb):
|
|
505
|
-
|
|
506
|
-
def f(params):
|
|
507
|
-
# Use TF operation to test pure_callback
|
|
508
|
-
return tf.square(params)
|
|
509
|
-
|
|
510
|
-
def f_jax1(params):
|
|
511
|
-
return jnp.sum(tc.interfaces.jax_interface(f)(params))
|
|
512
|
-
|
|
513
|
-
def f_jax2(params):
|
|
514
|
-
return jnp.sum(
|
|
515
|
-
tc.interfaces.jax_interface(
|
|
516
|
-
f, jit=True, output_shape=[2], output_dtype=jnp.float32
|
|
517
|
-
)(params)
|
|
518
|
-
)
|
|
519
|
-
|
|
520
|
-
params = jnp.array([1.0, 2.0])
|
|
521
|
-
|
|
522
|
-
for f_jax in [f_jax1, f_jax2]:
|
|
523
|
-
val = f_jax(params)
|
|
524
|
-
assert isinstance(val, jnp.ndarray)
|
|
525
|
-
np.testing.assert_allclose(val, 5.0, atol=1e-5)
|
|
526
|
-
|
|
527
|
-
# Test gradient
|
|
528
|
-
grad = jax.grad(f_jax)(params)
|
|
529
|
-
assert isinstance(grad, jnp.ndarray)
|
|
530
|
-
np.testing.assert_allclose(grad, [2.0, 4.0], atol=1e-5)
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
def test_jax_interface_multiple_outputs(tfb):
|
|
534
|
-
|
|
535
|
-
def f(params):
|
|
536
|
-
# Use TF operation to test pure_callback
|
|
537
|
-
return tf.square(params), params
|
|
538
|
-
|
|
539
|
-
def f_jax1(params):
|
|
540
|
-
r = tc.interfaces.jax_interface(f)(params)
|
|
541
|
-
return jnp.sum(r[0] + r[1] ** 2) / 2
|
|
542
|
-
|
|
543
|
-
def f_jax2(params):
|
|
544
|
-
r = tc.interfaces.jax_interface(
|
|
545
|
-
f,
|
|
546
|
-
jit=True,
|
|
547
|
-
output_shape=([2], [2]),
|
|
548
|
-
output_dtype=(jnp.float32, jnp.float32),
|
|
549
|
-
)(params)
|
|
550
|
-
return jnp.sum(r[0] + r[1] ** 2) / 2
|
|
551
|
-
|
|
552
|
-
params = jnp.array([1.0, 2.0])
|
|
553
|
-
|
|
554
|
-
for f_jax in [f_jax1, f_jax2]:
|
|
555
|
-
val = f_jax(params)
|
|
556
|
-
assert isinstance(val, jnp.ndarray)
|
|
557
|
-
np.testing.assert_allclose(val, 5.0, atol=1e-5)
|
|
558
|
-
|
|
559
|
-
# Test gradient
|
|
560
|
-
grad = jax.grad(f_jax)(params)
|
|
561
|
-
assert isinstance(grad, jnp.ndarray)
|
|
562
|
-
np.testing.assert_allclose(grad, [2.0, 4.0], atol=1e-5)
|
tests/test_keras.py
DELETED
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import sys
|
|
3
|
-
from functools import partial
|
|
4
|
-
|
|
5
|
-
thisfile = os.path.abspath(__file__)
|
|
6
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
7
|
-
|
|
8
|
-
sys.path.insert(0, modulepath)
|
|
9
|
-
|
|
10
|
-
import numpy as np
|
|
11
|
-
import tensorflow as tf
|
|
12
|
-
import tensorcircuit as tc
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
dtype = np.complex128
|
|
16
|
-
tfdtype = tf.complex128
|
|
17
|
-
|
|
18
|
-
ii = np.eye(4, dtype=dtype)
|
|
19
|
-
iir = tf.constant(ii.reshape([2, 2, 2, 2]))
|
|
20
|
-
zz = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=dtype)
|
|
21
|
-
zzr = tf.constant(zz.reshape([2, 2, 2, 2]))
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
def tfi_energy(c, j=1.0, h=-1.0):
|
|
25
|
-
e = 0.0
|
|
26
|
-
n = c._nqubits
|
|
27
|
-
for i in range(n):
|
|
28
|
-
e += h * c.expectation((tc.gates.x(), [i]))
|
|
29
|
-
for i in range(n - 1): # OBC
|
|
30
|
-
e += j * c.expectation((tc.gates.z(), [i]), (tc.gates.z(), [(i + 1) % n]))
|
|
31
|
-
return e
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
def vqe_f2(inputs, xweights, zzweights, nlayers, n):
|
|
35
|
-
c = tc.Circuit(n)
|
|
36
|
-
paramx = tf.cast(xweights, tfdtype)
|
|
37
|
-
paramzz = tf.cast(zzweights, tfdtype)
|
|
38
|
-
for i in range(n):
|
|
39
|
-
c.H(i)
|
|
40
|
-
for j in range(nlayers):
|
|
41
|
-
for i in range(n - 1):
|
|
42
|
-
c.any(
|
|
43
|
-
i,
|
|
44
|
-
i + 1,
|
|
45
|
-
unitary=tf.math.cos(paramzz[j, i]) * iir
|
|
46
|
-
+ tf.math.sin(paramzz[j, i]) * 1.0j * zzr,
|
|
47
|
-
)
|
|
48
|
-
for i in range(n):
|
|
49
|
-
c.rx(i, theta=paramx[j, i])
|
|
50
|
-
e = tfi_energy(c)
|
|
51
|
-
e = tf.math.real(e)
|
|
52
|
-
return e
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def test_vqe_layer2(tfb, highp):
|
|
56
|
-
vqe_fp = partial(vqe_f2, nlayers=3, n=6)
|
|
57
|
-
vqe_layer = tc.KerasLayer(vqe_fp, [(3, 6), (3, 6)])
|
|
58
|
-
inputs = np.zeros([1])
|
|
59
|
-
with tf.GradientTape() as tape:
|
|
60
|
-
e = vqe_layer(inputs)
|
|
61
|
-
print(e, tape.gradient(e, vqe_layer.variables))
|
|
62
|
-
model = tf.keras.Sequential([vqe_layer])
|
|
63
|
-
model.compile(
|
|
64
|
-
loss=tc.keras.output_asis_loss, optimizer=tf.keras.optimizers.Adam(0.01)
|
|
65
|
-
)
|
|
66
|
-
model.fit(np.zeros([1, 1]), np.zeros([1]), batch_size=1, epochs=300)
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
def vqe_f(inputs, weights, nlayers, n):
|
|
70
|
-
c = tc.Circuit(n)
|
|
71
|
-
paramc = tf.cast(weights, tfdtype)
|
|
72
|
-
for i in range(n):
|
|
73
|
-
c.H(i)
|
|
74
|
-
for j in range(nlayers):
|
|
75
|
-
for i in range(n - 1):
|
|
76
|
-
c.any(
|
|
77
|
-
i,
|
|
78
|
-
i + 1,
|
|
79
|
-
unitary=tf.math.cos(paramc[2 * j, i]) * iir
|
|
80
|
-
+ tf.math.sin(paramc[2 * j, i]) * 1.0j * zzr,
|
|
81
|
-
)
|
|
82
|
-
for i in range(n):
|
|
83
|
-
c.rx(i, theta=paramc[2 * j + 1, i])
|
|
84
|
-
e = tfi_energy(c)
|
|
85
|
-
e = tf.math.real(e)
|
|
86
|
-
return e
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
def test_vqe_layer(tfb, highp):
|
|
90
|
-
vqe_fp = partial(vqe_f, nlayers=6, n=6)
|
|
91
|
-
vqe_layer = tc.keras.QuantumLayer(vqe_fp, (6 * 2, 6))
|
|
92
|
-
inputs = np.zeros([1])
|
|
93
|
-
inputs = tf.constant(inputs)
|
|
94
|
-
model = tf.keras.Sequential([vqe_layer])
|
|
95
|
-
|
|
96
|
-
model.compile(
|
|
97
|
-
loss=tc.keras.output_asis_loss, optimizer=tf.keras.optimizers.Adam(0.01)
|
|
98
|
-
)
|
|
99
|
-
|
|
100
|
-
model.fit(np.zeros([2, 1]), np.zeros([2, 1]), batch_size=2, epochs=500)
|
|
101
|
-
|
|
102
|
-
np.testing.assert_allclose(model.predict(np.zeros([1])), -7.27, atol=5e-2)
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
def test_function_io(tfb, tmp_path, highp):
|
|
106
|
-
vqe_f_p = partial(vqe_f, inputs=tf.ones([1]))
|
|
107
|
-
|
|
108
|
-
vqe_f_p = tf.function(vqe_f_p)
|
|
109
|
-
vqe_f_p(weights=tf.ones([6, 6], dtype=tf.float64), nlayers=3, n=6)
|
|
110
|
-
tc.keras.save_func(vqe_f_p, str(tmp_path))
|
|
111
|
-
loaded = tc.keras.load_func(str(tmp_path), fallback=vqe_f_p)
|
|
112
|
-
print(loaded(weights=tf.ones([6, 6], dtype=tf.float64), nlayers=3, n=6))
|
|
113
|
-
print(loaded(weights=tf.ones([6, 6], dtype=tf.float64), nlayers=3, n=6))
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
def test_keras_hardware(tfb):
|
|
117
|
-
n = 2
|
|
118
|
-
|
|
119
|
-
def qf(inputs, param):
|
|
120
|
-
c = tc.Circuit(n)
|
|
121
|
-
c.rx(0, theta=inputs[0])
|
|
122
|
-
c.rx(1, theta=inputs[1])
|
|
123
|
-
c.h(1)
|
|
124
|
-
c.rzz(0, 1, theta=param[0])
|
|
125
|
-
return tc.backend.stack([c.expectation_ps(z=[i]) for i in range(n)])
|
|
126
|
-
|
|
127
|
-
ql = tc.keras.HardwareLayer(qf, [1], regularizer=tf.keras.regularizers.l2(1e-3))
|
|
128
|
-
print(ql(tf.ones([1, 2])))
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
def test_keras_layer_inputs_dict(tfb):
|
|
132
|
-
# https://github.com/tensorflow/tensorflow/issues/65306
|
|
133
|
-
# keras3 for tf2.16+ fails to accept complex valued input for keras layers
|
|
134
|
-
# which is vital for quantum applications
|
|
135
|
-
n = 3
|
|
136
|
-
p = 0.1
|
|
137
|
-
K = tc.backend
|
|
138
|
-
|
|
139
|
-
def f(inputs, weights):
|
|
140
|
-
state = inputs["state"]
|
|
141
|
-
noise = inputs["noise"]
|
|
142
|
-
c = tc.Circuit(n, inputs=state)
|
|
143
|
-
for i in range(n):
|
|
144
|
-
c.rz(i, theta=weights[i])
|
|
145
|
-
for i in range(n):
|
|
146
|
-
c.depolarizing(i, px=p, py=p, pz=p, status=noise[i])
|
|
147
|
-
return K.real(c.expectation_ps(x=[0]))
|
|
148
|
-
|
|
149
|
-
layer = tc.KerasLayer(f, [n])
|
|
150
|
-
v = {"state": K.ones([1, 2**n]) / 2 ** (n / 2), "noise": 0.2 * K.ones([1, n])}
|
|
151
|
-
with tf.GradientTape() as tape:
|
|
152
|
-
l = layer(v)
|
|
153
|
-
g1 = tape.gradient(l, layer.trainable_variables)
|
|
154
|
-
|
|
155
|
-
v = {"state": K.ones([2**n]) / 2 ** (n / 2), "noise": 0.2 * K.ones([n])}
|
|
156
|
-
with tf.GradientTape() as tape:
|
|
157
|
-
l = layer(v)
|
|
158
|
-
g2 = tape.gradient(l, layer.trainable_variables)
|
|
159
|
-
|
|
160
|
-
np.testing.assert_allclose(g1[0], g2[0], atol=1e-5)
|