tensorcircuit-nightly 1.2.0.dev20250326__py3-none-any.whl → 1.4.0.dev20251128__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +5 -1
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +312 -5
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +100 -4
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +157 -98
- tensorcircuit/circuit.py +115 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +105 -23
- tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit/experimental.py +733 -153
- tensorcircuit/fgs.py +254 -73
- tensorcircuit/gates.py +66 -22
- tensorcircuit/interfaces/jax.py +5 -3
- tensorcircuit/interfaces/tensortrans.py +6 -2
- tensorcircuit/interfaces/torch.py +14 -4
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +154 -65
- tensorcircuit/quantum.py +698 -134
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +131 -18
- tensorcircuit/results/readout_mitigation.py +4 -1
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +29 -17
- tensorcircuit/templates/__init__.py +2 -0
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +174 -0
- tensorcircuit/templates/lattice.py +1789 -0
- tensorcircuit/timeevol.py +896 -0
- tensorcircuit/translation.py +10 -3
- tensorcircuit/utils.py +7 -0
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/METADATA +66 -29
- tensorcircuit_nightly-1.4.0.dev20251128.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/WHEEL +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.2.0.dev20250326.dist-info/RECORD +0 -118
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1035
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -409
- tests/test_circuit.py +0 -1699
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -310
- tests/test_gates.py +0 -156
- tests/test_interfaces.py +0 -562
- tests/test_keras.py +0 -160
- tests/test_miscs.py +0 -282
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -549
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -380
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_stabilizer.py +0 -217
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.2.0.dev20250326.dist-info → tensorcircuit_nightly-1.4.0.dev20251128.dist-info}/licenses/LICENSE +0 -0
tests/test_backends.py
DELETED
|
@@ -1,1035 +0,0 @@
|
|
|
1
|
-
# pylint: disable=invalid-name
|
|
2
|
-
|
|
3
|
-
import sys
|
|
4
|
-
import os
|
|
5
|
-
from functools import partial
|
|
6
|
-
|
|
7
|
-
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
|
|
8
|
-
|
|
9
|
-
import numpy as np
|
|
10
|
-
import pytest
|
|
11
|
-
from pytest_lazyfixture import lazy_fixture as lf
|
|
12
|
-
import tensorflow as tf
|
|
13
|
-
|
|
14
|
-
thisfile = os.path.abspath(__file__)
|
|
15
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
16
|
-
|
|
17
|
-
sys.path.insert(0, modulepath)
|
|
18
|
-
import tensorcircuit as tc
|
|
19
|
-
|
|
20
|
-
dtype = np.complex64
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def universal_vmap():
|
|
24
|
-
def sum_real(x, y):
|
|
25
|
-
return tc.backend.real(x + y)
|
|
26
|
-
|
|
27
|
-
vop = tc.backend.vmap(sum_real, vectorized_argnums=(0, 1))
|
|
28
|
-
t = tc.gates.array_to_tensor(np.ones([20, 1]))
|
|
29
|
-
return vop(t, 2.0 * t)
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
def test_vmap_np():
|
|
33
|
-
r = universal_vmap()
|
|
34
|
-
assert r.shape == (20, 1)
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def test_vmap_jax(jaxb):
|
|
38
|
-
r = universal_vmap()
|
|
39
|
-
assert r.shape == (20, 1)
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def test_vmap_tf(tfb):
|
|
43
|
-
r = universal_vmap()
|
|
44
|
-
assert r.numpy()[0, 0] == 3.0
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
def test_vmap_torch(torchb):
|
|
48
|
-
r = universal_vmap()
|
|
49
|
-
assert r.numpy()[0, 0] == 3.0
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def test_grad_torch(torchb):
|
|
53
|
-
a = tc.backend.ones([2], dtype="float32")
|
|
54
|
-
|
|
55
|
-
# @partial(tc.backend.jit, jit_compile=True)
|
|
56
|
-
@tc.backend.grad
|
|
57
|
-
def f(x):
|
|
58
|
-
return tc.backend.sum(x)
|
|
59
|
-
|
|
60
|
-
np.testing.assert_allclose(f(a), np.ones([2]), atol=1e-5)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
64
|
-
def test_backend_scatter(backend):
|
|
65
|
-
np.testing.assert_allclose(
|
|
66
|
-
tc.backend.scatter(
|
|
67
|
-
tc.array_to_tensor(np.arange(8), dtype="int32"),
|
|
68
|
-
tc.array_to_tensor(np.array([[1], [4]]), dtype="int32"),
|
|
69
|
-
tc.array_to_tensor(np.array([0, 0]), dtype="int32"),
|
|
70
|
-
),
|
|
71
|
-
np.array([0, 0, 2, 3, 0, 5, 6, 7]),
|
|
72
|
-
atol=1e-4,
|
|
73
|
-
)
|
|
74
|
-
np.testing.assert_allclose(
|
|
75
|
-
tc.backend.scatter(
|
|
76
|
-
tc.array_to_tensor(np.arange(8).reshape([2, 4]), dtype="int32"),
|
|
77
|
-
tc.array_to_tensor(np.array([[0, 2], [1, 2], [1, 3]]), dtype="int32"),
|
|
78
|
-
tc.array_to_tensor(np.array([0, 99, 0]), dtype="int32"),
|
|
79
|
-
),
|
|
80
|
-
np.array([[0, 1, 0, 3], [4, 5, 99, 0]]),
|
|
81
|
-
atol=1e-4,
|
|
82
|
-
)
|
|
83
|
-
answer = np.arange(8).reshape([2, 2, 2])
|
|
84
|
-
answer[0, 1, 0] = 99
|
|
85
|
-
np.testing.assert_allclose(
|
|
86
|
-
tc.backend.scatter(
|
|
87
|
-
tc.array_to_tensor(np.arange(8).reshape([2, 2, 2]), dtype="int32"),
|
|
88
|
-
tc.array_to_tensor(np.array([[0, 1, 0]]), dtype="int32"),
|
|
89
|
-
tc.array_to_tensor(np.array([99]), dtype="int32"),
|
|
90
|
-
),
|
|
91
|
-
answer,
|
|
92
|
-
atol=1e-4,
|
|
93
|
-
)
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
97
|
-
def test_backend_methods(backend):
|
|
98
|
-
# TODO(@refraction-ray): add more methods
|
|
99
|
-
np.testing.assert_allclose(
|
|
100
|
-
tc.backend.softmax(tc.array_to_tensor(np.ones([3, 2]), dtype="float32")),
|
|
101
|
-
np.ones([3, 2]) / 6.0,
|
|
102
|
-
atol=1e-4,
|
|
103
|
-
)
|
|
104
|
-
|
|
105
|
-
arr = np.random.normal(size=(6, 6))
|
|
106
|
-
|
|
107
|
-
np.testing.assert_allclose(
|
|
108
|
-
tc.backend.adjoint(tc.array_to_tensor(arr + 1.0j * arr)),
|
|
109
|
-
arr.T - 1.0j * arr.T,
|
|
110
|
-
atol=1e-4,
|
|
111
|
-
)
|
|
112
|
-
|
|
113
|
-
arr = tc.backend.zeros([5], dtype="float32")
|
|
114
|
-
np.testing.assert_allclose(
|
|
115
|
-
tc.backend.sigmoid(arr),
|
|
116
|
-
tc.backend.ones([5]) * 0.5,
|
|
117
|
-
atol=1e-4,
|
|
118
|
-
)
|
|
119
|
-
ans = np.array([[1, 0.5j], [-0.5j, 1]])
|
|
120
|
-
ans2 = ans @ ans
|
|
121
|
-
ansp = tc.backend.sqrtmh(tc.array_to_tensor(ans2))
|
|
122
|
-
# print(ansp @ ansp, ans @ ans)
|
|
123
|
-
np.testing.assert_allclose(ansp @ ansp, ans @ ans, atol=1e-4)
|
|
124
|
-
singularm = np.array([[4.0, 0], [0, -1e-3]])
|
|
125
|
-
np.testing.assert_allclose(
|
|
126
|
-
tc.backend.sqrtmh(singularm, psd=True), np.array([[2.0, 0], [0, 0]]), atol=1e-5
|
|
127
|
-
)
|
|
128
|
-
|
|
129
|
-
np.testing.assert_allclose(
|
|
130
|
-
tc.backend.sum(tc.array_to_tensor(np.arange(4))), 6, atol=1e-4
|
|
131
|
-
)
|
|
132
|
-
|
|
133
|
-
indices = np.array([[1, 2], [0, 1]])
|
|
134
|
-
ans = np.array([[[0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 1, 0]]])
|
|
135
|
-
np.testing.assert_allclose(tc.backend.one_hot(indices, 3), ans, atol=1e-4)
|
|
136
|
-
|
|
137
|
-
a = tc.array_to_tensor(np.array([1, 1, 3, 2, 2, 1]), dtype="int32")
|
|
138
|
-
np.testing.assert_allclose(tc.backend.unique_with_counts(a)[0].shape[0], 3)
|
|
139
|
-
|
|
140
|
-
np.testing.assert_allclose(
|
|
141
|
-
tc.backend.cumsum(tc.array_to_tensor(np.array([[0.2, 0.2], [0.2, 0.4]]))),
|
|
142
|
-
np.array([0.2, 0.4, 0.6, 1.0]),
|
|
143
|
-
atol=1e-4,
|
|
144
|
-
)
|
|
145
|
-
|
|
146
|
-
np.testing.assert_allclose(
|
|
147
|
-
tc.backend.max(tc.backend.ones([2, 2], "float32")), 1.0, atol=1e-4
|
|
148
|
-
)
|
|
149
|
-
np.testing.assert_allclose(
|
|
150
|
-
tc.backend.min(
|
|
151
|
-
tc.backend.cast(
|
|
152
|
-
tc.backend.convert_to_tensor(np.array([[1.0, 2.0], [2.0, 3.0]])),
|
|
153
|
-
"float64",
|
|
154
|
-
),
|
|
155
|
-
axis=1,
|
|
156
|
-
),
|
|
157
|
-
np.array([1.0, 2.0]),
|
|
158
|
-
atol=1e-4,
|
|
159
|
-
) # by default no keepdim
|
|
160
|
-
|
|
161
|
-
np.testing.assert_allclose(
|
|
162
|
-
tc.backend.concat([tc.backend.ones([2, 2]), tc.backend.ones([1, 2])]),
|
|
163
|
-
tc.backend.ones([3, 2]),
|
|
164
|
-
atol=1e-5,
|
|
165
|
-
)
|
|
166
|
-
|
|
167
|
-
np.testing.assert_allclose(
|
|
168
|
-
tc.backend.gather1d(
|
|
169
|
-
tc.array_to_tensor(np.array([0, 1, 2])),
|
|
170
|
-
tc.array_to_tensor(np.array([2, 1, 0]), dtype="int32"),
|
|
171
|
-
),
|
|
172
|
-
np.array([2, 1, 0]),
|
|
173
|
-
atol=1e-5,
|
|
174
|
-
)
|
|
175
|
-
|
|
176
|
-
def sum_(carry, x):
|
|
177
|
-
return carry + x
|
|
178
|
-
|
|
179
|
-
r = tc.backend.scan(sum_, tc.backend.ones([10, 2]), tc.backend.zeros([2]))
|
|
180
|
-
np.testing.assert_allclose(r, 10 * np.ones([2]), atol=1e-5)
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
184
|
-
def test_backend_methods_2(backend):
|
|
185
|
-
np.testing.assert_allclose(tc.backend.mean(tc.backend.ones([10])), 1.0, atol=1e-5)
|
|
186
|
-
# acos acosh asin asinh atan atan2 atanh cosh (cos) tan tanh sinh (sin)
|
|
187
|
-
np.testing.assert_allclose(
|
|
188
|
-
tc.backend.acos(tc.backend.ones([2], dtype="float32")),
|
|
189
|
-
np.arccos(tc.backend.ones([2])),
|
|
190
|
-
atol=1e-5,
|
|
191
|
-
)
|
|
192
|
-
np.testing.assert_allclose(
|
|
193
|
-
tc.backend.acosh(tc.backend.ones([2], dtype="float32")),
|
|
194
|
-
np.arccosh(tc.backend.ones([2])),
|
|
195
|
-
atol=1e-5,
|
|
196
|
-
)
|
|
197
|
-
np.testing.assert_allclose(
|
|
198
|
-
tc.backend.asin(tc.backend.ones([2], dtype="float32")),
|
|
199
|
-
np.arcsin(tc.backend.ones([2])),
|
|
200
|
-
atol=1e-5,
|
|
201
|
-
)
|
|
202
|
-
np.testing.assert_allclose(
|
|
203
|
-
tc.backend.asinh(tc.backend.ones([2], dtype="float32")),
|
|
204
|
-
np.arcsinh(tc.backend.ones([2])),
|
|
205
|
-
atol=1e-5,
|
|
206
|
-
)
|
|
207
|
-
np.testing.assert_allclose(
|
|
208
|
-
tc.backend.atan(0.5 * tc.backend.ones([2], dtype="float32")),
|
|
209
|
-
np.arctan(0.5 * tc.backend.ones([2])),
|
|
210
|
-
atol=1e-5,
|
|
211
|
-
)
|
|
212
|
-
np.testing.assert_allclose(
|
|
213
|
-
tc.backend.atan2(
|
|
214
|
-
tc.backend.ones([1], dtype="float32"), tc.backend.ones([1], dtype="float32")
|
|
215
|
-
),
|
|
216
|
-
np.arctan2(
|
|
217
|
-
tc.backend.ones([1], dtype="float32"), tc.backend.ones([1], dtype="float32")
|
|
218
|
-
),
|
|
219
|
-
atol=1e-5,
|
|
220
|
-
)
|
|
221
|
-
np.testing.assert_allclose(
|
|
222
|
-
tc.backend.atanh(0.5 * tc.backend.ones([2], dtype="float32")),
|
|
223
|
-
np.arctanh(0.5 * tc.backend.ones([2])),
|
|
224
|
-
atol=1e-5,
|
|
225
|
-
)
|
|
226
|
-
np.testing.assert_allclose(
|
|
227
|
-
tc.backend.cosh(tc.backend.ones([2], dtype="float32")),
|
|
228
|
-
np.cosh(tc.backend.ones([2])),
|
|
229
|
-
atol=1e-5,
|
|
230
|
-
)
|
|
231
|
-
np.testing.assert_allclose(
|
|
232
|
-
tc.backend.tan(tc.backend.ones([2], dtype="float32")),
|
|
233
|
-
np.tan(tc.backend.ones([2])),
|
|
234
|
-
atol=1e-5,
|
|
235
|
-
)
|
|
236
|
-
np.testing.assert_allclose(
|
|
237
|
-
tc.backend.tanh(tc.backend.ones([2], dtype="float32")),
|
|
238
|
-
np.tanh(tc.backend.ones([2])),
|
|
239
|
-
atol=1e-5,
|
|
240
|
-
)
|
|
241
|
-
np.testing.assert_allclose(
|
|
242
|
-
tc.backend.sinh(0.5 * tc.backend.ones([2], dtype="float32")),
|
|
243
|
-
np.sinh(0.5 * tc.backend.ones([2])),
|
|
244
|
-
atol=1e-5,
|
|
245
|
-
)
|
|
246
|
-
np.testing.assert_allclose(
|
|
247
|
-
tc.backend.eigvalsh(tc.backend.ones([2, 2])), np.array([0, 2]), atol=1e-5
|
|
248
|
-
)
|
|
249
|
-
np.testing.assert_allclose(
|
|
250
|
-
tc.backend.left_shift(
|
|
251
|
-
tc.backend.convert_to_tensor(np.array([4, 3])),
|
|
252
|
-
tc.backend.convert_to_tensor(np.array([1, 1])),
|
|
253
|
-
),
|
|
254
|
-
np.array([8, 6]),
|
|
255
|
-
)
|
|
256
|
-
np.testing.assert_allclose(
|
|
257
|
-
tc.backend.right_shift(
|
|
258
|
-
tc.backend.convert_to_tensor(np.array([4, 3])),
|
|
259
|
-
tc.backend.convert_to_tensor(np.array([1, 1])),
|
|
260
|
-
),
|
|
261
|
-
np.array([2, 1]),
|
|
262
|
-
)
|
|
263
|
-
np.testing.assert_allclose(
|
|
264
|
-
tc.backend.mod(
|
|
265
|
-
tc.backend.convert_to_tensor(np.array([4, 3])),
|
|
266
|
-
tc.backend.convert_to_tensor(np.array([2, 2])),
|
|
267
|
-
),
|
|
268
|
-
np.array([0, 1]),
|
|
269
|
-
)
|
|
270
|
-
np.testing.assert_allclose(
|
|
271
|
-
tc.backend.arange(3),
|
|
272
|
-
np.array([0, 1, 2]),
|
|
273
|
-
)
|
|
274
|
-
np.testing.assert_allclose(
|
|
275
|
-
tc.backend.arange(1, 5, 2),
|
|
276
|
-
np.array([1, 3]),
|
|
277
|
-
)
|
|
278
|
-
assert tc.backend.dtype(tc.backend.ones([])) == "complex64"
|
|
279
|
-
edges = [-1, 3.3, 9.1, 10.0]
|
|
280
|
-
values = tc.backend.convert_to_tensor(np.array([0.0, 4.1, 12.0], dtype=np.float32))
|
|
281
|
-
r = tc.backend.numpy(tc.backend.searchsorted(edges, values))
|
|
282
|
-
np.testing.assert_allclose(r, np.array([1, 2, 4]))
|
|
283
|
-
p = tc.backend.convert_to_tensor(
|
|
284
|
-
np.array(
|
|
285
|
-
[0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.2, 0.4], dtype=np.float32
|
|
286
|
-
)
|
|
287
|
-
)
|
|
288
|
-
r = tc.backend.probability_sample(10000, p, status=np.random.uniform(size=[10000]))
|
|
289
|
-
_, r = np.unique(r, return_counts=True)
|
|
290
|
-
np.testing.assert_allclose(
|
|
291
|
-
r - tc.backend.numpy(p) * 10000.0, np.zeros([10]), atol=200, rtol=1
|
|
292
|
-
)
|
|
293
|
-
np.testing.assert_allclose(
|
|
294
|
-
tc.backend.std(tc.backend.cast(tc.backend.arange(1, 4), "float32")),
|
|
295
|
-
0.81649658,
|
|
296
|
-
atol=1e-5,
|
|
297
|
-
)
|
|
298
|
-
arr = np.random.normal(size=(6, 6))
|
|
299
|
-
np.testing.assert_allclose(
|
|
300
|
-
tc.backend.relu(tc.array_to_tensor(arr, dtype="float32")),
|
|
301
|
-
np.maximum(arr, 0),
|
|
302
|
-
atol=1e-4,
|
|
303
|
-
)
|
|
304
|
-
np.testing.assert_allclose(
|
|
305
|
-
tc.backend.det(tc.backend.convert_to_tensor(np.eye(3) * 2)), 8, atol=1e-5
|
|
306
|
-
)
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
# @pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
310
|
-
# def test_backend_array(backend):
|
|
311
|
-
# a = tc.backend.array([[0, 1], [1, 0]])
|
|
312
|
-
# assert tc.interfaces.which_backend(a).name == tc.backend.name
|
|
313
|
-
# a = tc.backend.array([[0, 1], [1, 0]], dtype=tc.rdtypestr)
|
|
314
|
-
# assert tc.dtype(a) == "float32"
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
318
|
-
def test_device_cpu_only(backend):
|
|
319
|
-
a = tc.backend.ones([])
|
|
320
|
-
dev_str = tc.backend.device(a)
|
|
321
|
-
assert dev_str in ["cpu", "gpu:0"]
|
|
322
|
-
tc.backend.device_move(a, dev_str)
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
@pytest.mark.skipif(
|
|
326
|
-
len(tf.config.list_physical_devices()) == 1, reason="no GPU detected"
|
|
327
|
-
)
|
|
328
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
329
|
-
def test_device_cpu_gpu(backend):
|
|
330
|
-
a = tc.backend.ones([])
|
|
331
|
-
a1 = tc.backend.device_move(a, "gpu:0")
|
|
332
|
-
dev_str = tc.backend.device(a1)
|
|
333
|
-
assert dev_str == "gpu:0"
|
|
334
|
-
a2 = tc.backend.device_move(a1, "cpu")
|
|
335
|
-
assert tc.backend.device(a2) == "cpu"
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
339
|
-
def test_dlpack(backend):
|
|
340
|
-
a = tc.backend.ones([2, 2], dtype="float64")
|
|
341
|
-
cap = tc.backend.to_dlpack(a)
|
|
342
|
-
a1 = tc.backend.from_dlpack(cap)
|
|
343
|
-
np.testing.assert_allclose(a, a1, atol=1e-5)
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
347
|
-
def test_arg_cmp(backend):
|
|
348
|
-
np.testing.assert_allclose(tc.backend.argmax(tc.backend.ones([3], "float64")), 0)
|
|
349
|
-
np.testing.assert_allclose(
|
|
350
|
-
tc.backend.argmax(
|
|
351
|
-
tc.array_to_tensor(np.array([[1, 2], [3, 4]]), dtype="float64")
|
|
352
|
-
),
|
|
353
|
-
np.array([1, 1]),
|
|
354
|
-
)
|
|
355
|
-
np.testing.assert_allclose(
|
|
356
|
-
tc.backend.argmin(
|
|
357
|
-
tc.array_to_tensor(np.array([[1, 2], [3, 4]]), dtype="float64"), axis=-1
|
|
358
|
-
),
|
|
359
|
-
np.array([0, 0]),
|
|
360
|
-
)
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
364
|
-
def test_tree_map(backend):
|
|
365
|
-
def f(a, b):
|
|
366
|
-
return a + b
|
|
367
|
-
|
|
368
|
-
r = tc.backend.tree_map(
|
|
369
|
-
f, {"a": tc.backend.ones([2])}, {"a": 2 * tc.backend.ones([2])}
|
|
370
|
-
)
|
|
371
|
-
np.testing.assert_allclose(r["a"], 3 * np.ones([2]), atol=1e-4)
|
|
372
|
-
|
|
373
|
-
def _add(a, b):
|
|
374
|
-
return a + b
|
|
375
|
-
|
|
376
|
-
ans = tc.backend.tree_map(
|
|
377
|
-
_add,
|
|
378
|
-
{"a": tc.backend.ones([2]), "b": tc.backend.ones([3])},
|
|
379
|
-
{"a": tc.backend.ones([2]), "b": tc.backend.ones([3])},
|
|
380
|
-
)
|
|
381
|
-
np.testing.assert_allclose(ans["a"], 2 * np.ones([2]))
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
385
|
-
def test_backend_randoms(backend):
|
|
386
|
-
@partial(tc.backend.jit, static_argnums=0)
|
|
387
|
-
def random_matrixn(key):
|
|
388
|
-
tc.backend.set_random_state(key)
|
|
389
|
-
r1 = tc.backend.implicit_randn(shape=[2, 2], mean=0.5)
|
|
390
|
-
r2 = tc.backend.implicit_randn(shape=[2, 2], mean=0.5)
|
|
391
|
-
return r1, r2
|
|
392
|
-
|
|
393
|
-
key = 42
|
|
394
|
-
if tc.backend.name == "tensorflow":
|
|
395
|
-
key = tf.random.Generator.from_seed(42)
|
|
396
|
-
r11, r12 = random_matrixn(key)
|
|
397
|
-
if tc.backend.name == "tensorflow":
|
|
398
|
-
key = tf.random.Generator.from_seed(42)
|
|
399
|
-
r21, r22 = random_matrixn(key)
|
|
400
|
-
np.testing.assert_allclose(r11, r21, atol=1e-4)
|
|
401
|
-
np.testing.assert_allclose(r12, r22, atol=1e-4)
|
|
402
|
-
assert not np.allclose(r11, r12, atol=1e-4)
|
|
403
|
-
|
|
404
|
-
def random_matrixu(key):
|
|
405
|
-
tc.backend.set_random_state(key)
|
|
406
|
-
r1 = tc.backend.implicit_randu(shape=[2, 2], high=2)
|
|
407
|
-
r2 = tc.backend.implicit_randu(shape=[2, 2], high=1)
|
|
408
|
-
return r1, r2
|
|
409
|
-
|
|
410
|
-
key = 42
|
|
411
|
-
r31, r32 = random_matrixu(key)
|
|
412
|
-
np.testing.assert_allclose(r31.shape, [2, 2])
|
|
413
|
-
assert np.any(r32 > 0)
|
|
414
|
-
assert not np.allclose(r31, r32, atol=1e-4)
|
|
415
|
-
|
|
416
|
-
def random_matrixc(key):
|
|
417
|
-
tc.backend.set_random_state(key)
|
|
418
|
-
r1 = tc.backend.implicit_randc(a=[1, 2, 3], shape=(2, 2))
|
|
419
|
-
r2 = tc.backend.implicit_randc(a=[1, 2, 3], shape=(2, 2), p=[0.1, 0.4, 0.5])
|
|
420
|
-
return r1, r2
|
|
421
|
-
|
|
422
|
-
r41, r42 = random_matrixc(key)
|
|
423
|
-
np.testing.assert_allclose(r41.shape, [2, 2])
|
|
424
|
-
assert np.any((r42 > 0) & (r42 < 4))
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
def vqe_energy(inputs, param, n, nlayers):
|
|
428
|
-
c = tc.Circuit(n, inputs=inputs)
|
|
429
|
-
paramc = tc.backend.cast(param, "complex64")
|
|
430
|
-
|
|
431
|
-
for i in range(n):
|
|
432
|
-
c.H(i)
|
|
433
|
-
for j in range(nlayers):
|
|
434
|
-
for i in range(n - 1):
|
|
435
|
-
c.ryy(i, i + 1, theta=paramc[2 * j, i])
|
|
436
|
-
# c.any(
|
|
437
|
-
# i,
|
|
438
|
-
# i + 1,
|
|
439
|
-
# unitary=tc.backend.cos(paramc[2 * j, i]) * iir
|
|
440
|
-
# + tc.backend.sin(paramc[2 * j, i]) * 1.0j * yzr,
|
|
441
|
-
# )
|
|
442
|
-
for i in range(n):
|
|
443
|
-
c.rx(i, theta=paramc[2 * j + 1, i])
|
|
444
|
-
e = 0.0
|
|
445
|
-
for i in range(n):
|
|
446
|
-
e += c.expectation((tc.gates.x(), [i]))
|
|
447
|
-
for i in range(n - 1): # OBC
|
|
448
|
-
e += c.expectation((tc.gates.z(), [i]), (tc.gates.z(), [(i + 1) % n]))
|
|
449
|
-
e = tc.backend.real(e)
|
|
450
|
-
return e
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
454
|
-
def test_vvag(backend):
|
|
455
|
-
n = 4
|
|
456
|
-
nlayers = 3
|
|
457
|
-
inp = tc.backend.ones([2**n]) / 2 ** (n / 2)
|
|
458
|
-
param = tc.backend.ones([2 * nlayers, n])
|
|
459
|
-
# inp = tc.backend.cast(inp, "complex64")
|
|
460
|
-
# param = tc.backend.cast(param, "complex64")
|
|
461
|
-
|
|
462
|
-
vqe_energy_p = partial(vqe_energy, n=n, nlayers=nlayers)
|
|
463
|
-
|
|
464
|
-
vg = tc.backend.value_and_grad(vqe_energy_p, argnums=(0, 1))
|
|
465
|
-
v0, (g00, g01) = vg(inp, param)
|
|
466
|
-
|
|
467
|
-
batch = 8
|
|
468
|
-
inps = tc.backend.ones([batch, 2**n]) / 2 ** (n / 2)
|
|
469
|
-
inps = tc.backend.cast(inps, "complex64")
|
|
470
|
-
|
|
471
|
-
pvag = tc.backend.vvag(vqe_energy_p, argnums=(0, 1))
|
|
472
|
-
v1, (g10, g11) = pvag(inps, param)
|
|
473
|
-
print(v1.shape, g10.shape, g11.shape)
|
|
474
|
-
np.testing.assert_allclose(v1[0], v0, atol=1e-4)
|
|
475
|
-
np.testing.assert_allclose(g10[0], g00, atol=1e-4)
|
|
476
|
-
np.testing.assert_allclose(g11 / batch, g01, atol=1e-4)
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
480
|
-
def test_vvag_dict(backend):
|
|
481
|
-
def dict_plus(x, y):
|
|
482
|
-
a = x["a"]
|
|
483
|
-
return tc.backend.real((a + y)[0])
|
|
484
|
-
|
|
485
|
-
dp_vvag = tc.backend.vvag(dict_plus, vectorized_argnums=1, argnums=0)
|
|
486
|
-
x = {"a": tc.backend.ones([1])}
|
|
487
|
-
y = tc.backend.ones([20, 1])
|
|
488
|
-
v, g = dp_vvag(x, y)
|
|
489
|
-
np.testing.assert_allclose(v.shape, [20])
|
|
490
|
-
np.testing.assert_allclose(g["a"], 20.0, atol=1e-4)
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
494
|
-
def test_vjp(backend):
|
|
495
|
-
def f(x):
|
|
496
|
-
return x**2
|
|
497
|
-
|
|
498
|
-
inputs = tc.backend.ones([2, 2])
|
|
499
|
-
v, g = tc.backend.vjp(f, inputs, inputs)
|
|
500
|
-
np.testing.assert_allclose(v, inputs, atol=1e-5)
|
|
501
|
-
np.testing.assert_allclose(g, 2 * inputs, atol=1e-5)
|
|
502
|
-
|
|
503
|
-
def f2(x, y):
|
|
504
|
-
return x + y, x - y
|
|
505
|
-
|
|
506
|
-
inputs = [tc.backend.ones([2]), tc.backend.ones([2])]
|
|
507
|
-
v = [2.0 * t for t in inputs]
|
|
508
|
-
v, g = tc.backend.vjp(f2, inputs, v)
|
|
509
|
-
np.testing.assert_allclose(v[1], np.zeros([2]), atol=1e-5)
|
|
510
|
-
np.testing.assert_allclose(g[0], 4 * np.ones([2]), atol=1e-5)
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
514
|
-
def test_vjp_complex(backend):
|
|
515
|
-
def f(x):
|
|
516
|
-
return tc.backend.conj(x)
|
|
517
|
-
|
|
518
|
-
inputs = tc.backend.ones([1]) + 1.0j * tc.backend.ones([1])
|
|
519
|
-
v = tc.backend.ones([1], dtype="complex64")
|
|
520
|
-
v, g = tc.backend.vjp(f, inputs, v)
|
|
521
|
-
np.testing.assert_allclose(tc.backend.numpy(g), np.ones([1]), atol=1e-5)
|
|
522
|
-
|
|
523
|
-
def f2(x):
|
|
524
|
-
return x**2
|
|
525
|
-
|
|
526
|
-
inputs = tc.backend.ones([1]) + 1.0j * tc.backend.ones([1])
|
|
527
|
-
v = tc.backend.ones([1], dtype="complex64") # + 1.0j * tc.backend.ones([1])
|
|
528
|
-
v, g = tc.backend.vjp(f2, inputs, v)
|
|
529
|
-
# note how vjp definition on complex function is different in jax backend
|
|
530
|
-
if tc.backend.name == "jax":
|
|
531
|
-
np.testing.assert_allclose(tc.backend.numpy(g), 2 + 2j, atol=1e-5)
|
|
532
|
-
else:
|
|
533
|
-
np.testing.assert_allclose(tc.backend.numpy(g), 2 - 2j, atol=1e-5)
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
# TODO(@refraction-ray): consistent and unified pytree utils for pytorch backend?
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
540
|
-
def test_vjp_pytree(backend):
|
|
541
|
-
def f3(d):
|
|
542
|
-
return d["a"] + d["b"], d["a"]
|
|
543
|
-
|
|
544
|
-
inputs = {"a": tc.backend.ones([2]), "b": tc.backend.ones([1])}
|
|
545
|
-
v = (tc.backend.ones([2]), tc.backend.zeros([2]))
|
|
546
|
-
v, g = tc.backend.vjp(f3, inputs, v)
|
|
547
|
-
np.testing.assert_allclose(v[0], 2 * np.ones([2]), atol=1e-5)
|
|
548
|
-
np.testing.assert_allclose(g["a"], np.ones([2]), atol=1e-5)
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
552
|
-
def test_jvp(backend):
|
|
553
|
-
def f(x):
|
|
554
|
-
return x**2
|
|
555
|
-
|
|
556
|
-
inputs = tc.backend.ones([2, 2])
|
|
557
|
-
v, g = tc.backend.jvp(f, inputs, inputs)
|
|
558
|
-
np.testing.assert_allclose(v, inputs, atol=1e-5)
|
|
559
|
-
np.testing.assert_allclose(g, 2 * inputs, atol=1e-5)
|
|
560
|
-
|
|
561
|
-
def f2(x, y):
|
|
562
|
-
return x + y, x - y
|
|
563
|
-
|
|
564
|
-
inputs = [tc.backend.ones([2]), tc.backend.ones([2])]
|
|
565
|
-
v = [2.0 * t for t in inputs]
|
|
566
|
-
v, g = tc.backend.jvp(f2, inputs, v)
|
|
567
|
-
np.testing.assert_allclose(v[1], np.zeros([2]), atol=1e-5)
|
|
568
|
-
np.testing.assert_allclose(g[0], 4 * np.ones([2]), atol=1e-5)
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
572
|
-
def test_jvp_complex(backend):
|
|
573
|
-
def f(x):
|
|
574
|
-
return tc.backend.conj(x)
|
|
575
|
-
|
|
576
|
-
inputs = tc.backend.ones([1]) + 1.0j * tc.backend.ones([1])
|
|
577
|
-
v = tc.backend.ones([1], dtype="complex64")
|
|
578
|
-
v, g = tc.backend.jvp(f, inputs, v)
|
|
579
|
-
# numpy auto numpy doesn't work for torch conjugate tensor
|
|
580
|
-
np.testing.assert_allclose(tc.backend.numpy(g), np.ones([1]), atol=1e-5)
|
|
581
|
-
|
|
582
|
-
def f2(x):
|
|
583
|
-
return x**2
|
|
584
|
-
|
|
585
|
-
inputs = tc.backend.ones([1]) + 1.0j * tc.backend.ones([1])
|
|
586
|
-
v = tc.backend.ones([1]) + 1.0j * tc.backend.ones([1])
|
|
587
|
-
v, g = tc.backend.jvp(f2, inputs, v)
|
|
588
|
-
np.testing.assert_allclose(tc.backend.numpy(g), 4.0j, atol=1e-5)
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
592
|
-
def test_jvp_pytree(backend):
|
|
593
|
-
def f3(d):
|
|
594
|
-
return d["a"] + d["b"], d["a"]
|
|
595
|
-
|
|
596
|
-
inputs = {"a": tc.backend.ones([2]), "b": tc.backend.ones([1])}
|
|
597
|
-
v = (tc.backend.ones([2]), tc.backend.zeros([2]))
|
|
598
|
-
v, g = tc.backend.vjp(f3, inputs, v)
|
|
599
|
-
np.testing.assert_allclose(v[0], 2 * np.ones([2]), atol=1e-5)
|
|
600
|
-
np.testing.assert_allclose(g["a"], np.ones([2]), atol=1e-5)
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
604
|
-
@pytest.mark.parametrize("mode", ["jacfwd", "jacrev"])
|
|
605
|
-
def test_jac(backend, mode):
|
|
606
|
-
# make no sense for torch backend when you have no real vmap interface
|
|
607
|
-
backend_jac = getattr(tc.backend, mode)
|
|
608
|
-
|
|
609
|
-
def f(x):
|
|
610
|
-
return x**2
|
|
611
|
-
|
|
612
|
-
x = tc.backend.ones([3])
|
|
613
|
-
jacf = backend_jac(f)
|
|
614
|
-
np.testing.assert_allclose(jacf(x), 2 * np.eye(3), atol=1e-5)
|
|
615
|
-
|
|
616
|
-
def f2(x):
|
|
617
|
-
return x**2, x
|
|
618
|
-
|
|
619
|
-
jacf2 = backend_jac(f2)
|
|
620
|
-
np.testing.assert_allclose(jacf2(x)[1], np.eye(3), atol=1e-5)
|
|
621
|
-
np.testing.assert_allclose(jacf2(x)[0], 2 * np.eye(3), atol=1e-5)
|
|
622
|
-
|
|
623
|
-
def f3(x, y):
|
|
624
|
-
return x + y**2
|
|
625
|
-
|
|
626
|
-
jacf3 = backend_jac(f3, argnums=(0, 1))
|
|
627
|
-
jacf3jit = tc.backend.jit(backend_jac(f3, argnums=(0, 1)))
|
|
628
|
-
np.testing.assert_allclose(jacf3jit(x, x)[1], 2 * np.eye(3), atol=1e-5)
|
|
629
|
-
np.testing.assert_allclose(jacf3(x, x)[1], 2 * np.eye(3), atol=1e-5)
|
|
630
|
-
|
|
631
|
-
def f4(x, y):
|
|
632
|
-
return x**2, y
|
|
633
|
-
|
|
634
|
-
# note the subtle difference of two tuples order in jacrev and jacfwd for current API
|
|
635
|
-
# the value happen to be the same here, though
|
|
636
|
-
jacf4 = backend_jac(f4, argnums=(0, 1))
|
|
637
|
-
jacf4jit = tc.backend.jit(backend_jac(f4, argnums=(0, 1)))
|
|
638
|
-
np.testing.assert_allclose(jacf4jit(x, x)[1][1], np.eye(3), atol=1e-5)
|
|
639
|
-
np.testing.assert_allclose(jacf4jit(x, x)[0][1], np.zeros([3, 3]), atol=1e-5)
|
|
640
|
-
np.testing.assert_allclose(jacf4(x, x)[1][1], np.eye(3), atol=1e-5)
|
|
641
|
-
np.testing.assert_allclose(jacf4(x, x)[0][1], np.zeros([3, 3]), atol=1e-5)
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
645
|
-
@pytest.mark.parametrize("mode", ["jacfwd", "jacrev"])
|
|
646
|
-
def test_jac_md_input(backend, mode):
|
|
647
|
-
backend_jac = getattr(tc.backend, mode)
|
|
648
|
-
|
|
649
|
-
def f(x):
|
|
650
|
-
return x**2
|
|
651
|
-
|
|
652
|
-
x = tc.backend.ones([2, 3])
|
|
653
|
-
jacf = backend_jac(f)
|
|
654
|
-
np.testing.assert_allclose(jacf(x).shape, [2, 3, 2, 3], atol=1e-5)
|
|
655
|
-
|
|
656
|
-
def f2(x):
|
|
657
|
-
return tc.backend.sum(x, axis=0)
|
|
658
|
-
|
|
659
|
-
x = tc.backend.ones([2, 3])
|
|
660
|
-
jacf2 = backend_jac(f2)
|
|
661
|
-
np.testing.assert_allclose(jacf2(x).shape, [3, 2, 3], atol=1e-5)
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
665
|
-
@pytest.mark.parametrize("mode", ["jacfwd", "jacrev"])
|
|
666
|
-
def test_jac_tall(backend, mode):
|
|
667
|
-
backend_jac = getattr(tc.backend, mode)
|
|
668
|
-
|
|
669
|
-
h = tc.backend.ones([5, 3])
|
|
670
|
-
|
|
671
|
-
def f(x):
|
|
672
|
-
x = tc.backend.reshape(x, [-1, 1])
|
|
673
|
-
return tc.backend.reshape(h @ x, [-1])
|
|
674
|
-
|
|
675
|
-
x = tc.backend.ones([3])
|
|
676
|
-
jacf = backend_jac(f)
|
|
677
|
-
np.testing.assert_allclose(jacf(x), np.ones([5, 3]), atol=1e-5)
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
@pytest.mark.parametrize("backend", [lf("jaxb"), lf("tfb")])
|
|
681
|
-
def test_vvag_has_aux(backend):
|
|
682
|
-
def f(x):
|
|
683
|
-
y = tc.backend.sum(x)
|
|
684
|
-
return tc.backend.real(y**2), y
|
|
685
|
-
|
|
686
|
-
fvvag = tc.backend.vvag(f, has_aux=True)
|
|
687
|
-
(_, v1), _ = fvvag(tc.backend.ones([10, 2]))
|
|
688
|
-
np.testing.assert_allclose(v1, 2 * tc.backend.ones([10]))
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
def test_jax_svd(jaxb, highp):
|
|
692
|
-
def l(A):
|
|
693
|
-
u, _, v, _ = tc.backend.svd(A)
|
|
694
|
-
return tc.backend.real(u[0, 0] * v[0, 0])
|
|
695
|
-
|
|
696
|
-
def numericald(A):
|
|
697
|
-
eps = 1e-6
|
|
698
|
-
DA = np.zeros_like(A)
|
|
699
|
-
for i in range(A.shape[0]):
|
|
700
|
-
for j in range(A.shape[1]):
|
|
701
|
-
dA = np.zeros_like(A)
|
|
702
|
-
dA[i, j] = 1
|
|
703
|
-
DA[i, j] = (l(A + eps * dA) - l(A)) / eps - 1.0j * (
|
|
704
|
-
l(A + eps * 1.0j * dA) - l(A)
|
|
705
|
-
) / eps
|
|
706
|
-
return DA
|
|
707
|
-
|
|
708
|
-
def analyticald(A):
|
|
709
|
-
A = tc.backend.convert_to_tensor(A)
|
|
710
|
-
g = tc.backend.grad(l)
|
|
711
|
-
return g(A)
|
|
712
|
-
|
|
713
|
-
for shape in [(2, 2), (3, 3), (2, 3), (4, 2)]:
|
|
714
|
-
m = np.random.normal(size=shape).astype(
|
|
715
|
-
np.complex128
|
|
716
|
-
) + 1.0j * np.random.normal(size=shape).astype(np.complex128)
|
|
717
|
-
print(m)
|
|
718
|
-
np.testing.assert_allclose(numericald(m), analyticald(m), atol=1e-3)
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
@pytest.mark.parametrize("backend", [lf("jaxb"), lf("tfb"), lf("torchb")])
|
|
722
|
-
def test_qr(backend, highp):
|
|
723
|
-
def get_random_complex(shape):
|
|
724
|
-
result = np.random.random(shape) + np.random.random(shape) * 1j
|
|
725
|
-
return tc.backend.convert_to_tensor(result.astype(dtype))
|
|
726
|
-
|
|
727
|
-
np.random.seed(0)
|
|
728
|
-
A1 = get_random_complex((2, 2))
|
|
729
|
-
A2 = tc.backend.convert_to_tensor(np.array([[1.0, 0.0], [0.0, 0.0]]).astype(dtype))
|
|
730
|
-
X = get_random_complex((2, 2))
|
|
731
|
-
|
|
732
|
-
def func(A, x):
|
|
733
|
-
x = tc.backend.cast(x, "complex64")
|
|
734
|
-
Q, R = tc.backend.qr(A + X * x)
|
|
735
|
-
return tc.backend.real(tc.backend.sum(tc.backend.matmul(Q, R)))
|
|
736
|
-
|
|
737
|
-
def grad(A, x):
|
|
738
|
-
return tc.backend.grad(func, argnums=1)(A, x)
|
|
739
|
-
|
|
740
|
-
for A in [A1, A2]:
|
|
741
|
-
epsilon = tc.backend.convert_to_tensor(1e-3)
|
|
742
|
-
n_grad = (func(A, epsilon) - func(A, -epsilon)) / (2 * epsilon)
|
|
743
|
-
a_grad = grad(A, tc.backend.convert_to_tensor(0.0))
|
|
744
|
-
np.testing.assert_allclose(n_grad, a_grad, atol=1e-3)
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
748
|
-
def test_sparse_methods(backend):
|
|
749
|
-
values = tc.backend.convert_to_tensor(np.array([1.0, 2.0]))
|
|
750
|
-
values = tc.backend.cast(values, "complex64")
|
|
751
|
-
indices = tc.backend.convert_to_tensor(np.array([[0, 0], [1, 1]]))
|
|
752
|
-
indices = tc.backend.cast(indices, "int64")
|
|
753
|
-
spa = tc.backend.coo_sparse_matrix(indices, values, shape=[4, 4])
|
|
754
|
-
vec = tc.backend.ones([4, 1])
|
|
755
|
-
da = np.array(
|
|
756
|
-
[[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.complex64
|
|
757
|
-
)
|
|
758
|
-
assert tc.backend.is_sparse(spa) is True
|
|
759
|
-
assert tc.backend.is_sparse(vec) is False
|
|
760
|
-
np.testing.assert_allclose(
|
|
761
|
-
tc.backend.to_dense(spa),
|
|
762
|
-
da,
|
|
763
|
-
atol=1e-5,
|
|
764
|
-
)
|
|
765
|
-
np.testing.assert_allclose(
|
|
766
|
-
tc.backend.sparse_dense_matmul(spa, vec),
|
|
767
|
-
np.array([[1], [2], [0], [0]], dtype=np.complex64),
|
|
768
|
-
atol=1e-5,
|
|
769
|
-
)
|
|
770
|
-
spa_np = tc.backend.numpy(spa)
|
|
771
|
-
np.testing.assert_allclose(spa_np.todense(), da, atol=1e-6)
|
|
772
|
-
np.testing.assert_allclose(
|
|
773
|
-
tc.backend.to_dense(tc.backend.coo_sparse_matrix_from_numpy(spa_np)),
|
|
774
|
-
da,
|
|
775
|
-
atol=1e-5,
|
|
776
|
-
)
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
780
|
-
def test_backend_randoms_v2(backend):
|
|
781
|
-
g = tc.backend.get_random_state(42)
|
|
782
|
-
for t in tc.backend.stateful_randc(g, 3, [3]):
|
|
783
|
-
assert t >= 0
|
|
784
|
-
assert t < 3
|
|
785
|
-
key = tc.backend.get_random_state(42)
|
|
786
|
-
r = []
|
|
787
|
-
for _ in range(2):
|
|
788
|
-
key, subkey = tc.backend.random_split(key)
|
|
789
|
-
r.append(tc.backend.stateful_randc(subkey, 3, [5]))
|
|
790
|
-
assert tuple(r[0]) != tuple(r[1])
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
794
|
-
def test_backend_randoms_v3(backend):
|
|
795
|
-
tc.backend.set_random_state(42)
|
|
796
|
-
for _ in range(2):
|
|
797
|
-
r1 = tc.backend.implicit_randu()
|
|
798
|
-
key = tc.backend.get_random_state(42)
|
|
799
|
-
for _ in range(2):
|
|
800
|
-
key, subkey = tc.backend.random_split(key)
|
|
801
|
-
r2 = tc.backend.stateful_randu(subkey)
|
|
802
|
-
np.testing.assert_allclose(r1, r2, atol=1e-5)
|
|
803
|
-
|
|
804
|
-
@tc.backend.jit
|
|
805
|
-
def f(key):
|
|
806
|
-
tc.backend.set_random_state(key)
|
|
807
|
-
r = []
|
|
808
|
-
for _ in range(3):
|
|
809
|
-
r.append(tc.backend.implicit_randu()[0])
|
|
810
|
-
return r
|
|
811
|
-
|
|
812
|
-
@tc.backend.jit
|
|
813
|
-
def f2(key):
|
|
814
|
-
r = []
|
|
815
|
-
for _ in range(3):
|
|
816
|
-
key, subkey = tc.backend.random_split(key)
|
|
817
|
-
r.append(tc.backend.stateful_randu(subkey)[0])
|
|
818
|
-
return r
|
|
819
|
-
|
|
820
|
-
key = tc.backend.get_random_state(43)
|
|
821
|
-
r = f(key)
|
|
822
|
-
key = tc.backend.get_random_state(43)
|
|
823
|
-
r1 = f2(key)
|
|
824
|
-
np.testing.assert_allclose(r[-1], r1[-1], atol=1e-5)
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
828
|
-
def test_function_level_set(backend):
|
|
829
|
-
def f(x):
|
|
830
|
-
return tc.backend.ones([x])
|
|
831
|
-
|
|
832
|
-
f_jax_128 = tc.set_function_backend("jax")(tc.set_function_dtype("complex128")(f))
|
|
833
|
-
# note the order to enable complex 128 in jax backend
|
|
834
|
-
|
|
835
|
-
assert f_jax_128(3).dtype.__str__() == "complex128"
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
839
|
-
def test_function_level_set_contractor(backend):
|
|
840
|
-
@tc.set_function_contractor("branch")
|
|
841
|
-
def f():
|
|
842
|
-
return tc.contractor
|
|
843
|
-
|
|
844
|
-
print(f())
|
|
845
|
-
print(tc.contractor)
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
849
|
-
def test_with_level_set(backend):
|
|
850
|
-
with tc.runtime_backend("jax"):
|
|
851
|
-
with tc.runtime_dtype("complex128"):
|
|
852
|
-
with tc.runtime_contractor("branch"):
|
|
853
|
-
assert tc.backend.ones([2]).dtype.__str__() == "complex128"
|
|
854
|
-
print(tc.contractor)
|
|
855
|
-
print(tc.contractor)
|
|
856
|
-
print(tc.backend.name)
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb")])
|
|
860
|
-
def test_with_level_set_return(backend):
|
|
861
|
-
with tc.runtime_backend("jax") as K:
|
|
862
|
-
assert K.name == "jax"
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
866
|
-
def test_grad_has_aux(backend):
|
|
867
|
-
def f(x):
|
|
868
|
-
return tc.backend.real(x**2), x**3
|
|
869
|
-
|
|
870
|
-
vg = tc.backend.value_and_grad(f, has_aux=True)
|
|
871
|
-
|
|
872
|
-
np.testing.assert_allclose(
|
|
873
|
-
vg(tc.backend.ones([]))[1], 2 * tc.backend.ones([]), atol=1e-5
|
|
874
|
-
)
|
|
875
|
-
|
|
876
|
-
def f2(x):
|
|
877
|
-
return tc.backend.real(x**2), (x**3, tc.backend.ones([3]))
|
|
878
|
-
|
|
879
|
-
gs = tc.backend.grad(f2, has_aux=True)
|
|
880
|
-
np.testing.assert_allclose(gs(tc.backend.ones([]))[0], 2.0, atol=1e-5)
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("jaxb"), lf("tfb")])
|
|
884
|
-
def test_solve(backend):
|
|
885
|
-
A = np.array([[2, 1, 0], [1, 2, 0], [0, 0, 1]], dtype=np.float32)
|
|
886
|
-
A = tc.backend.convert_to_tensor(A)
|
|
887
|
-
x = np.ones([3, 1], dtype=np.float32)
|
|
888
|
-
x = tc.backend.convert_to_tensor(x)
|
|
889
|
-
b = (A @ x)[:, 0]
|
|
890
|
-
print(A.shape, b.shape)
|
|
891
|
-
xp = tc.backend.solve(A, b, assume_a="her")
|
|
892
|
-
np.testing.assert_allclose(xp, x[:, 0], atol=1e-5)
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
@pytest.mark.parametrize("backend", [lf("npb"), lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
896
|
-
def test_treeutils(backend):
|
|
897
|
-
d0 = {"a": np.ones([2]), "b": [tc.backend.zeros([]), tc.backend.ones([1, 1])]}
|
|
898
|
-
leaves, treedef = tc.backend.tree_flatten(d0)
|
|
899
|
-
d1 = tc.backend.tree_unflatten(treedef, leaves)
|
|
900
|
-
d2 = tc.backend.tree_map(lambda x: 2 * x, d1)
|
|
901
|
-
np.testing.assert_allclose(2 * np.ones([1, 1]), d2["b"][1])
|
|
902
|
-
|
|
903
|
-
|
|
904
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb"), lf("torchb")])
|
|
905
|
-
def test_optimizers(backend):
|
|
906
|
-
if tc.backend.name == "jax":
|
|
907
|
-
try:
|
|
908
|
-
import optax
|
|
909
|
-
except ImportError:
|
|
910
|
-
pytest.skip("optax is not installed")
|
|
911
|
-
|
|
912
|
-
if tc.backend.name == "pytorch":
|
|
913
|
-
try:
|
|
914
|
-
import torch
|
|
915
|
-
except ImportError:
|
|
916
|
-
pytest.skip("torch is not installed")
|
|
917
|
-
|
|
918
|
-
def f(params, n):
|
|
919
|
-
c = tc.Circuit(n)
|
|
920
|
-
c = tc.templates.blocks.example_block(c, params["a"])
|
|
921
|
-
c = tc.templates.blocks.example_block(c, params["b"])
|
|
922
|
-
return tc.backend.real(c.expectation([tc.gates.x(), [n // 2]]))
|
|
923
|
-
|
|
924
|
-
vgs = tc.backend.jit(tc.backend.value_and_grad(f, argnums=0), static_argnums=1)
|
|
925
|
-
|
|
926
|
-
def get_opt():
|
|
927
|
-
if tc.backend.name == "tensorflow":
|
|
928
|
-
optimizer1 = tf.keras.optimizers.Adam(5e-2)
|
|
929
|
-
opt = tc.backend.optimizer(optimizer1)
|
|
930
|
-
elif tc.backend.name == "jax":
|
|
931
|
-
optimizer2 = optax.adam(5e-2)
|
|
932
|
-
opt = tc.backend.optimizer(optimizer2)
|
|
933
|
-
elif tc.backend.name == "pytorch":
|
|
934
|
-
optimizer3 = partial(torch.optim.Adam, lr=5e-2)
|
|
935
|
-
opt = tc.backend.optimizer(optimizer3)
|
|
936
|
-
else:
|
|
937
|
-
raise ValueError("%s doesn't support optimizer interface" % tc.backend.name)
|
|
938
|
-
return opt
|
|
939
|
-
|
|
940
|
-
n = 3
|
|
941
|
-
opt = get_opt()
|
|
942
|
-
|
|
943
|
-
params = {
|
|
944
|
-
"a": tc.backend.ones([4, n], dtype="float32"),
|
|
945
|
-
"b": tc.backend.ones([4, n], dtype="float32"),
|
|
946
|
-
}
|
|
947
|
-
|
|
948
|
-
for _ in range(20):
|
|
949
|
-
loss, grads = vgs(params, n)
|
|
950
|
-
params = opt.update(grads, params)
|
|
951
|
-
print(loss)
|
|
952
|
-
|
|
953
|
-
assert loss < -0.7
|
|
954
|
-
|
|
955
|
-
def f2(params, n):
|
|
956
|
-
c = tc.Circuit(n)
|
|
957
|
-
c = tc.templates.blocks.example_block(c, params)
|
|
958
|
-
return tc.backend.real(c.expectation([tc.gates.x(), [n // 2]]))
|
|
959
|
-
|
|
960
|
-
vgs2 = tc.backend.jit(tc.backend.value_and_grad(f2, argnums=0), static_argnums=1)
|
|
961
|
-
|
|
962
|
-
params = tc.backend.ones([4, n], dtype="float32")
|
|
963
|
-
opt = get_opt()
|
|
964
|
-
|
|
965
|
-
for _ in range(20):
|
|
966
|
-
loss, grads = vgs2(params, n)
|
|
967
|
-
params = opt.update(grads, params)
|
|
968
|
-
print(loss)
|
|
969
|
-
|
|
970
|
-
assert loss < -0.7
|
|
971
|
-
|
|
972
|
-
|
|
973
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
974
|
-
def test_hessian(backend):
|
|
975
|
-
# hessian support is now very fragile and especially has potential issues on tf backend
|
|
976
|
-
def f(param):
|
|
977
|
-
return tc.backend.sum(param**2)
|
|
978
|
-
|
|
979
|
-
hf = tc.backend.hessian(f)
|
|
980
|
-
param = tc.backend.ones([2])
|
|
981
|
-
np.testing.assert_allclose(hf(param), 2 * tc.backend.eye(2), atol=1e-5)
|
|
982
|
-
|
|
983
|
-
param = tc.backend.ones([2, 2])
|
|
984
|
-
assert list(hf(param).shape) == [2, 2, 2, 2] # possible tf retracing?
|
|
985
|
-
|
|
986
|
-
g = tc.templates.graphs.Line1D(5)
|
|
987
|
-
|
|
988
|
-
def circuit_f(param):
|
|
989
|
-
c = tc.Circuit(5)
|
|
990
|
-
c = tc.templates.blocks.example_block(c, param, nlayers=1)
|
|
991
|
-
return tc.templates.measurements.heisenberg_measurements(c, g)
|
|
992
|
-
|
|
993
|
-
param = tc.backend.ones([10])
|
|
994
|
-
hf = tc.backend.hessian(circuit_f)
|
|
995
|
-
print(hf(param)) # still upto a conjugate for jax and tf backend.
|
|
996
|
-
|
|
997
|
-
|
|
998
|
-
@pytest.mark.parametrize("backend", [lf("tfb"), lf("jaxb")])
|
|
999
|
-
def test_nested_vmap(backend):
|
|
1000
|
-
def f(x, w):
|
|
1001
|
-
c = tc.Circuit(4)
|
|
1002
|
-
for i in range(4):
|
|
1003
|
-
c.rx(i, theta=x[i])
|
|
1004
|
-
c.ry(i, theta=w[i])
|
|
1005
|
-
return tc.backend.stack([c.expectation_ps(z=[i]) for i in range(4)])
|
|
1006
|
-
|
|
1007
|
-
def fa1(*args):
|
|
1008
|
-
r = tc.backend.vmap(f, vectorized_argnums=1)(*args)
|
|
1009
|
-
return r
|
|
1010
|
-
|
|
1011
|
-
def fa2(*args):
|
|
1012
|
-
r = tc.backend.vmap(fa1, vectorized_argnums=0)(*args)
|
|
1013
|
-
return r
|
|
1014
|
-
|
|
1015
|
-
fa2jit = tc.backend.jit(fa2)
|
|
1016
|
-
|
|
1017
|
-
ya = fa2(tc.backend.ones([3, 4]), tc.backend.ones([7, 4]))
|
|
1018
|
-
yajit = fa2jit(tc.backend.ones([3, 4]), tc.backend.ones([7, 4]))
|
|
1019
|
-
|
|
1020
|
-
def fb1(*args):
|
|
1021
|
-
r = tc.backend.vmap(f, vectorized_argnums=0)(*args)
|
|
1022
|
-
return r
|
|
1023
|
-
|
|
1024
|
-
def fb2(*args):
|
|
1025
|
-
r = tc.backend.vmap(fb1, vectorized_argnums=1)(*args)
|
|
1026
|
-
return r
|
|
1027
|
-
|
|
1028
|
-
fb2jit = tc.backend.jit(fb2)
|
|
1029
|
-
|
|
1030
|
-
yb = fb2(tc.backend.ones([3, 4]), tc.backend.ones([7, 4]))
|
|
1031
|
-
ybjit = fb2jit(tc.backend.ones([3, 4]), tc.backend.ones([7, 4]))
|
|
1032
|
-
|
|
1033
|
-
np.testing.assert_allclose(ya, tc.backend.transpose(yb, [1, 0, 2]), atol=1e-5)
|
|
1034
|
-
np.testing.assert_allclose(ya, yajit, atol=1e-5)
|
|
1035
|
-
np.testing.assert_allclose(yajit, tc.backend.transpose(ybjit, [1, 0, 2]), atol=1e-5)
|