tabpfn-time-series 1.0.4__py3-none-any.whl → 1.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tabpfn_time_series/predictor.py +2 -0
- {tabpfn_time_series-1.0.4.dist-info → tabpfn_time_series-1.0.5.dist-info}/METADATA +32 -1
- {tabpfn_time_series-1.0.4.dist-info → tabpfn_time_series-1.0.5.dist-info}/RECORD +5 -5
- {tabpfn_time_series-1.0.4.dist-info → tabpfn_time_series-1.0.5.dist-info}/WHEEL +0 -0
- {tabpfn_time_series-1.0.4.dist-info → tabpfn_time_series-1.0.5.dist-info}/licenses/LICENSE.txt +0 -0
tabpfn_time_series/predictor.py
CHANGED
@@ -8,6 +8,7 @@ from tabpfn_time_series.tabpfn_worker import (
|
|
8
8
|
MockTabPFN,
|
9
9
|
)
|
10
10
|
from tabpfn_time_series.defaults import TABPFN_TS_DEFAULT_CONFIG
|
11
|
+
from tabpfn_common_utils.telemetry import set_extension
|
11
12
|
|
12
13
|
logger = logging.getLogger(__name__)
|
13
14
|
|
@@ -18,6 +19,7 @@ class TabPFNMode(Enum):
|
|
18
19
|
MOCK = "tabpfn-mock"
|
19
20
|
|
20
21
|
|
22
|
+
@set_extension("time-series")
|
21
23
|
class TabPFNTimeSeriesPredictor:
|
22
24
|
"""
|
23
25
|
Given a TimeSeriesDataFrame (multiple time series), perform prediction on each time series individually.
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: tabpfn_time_series
|
3
|
-
Version: 1.0.
|
3
|
+
Version: 1.0.5
|
4
4
|
Summary: Zero-shot time series forecasting with TabPFNv2
|
5
5
|
Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
|
6
6
|
Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
|
@@ -18,6 +18,7 @@ Requires-Dist: python-dotenv>=1.1.0
|
|
18
18
|
Requires-Dist: pyyaml>=6.0.1
|
19
19
|
Requires-Dist: statsmodels>=0.14.5
|
20
20
|
Requires-Dist: tabpfn-client>=0.1.7
|
21
|
+
Requires-Dist: tabpfn-common-utils[telemetry-interactive]>=0.2.2
|
21
22
|
Requires-Dist: tabpfn>=2.0.9
|
22
23
|
Requires-Dist: tqdm
|
23
24
|
Provides-Extra: dev
|
@@ -98,3 +99,33 @@ uv pip install -e ".[dev]"
|
|
98
99
|
[](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
|
99
100
|
|
100
101
|
The demo should explain it all. 😉
|
102
|
+
|
103
|
+
## 📊 Anonymous Telemetry
|
104
|
+
|
105
|
+
This project collects **anonymous usage telemetry** by default.
|
106
|
+
|
107
|
+
The data is used exclusively to help us understand how the library is being used and to guide future improvements.
|
108
|
+
|
109
|
+
- **No personal data is collected**
|
110
|
+
- **No code, model inputs, or outputs are ever sent**
|
111
|
+
- **Data is strictly anonymous and cannot be linked to individuals**
|
112
|
+
|
113
|
+
### What we collect
|
114
|
+
We only collect high-level, non-identifying information such as:
|
115
|
+
- Package version
|
116
|
+
- Python version
|
117
|
+
- How often fit and inference are called, including simple metadata like the dimensionality of the input and the type of task (e.g., classification vs. regression) (:warning: never the data itself)
|
118
|
+
|
119
|
+
See the [Telemetry documentation](https://github.com/priorlabs/tabpfn/blob/main/TELEMETRY.md) for the full details of events and metadata.
|
120
|
+
|
121
|
+
This data is processed in compliance with the **General Data Protection Regulation (GDPR)** principles of data minimization and purpose limitation.
|
122
|
+
|
123
|
+
For more details, please see our [Privacy Policy](https://priorlabs.ai/privacy_policy/).
|
124
|
+
|
125
|
+
### How to opt out
|
126
|
+
If you prefer not to send telemetry, you can disable it by setting the following environment variable:
|
127
|
+
|
128
|
+
```bash
|
129
|
+
export TABPFN_DISABLE_TELEMETRY=1
|
130
|
+
```
|
131
|
+
---
|
@@ -2,7 +2,7 @@ tabpfn_time_series/__init__.py,sha256=XJXSKqWp3AF9mAaWi-4KCgHQG7NzNTaBkLOYOMxvhS
|
|
2
2
|
tabpfn_time_series/data_preparation.py,sha256=wWjSaKgV9KqKonMtSuDbYnW59ixflrScKIP_HSJ_MlA,5427
|
3
3
|
tabpfn_time_series/defaults.py,sha256=ki1y38FR4zmbHWgRjcryA5T88GzNMwhlZC-sTRjuK2U,248
|
4
4
|
tabpfn_time_series/plot.py,sha256=UXgLR2S94vi-vv1ArQKI6uYl_QwSAwAau5jFzGmQ7hw,6582
|
5
|
-
tabpfn_time_series/predictor.py,sha256=
|
5
|
+
tabpfn_time_series/predictor.py,sha256=6R9Pb-8jD2jZp0nw1VOQFudJ7i676hwcUh96NRQRhOI,1609
|
6
6
|
tabpfn_time_series/tabpfn_worker.py,sha256=k6td4Ml0E3Xr1gERze-S0kyvBB6q_hbLMzvSurdaSp0,11589
|
7
7
|
tabpfn_time_series/ts_dataframe.py,sha256=X94mssw_mSFedjplG55hjwTzKj8mM3VwWynveX3fegA,52834
|
8
8
|
tabpfn_time_series/features/__init__.py,sha256=lzdZWkEfntfg3ZHqNNbfbg-3o_VIzju0tebdRu3AzF4,421
|
@@ -10,7 +10,7 @@ tabpfn_time_series/features/auto_features.py,sha256=3OqqY2h7umcoLjLx4hOXypLTjwzr
|
|
10
10
|
tabpfn_time_series/features/basic_features.py,sha256=OV3B__S30-CX88vGjwYQDWqAbJajQw80PxcnvJVUbm4,2955
|
11
11
|
tabpfn_time_series/features/feature_generator_base.py,sha256=jtySWLJyX4E31v6CbX44EHa8cdz7OMyauf4ltNEQeAQ,534
|
12
12
|
tabpfn_time_series/features/feature_transformer.py,sha256=JzxswTGRGlt00QoYFyvAILlUVD68njdvoU3v-phnyi8,1774
|
13
|
-
tabpfn_time_series-1.0.
|
14
|
-
tabpfn_time_series-1.0.
|
15
|
-
tabpfn_time_series-1.0.
|
16
|
-
tabpfn_time_series-1.0.
|
13
|
+
tabpfn_time_series-1.0.5.dist-info/METADATA,sha256=tYxI37YfTs2irkka6-LmSNMOAvoyR6llSTNVcnbh_A8,6254
|
14
|
+
tabpfn_time_series-1.0.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
15
|
+
tabpfn_time_series-1.0.5.dist-info/licenses/LICENSE.txt,sha256=iwhPL7kIWQG6gyLZZwIMDItGrNgxMDIq9itxkUSMapY,11345
|
16
|
+
tabpfn_time_series-1.0.5.dist-info/RECORD,,
|
File without changes
|
{tabpfn_time_series-1.0.4.dist-info → tabpfn_time_series-1.0.5.dist-info}/licenses/LICENSE.txt
RENAMED
File without changes
|