tabpfn-time-series 1.0.4__py3-none-any.whl → 1.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,6 +8,7 @@ from tabpfn_time_series.tabpfn_worker import (
8
8
  MockTabPFN,
9
9
  )
10
10
  from tabpfn_time_series.defaults import TABPFN_TS_DEFAULT_CONFIG
11
+ from tabpfn_common_utils.telemetry import set_extension
11
12
 
12
13
  logger = logging.getLogger(__name__)
13
14
 
@@ -18,6 +19,7 @@ class TabPFNMode(Enum):
18
19
  MOCK = "tabpfn-mock"
19
20
 
20
21
 
22
+ @set_extension("time-series")
21
23
  class TabPFNTimeSeriesPredictor:
22
24
  """
23
25
  Given a TimeSeriesDataFrame (multiple time series), perform prediction on each time series individually.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tabpfn_time_series
3
- Version: 1.0.4
3
+ Version: 1.0.5
4
4
  Summary: Zero-shot time series forecasting with TabPFNv2
5
5
  Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
6
6
  Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
@@ -18,6 +18,7 @@ Requires-Dist: python-dotenv>=1.1.0
18
18
  Requires-Dist: pyyaml>=6.0.1
19
19
  Requires-Dist: statsmodels>=0.14.5
20
20
  Requires-Dist: tabpfn-client>=0.1.7
21
+ Requires-Dist: tabpfn-common-utils[telemetry-interactive]>=0.2.2
21
22
  Requires-Dist: tabpfn>=2.0.9
22
23
  Requires-Dist: tqdm
23
24
  Provides-Extra: dev
@@ -98,3 +99,33 @@ uv pip install -e ".[dev]"
98
99
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
99
100
 
100
101
  The demo should explain it all. 😉
102
+
103
+ ## 📊 Anonymous Telemetry
104
+
105
+ This project collects **anonymous usage telemetry** by default.
106
+
107
+ The data is used exclusively to help us understand how the library is being used and to guide future improvements.
108
+
109
+ - **No personal data is collected**
110
+ - **No code, model inputs, or outputs are ever sent**
111
+ - **Data is strictly anonymous and cannot be linked to individuals**
112
+
113
+ ### What we collect
114
+ We only collect high-level, non-identifying information such as:
115
+ - Package version
116
+ - Python version
117
+ - How often fit and inference are called, including simple metadata like the dimensionality of the input and the type of task (e.g., classification vs. regression) (:warning: never the data itself)
118
+
119
+ See the [Telemetry documentation](https://github.com/priorlabs/tabpfn/blob/main/TELEMETRY.md) for the full details of events and metadata.
120
+
121
+ This data is processed in compliance with the **General Data Protection Regulation (GDPR)** principles of data minimization and purpose limitation.
122
+
123
+ For more details, please see our [Privacy Policy](https://priorlabs.ai/privacy_policy/).
124
+
125
+ ### How to opt out
126
+ If you prefer not to send telemetry, you can disable it by setting the following environment variable:
127
+
128
+ ```bash
129
+ export TABPFN_DISABLE_TELEMETRY=1
130
+ ```
131
+ ---
@@ -2,7 +2,7 @@ tabpfn_time_series/__init__.py,sha256=XJXSKqWp3AF9mAaWi-4KCgHQG7NzNTaBkLOYOMxvhS
2
2
  tabpfn_time_series/data_preparation.py,sha256=wWjSaKgV9KqKonMtSuDbYnW59ixflrScKIP_HSJ_MlA,5427
3
3
  tabpfn_time_series/defaults.py,sha256=ki1y38FR4zmbHWgRjcryA5T88GzNMwhlZC-sTRjuK2U,248
4
4
  tabpfn_time_series/plot.py,sha256=UXgLR2S94vi-vv1ArQKI6uYl_QwSAwAau5jFzGmQ7hw,6582
5
- tabpfn_time_series/predictor.py,sha256=2wnBAHfU5sOSJoHUm65Ej8tJjA4jGYP8yHvWeo1MzyA,1523
5
+ tabpfn_time_series/predictor.py,sha256=6R9Pb-8jD2jZp0nw1VOQFudJ7i676hwcUh96NRQRhOI,1609
6
6
  tabpfn_time_series/tabpfn_worker.py,sha256=k6td4Ml0E3Xr1gERze-S0kyvBB6q_hbLMzvSurdaSp0,11589
7
7
  tabpfn_time_series/ts_dataframe.py,sha256=X94mssw_mSFedjplG55hjwTzKj8mM3VwWynveX3fegA,52834
8
8
  tabpfn_time_series/features/__init__.py,sha256=lzdZWkEfntfg3ZHqNNbfbg-3o_VIzju0tebdRu3AzF4,421
@@ -10,7 +10,7 @@ tabpfn_time_series/features/auto_features.py,sha256=3OqqY2h7umcoLjLx4hOXypLTjwzr
10
10
  tabpfn_time_series/features/basic_features.py,sha256=OV3B__S30-CX88vGjwYQDWqAbJajQw80PxcnvJVUbm4,2955
11
11
  tabpfn_time_series/features/feature_generator_base.py,sha256=jtySWLJyX4E31v6CbX44EHa8cdz7OMyauf4ltNEQeAQ,534
12
12
  tabpfn_time_series/features/feature_transformer.py,sha256=JzxswTGRGlt00QoYFyvAILlUVD68njdvoU3v-phnyi8,1774
13
- tabpfn_time_series-1.0.4.dist-info/METADATA,sha256=n7fvApkQVQYw_N4aFC6wuOaMxNsr5Lqa9l7nEyhuL6g,4947
14
- tabpfn_time_series-1.0.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
15
- tabpfn_time_series-1.0.4.dist-info/licenses/LICENSE.txt,sha256=iwhPL7kIWQG6gyLZZwIMDItGrNgxMDIq9itxkUSMapY,11345
16
- tabpfn_time_series-1.0.4.dist-info/RECORD,,
13
+ tabpfn_time_series-1.0.5.dist-info/METADATA,sha256=tYxI37YfTs2irkka6-LmSNMOAvoyR6llSTNVcnbh_A8,6254
14
+ tabpfn_time_series-1.0.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
15
+ tabpfn_time_series-1.0.5.dist-info/licenses/LICENSE.txt,sha256=iwhPL7kIWQG6gyLZZwIMDItGrNgxMDIq9itxkUSMapY,11345
16
+ tabpfn_time_series-1.0.5.dist-info/RECORD,,