synth-ai 0.1.9__py3-none-any.whl → 0.2.1.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (266) hide show
  1. synth_ai/__init__.py +28 -2
  2. synth_ai/core/system.py +4 -0
  3. synth_ai/environments/__init__.py +35 -0
  4. synth_ai/environments/environment/__init__.py +1 -0
  5. synth_ai/environments/environment/artifacts/__init__.py +1 -0
  6. synth_ai/environments/environment/artifacts/base.py +50 -0
  7. synth_ai/environments/environment/core.py +22 -0
  8. synth_ai/environments/environment/db/__init__.py +1 -0
  9. synth_ai/environments/environment/db/sqlite.py +45 -0
  10. synth_ai/environments/environment/registry.py +24 -0
  11. synth_ai/environments/environment/resources/sqlite.py +46 -0
  12. synth_ai/environments/environment/results.py +1 -0
  13. synth_ai/environments/environment/rewards/__init__.py +1 -0
  14. synth_ai/environments/environment/rewards/core.py +28 -0
  15. synth_ai/environments/environment/shared_engine.py +26 -0
  16. synth_ai/environments/environment/tools/__init__.py +34 -0
  17. synth_ai/environments/examples/__init__.py +1 -0
  18. synth_ai/environments/examples/crafter_classic/__init__.py +8 -0
  19. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +58 -0
  20. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
  21. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
  22. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +51 -0
  23. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +872 -0
  24. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
  25. synth_ai/environments/examples/crafter_classic/agent_demos/test_crafter_react_agent.py +1110 -0
  26. synth_ai/environments/examples/crafter_classic/config_logging.py +111 -0
  27. synth_ai/environments/examples/crafter_classic/engine.py +502 -0
  28. synth_ai/environments/examples/crafter_classic/engine_deterministic_patch.py +63 -0
  29. synth_ai/environments/examples/crafter_classic/engine_helpers/action_map.py +5 -0
  30. synth_ai/environments/examples/crafter_classic/engine_helpers/serialization.py +74 -0
  31. synth_ai/environments/examples/crafter_classic/environment.py +255 -0
  32. synth_ai/environments/examples/crafter_classic/taskset.py +228 -0
  33. synth_ai/environments/examples/enron/agent_demos/test_synth_react.py +535 -0
  34. synth_ai/environments/examples/enron/art_helpers/email_search_tools.py +156 -0
  35. synth_ai/environments/examples/enron/art_helpers/local_email_db.py +280 -0
  36. synth_ai/environments/examples/enron/art_helpers/types_enron.py +24 -0
  37. synth_ai/environments/examples/enron/engine.py +291 -0
  38. synth_ai/environments/examples/enron/environment.py +165 -0
  39. synth_ai/environments/examples/enron/taskset.py +112 -0
  40. synth_ai/environments/examples/enron/units/keyword_stats.py +111 -0
  41. synth_ai/environments/examples/enron/units/test_email_index.py +8 -0
  42. synth_ai/environments/examples/minigrid/__init__.py +48 -0
  43. synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
  44. synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +47 -0
  45. synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
  46. synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +220 -0
  47. synth_ai/environments/examples/minigrid/agent_demos/test_minigrid_react_agent.py +393 -0
  48. synth_ai/environments/examples/minigrid/engine.py +589 -0
  49. synth_ai/environments/examples/minigrid/environment.py +274 -0
  50. synth_ai/environments/examples/minigrid/environment_mapping.py +242 -0
  51. synth_ai/environments/examples/minigrid/puzzle_loader.py +416 -0
  52. synth_ai/environments/examples/minigrid/taskset.py +583 -0
  53. synth_ai/environments/examples/minigrid/units/test_action_behavior.py +226 -0
  54. synth_ai/environments/examples/minigrid/units/test_debug_messages.py +83 -0
  55. synth_ai/environments/examples/minigrid/units/test_exploration.py +120 -0
  56. synth_ai/environments/examples/minigrid/units/test_minigrid_engine.py +214 -0
  57. synth_ai/environments/examples/minigrid/units/test_minigrid_environment.py +238 -0
  58. synth_ai/environments/examples/minigrid/units/test_minigrid_environment_mapping.py +301 -0
  59. synth_ai/environments/examples/minigrid/units/test_minigrid_taskset.py +210 -0
  60. synth_ai/environments/examples/nethack/__init__.py +7 -0
  61. synth_ai/environments/examples/nethack/achievements.py +337 -0
  62. synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
  63. synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
  64. synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +832 -0
  65. synth_ai/environments/examples/nethack/agent_demos/test_nethack_react_agent.py +1112 -0
  66. synth_ai/environments/examples/nethack/engine.py +738 -0
  67. synth_ai/environments/examples/nethack/environment.py +255 -0
  68. synth_ai/environments/examples/nethack/helpers/__init__.py +42 -0
  69. synth_ai/environments/examples/nethack/helpers/action_mapping.py +301 -0
  70. synth_ai/environments/examples/nethack/helpers/nle_wrapper.py +401 -0
  71. synth_ai/environments/examples/nethack/helpers/observation_utils.py +433 -0
  72. synth_ai/environments/examples/nethack/helpers/recording_wrapper.py +201 -0
  73. synth_ai/environments/examples/nethack/helpers/trajectory_recorder.py +268 -0
  74. synth_ai/environments/examples/nethack/helpers/visualization/replay_viewer.py +308 -0
  75. synth_ai/environments/examples/nethack/helpers/visualization/visualizer.py +430 -0
  76. synth_ai/environments/examples/nethack/taskset.py +323 -0
  77. synth_ai/environments/examples/nethack/units/test_nethack_engine.py +277 -0
  78. synth_ai/environments/examples/nethack/units/test_nethack_environment.py +281 -0
  79. synth_ai/environments/examples/nethack/units/test_nethack_taskset.py +213 -0
  80. synth_ai/environments/examples/nethack/units/test_recording.py +307 -0
  81. synth_ai/environments/examples/red/__init__.py +7 -0
  82. synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
  83. synth_ai/environments/examples/red/agent_demos/test_synth_react.py +1471 -0
  84. synth_ai/environments/examples/red/config_logging.py +110 -0
  85. synth_ai/environments/examples/red/engine.py +693 -0
  86. synth_ai/environments/examples/red/engine_helpers/__init__.py +1 -0
  87. synth_ai/environments/examples/red/engine_helpers/memory_map.py +28 -0
  88. synth_ai/environments/examples/red/engine_helpers/reward_components.py +275 -0
  89. synth_ai/environments/examples/red/engine_helpers/reward_library/__init__.py +142 -0
  90. synth_ai/environments/examples/red/engine_helpers/reward_library/adaptive_rewards.py +56 -0
  91. synth_ai/environments/examples/red/engine_helpers/reward_library/battle_rewards.py +283 -0
  92. synth_ai/environments/examples/red/engine_helpers/reward_library/composite_rewards.py +149 -0
  93. synth_ai/environments/examples/red/engine_helpers/reward_library/economy_rewards.py +137 -0
  94. synth_ai/environments/examples/red/engine_helpers/reward_library/efficiency_rewards.py +56 -0
  95. synth_ai/environments/examples/red/engine_helpers/reward_library/exploration_rewards.py +330 -0
  96. synth_ai/environments/examples/red/engine_helpers/reward_library/novelty_rewards.py +120 -0
  97. synth_ai/environments/examples/red/engine_helpers/reward_library/pallet_town_rewards.py +558 -0
  98. synth_ai/environments/examples/red/engine_helpers/reward_library/pokemon_rewards.py +312 -0
  99. synth_ai/environments/examples/red/engine_helpers/reward_library/social_rewards.py +147 -0
  100. synth_ai/environments/examples/red/engine_helpers/reward_library/story_rewards.py +246 -0
  101. synth_ai/environments/examples/red/engine_helpers/screen_analysis.py +367 -0
  102. synth_ai/environments/examples/red/engine_helpers/state_extraction.py +139 -0
  103. synth_ai/environments/examples/red/environment.py +235 -0
  104. synth_ai/environments/examples/red/taskset.py +77 -0
  105. synth_ai/environments/examples/red/test_fixes.py +125 -0
  106. synth_ai/environments/examples/red/test_fixes_mock.py +148 -0
  107. synth_ai/environments/examples/red/units/__init__.py +1 -0
  108. synth_ai/environments/examples/red/units/test_basic_functionality.py +97 -0
  109. synth_ai/environments/examples/red/units/test_button_press_requirements.py +217 -0
  110. synth_ai/environments/examples/red/units/test_engine.py +192 -0
  111. synth_ai/environments/examples/red/units/test_environment.py +455 -0
  112. synth_ai/environments/examples/red/units/test_exploration_strategy.py +227 -0
  113. synth_ai/environments/examples/red/units/test_integration.py +217 -0
  114. synth_ai/environments/examples/red/units/test_memory_extraction.py +111 -0
  115. synth_ai/environments/examples/red/units/test_menu_bug_reproduction.py +1100 -0
  116. synth_ai/environments/examples/red/units/test_movement_debug.py +255 -0
  117. synth_ai/environments/examples/red/units/test_pokemon_mcts_debug.py +163 -0
  118. synth_ai/environments/examples/red/units/test_pokemon_mcts_verbose.py +117 -0
  119. synth_ai/environments/examples/red/units/test_red_basic.py +145 -0
  120. synth_ai/environments/examples/red/units/test_red_comprehensive.py +323 -0
  121. synth_ai/environments/examples/red/units/test_retry_movement.py +195 -0
  122. synth_ai/environments/examples/red/units/test_reward_components.py +186 -0
  123. synth_ai/environments/examples/red/units/test_rom_integration.py +260 -0
  124. synth_ai/environments/examples/red/units/test_taskset.py +116 -0
  125. synth_ai/environments/examples/red/units/test_tree.py +448 -0
  126. synth_ai/environments/examples/sokoban/__init__.py +1 -0
  127. synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +900 -0
  128. synth_ai/environments/examples/sokoban/agent_demos/test_dspy_react.py +1 -0
  129. synth_ai/environments/examples/sokoban/agent_demos/test_sokoban_react_agent.py +498 -0
  130. synth_ai/environments/examples/sokoban/agent_demos/test_synth_lats.py +1 -0
  131. synth_ai/environments/examples/sokoban/agent_demos/test_synth_react_locally.py +748 -0
  132. synth_ai/environments/examples/sokoban/agent_demos/test_synth_react_service.py +296 -0
  133. synth_ai/environments/examples/sokoban/engine.py +675 -0
  134. synth_ai/environments/examples/sokoban/engine_helpers/__init__.py +1 -0
  135. synth_ai/environments/examples/sokoban/engine_helpers/room_utils.py +656 -0
  136. synth_ai/environments/examples/sokoban/engine_helpers/vendored/__init__.py +17 -0
  137. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/__init__.py +3 -0
  138. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/boxoban_env.py +129 -0
  139. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/render_utils.py +370 -0
  140. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/room_utils.py +331 -0
  141. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env.py +305 -0
  142. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_fixed_targets.py +66 -0
  143. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_pull.py +114 -0
  144. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_two_player.py +122 -0
  145. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_variations.py +394 -0
  146. synth_ai/environments/examples/sokoban/environment.py +228 -0
  147. synth_ai/environments/examples/sokoban/generate_verified_puzzles.py +438 -0
  148. synth_ai/environments/examples/sokoban/puzzle_loader.py +311 -0
  149. synth_ai/environments/examples/sokoban/taskset.py +425 -0
  150. synth_ai/environments/examples/sokoban/units/astar_common.py +94 -0
  151. synth_ai/environments/examples/sokoban/units/test_building_task_set.py +49 -0
  152. synth_ai/environments/examples/sokoban/units/test_false_positive.py +120 -0
  153. synth_ai/environments/examples/sokoban/units/test_simple_run_through_environment.py +119 -0
  154. synth_ai/environments/examples/sokoban/units/test_sokoban_environment.py +98 -0
  155. synth_ai/environments/examples/sokoban/units/test_tree.py +364 -0
  156. synth_ai/environments/examples/tictactoe/__init__.py +1 -0
  157. synth_ai/environments/examples/tictactoe/agent_demos/test_synth_react.py +266 -0
  158. synth_ai/environments/examples/tictactoe/agent_demos/test_tictactoe_react_agent.py +470 -0
  159. synth_ai/environments/examples/tictactoe/engine.py +368 -0
  160. synth_ai/environments/examples/tictactoe/environment.py +239 -0
  161. synth_ai/environments/examples/tictactoe/taskset.py +214 -0
  162. synth_ai/environments/examples/tictactoe/units/test_tictactoe_engine.py +393 -0
  163. synth_ai/environments/examples/tictactoe/units/test_tictactoe_environment.py +493 -0
  164. synth_ai/environments/examples/tictactoe/units/test_tictactoe_taskset.py +191 -0
  165. synth_ai/environments/examples/verilog/__init__.py +10 -0
  166. synth_ai/environments/examples/verilog/agent_demos/test_synth_react.py +520 -0
  167. synth_ai/environments/examples/verilog/engine.py +328 -0
  168. synth_ai/environments/examples/verilog/environment.py +349 -0
  169. synth_ai/environments/examples/verilog/taskset.py +418 -0
  170. synth_ai/environments/examples/verilog/units/test_verilog_engine.py +466 -0
  171. synth_ai/environments/examples/verilog/units/test_verilog_environment.py +585 -0
  172. synth_ai/environments/examples/verilog/units/test_verilog_integration.py +383 -0
  173. synth_ai/environments/examples/verilog/units/test_verilog_taskset.py +457 -0
  174. synth_ai/environments/reproducibility/core.py +42 -0
  175. synth_ai/environments/reproducibility/tree.py +364 -0
  176. synth_ai/environments/service/app.py +78 -0
  177. synth_ai/environments/service/core_routes.py +775 -0
  178. synth_ai/environments/service/external_registry.py +57 -0
  179. synth_ai/environments/service/registry.py +9 -0
  180. synth_ai/environments/stateful/__init__.py +1 -0
  181. synth_ai/environments/stateful/core.py +28 -0
  182. synth_ai/environments/stateful/engine.py +21 -0
  183. synth_ai/environments/stateful/state.py +7 -0
  184. synth_ai/environments/tasks/api.py +19 -0
  185. synth_ai/environments/tasks/core.py +78 -0
  186. synth_ai/environments/tasks/filters.py +39 -0
  187. synth_ai/environments/tasks/utils.py +89 -0
  188. synth_ai/environments/v0_observability/history.py +3 -0
  189. synth_ai/environments/v0_observability/log.py +2 -0
  190. synth_ai/lm/caching/constants.py +1 -0
  191. synth_ai/{zyk/lms → lm}/caching/ephemeral.py +4 -8
  192. synth_ai/{zyk/lms → lm}/caching/handler.py +15 -15
  193. synth_ai/{zyk/lms → lm}/caching/initialize.py +2 -4
  194. synth_ai/{zyk/lms → lm}/caching/persistent.py +4 -10
  195. synth_ai/{zyk/lms → lm}/config.py +2 -1
  196. synth_ai/{zyk/lms → lm}/constants.py +2 -2
  197. synth_ai/{zyk/lms → lm}/core/all.py +10 -10
  198. synth_ai/{zyk/lms → lm}/core/main.py +57 -33
  199. synth_ai/{zyk/lms → lm}/core/vendor_clients.py +12 -10
  200. synth_ai/lm/cost/monitor.py +1 -0
  201. synth_ai/lm/cost/statefulness.py +1 -0
  202. synth_ai/lm/provider_support/__init__.py +8 -0
  203. synth_ai/lm/provider_support/anthropic.py +945 -0
  204. synth_ai/lm/provider_support/openai.py +1115 -0
  205. synth_ai/lm/provider_support/suppress_logging.py +31 -0
  206. synth_ai/{zyk/lms → lm}/structured_outputs/handler.py +58 -80
  207. synth_ai/{zyk/lms → lm}/structured_outputs/inject.py +6 -20
  208. synth_ai/{zyk/lms → lm}/structured_outputs/rehabilitate.py +6 -12
  209. synth_ai/{zyk/lms → lm}/vendors/core/anthropic_api.py +21 -30
  210. synth_ai/{zyk/lms → lm}/vendors/core/gemini_api.py +37 -32
  211. synth_ai/{zyk/lms → lm}/vendors/core/mistral_api.py +19 -28
  212. synth_ai/{zyk/lms → lm}/vendors/core/openai_api.py +26 -36
  213. synth_ai/{zyk/lms → lm}/vendors/openai_standard.py +29 -33
  214. synth_ai/{zyk/lms → lm}/vendors/retries.py +1 -1
  215. synth_ai/lm/vendors/supported/__init__.py +0 -0
  216. synth_ai/{zyk/lms → lm}/vendors/supported/custom_endpoint.py +131 -118
  217. synth_ai/{zyk/lms → lm}/vendors/supported/deepseek.py +4 -8
  218. synth_ai/{zyk/lms → lm}/vendors/supported/grok.py +6 -8
  219. synth_ai/{zyk/lms → lm}/vendors/supported/groq.py +1 -1
  220. synth_ai/{zyk/lms → lm}/vendors/supported/ollama.py +2 -2
  221. synth_ai/{zyk/lms → lm}/vendors/supported/openrouter.py +18 -16
  222. synth_ai/{zyk/lms → lm}/vendors/supported/together.py +1 -1
  223. synth_ai/tracing/__init__.py +0 -0
  224. synth_ai/tracing/abstractions.py +224 -0
  225. synth_ai/tracing/base_client.py +91 -0
  226. synth_ai/tracing/client_manager.py +131 -0
  227. synth_ai/tracing/config.py +140 -0
  228. synth_ai/tracing/context.py +146 -0
  229. synth_ai/tracing/decorators.py +679 -0
  230. synth_ai/tracing/events/__init__.py +0 -0
  231. synth_ai/tracing/events/manage.py +147 -0
  232. synth_ai/tracing/events/scope.py +86 -0
  233. synth_ai/tracing/events/store.py +227 -0
  234. synth_ai/tracing/immediate_client.py +152 -0
  235. synth_ai/tracing/local.py +18 -0
  236. synth_ai/tracing/log_client_base.py +74 -0
  237. synth_ai/tracing/retry_queue.py +187 -0
  238. synth_ai/tracing/trackers.py +515 -0
  239. synth_ai/tracing/upload.py +504 -0
  240. synth_ai/tracing/utils.py +9 -0
  241. synth_ai/zyk/__init__.py +28 -2
  242. synth_ai-0.2.1.dev0.dist-info/METADATA +349 -0
  243. synth_ai-0.2.1.dev0.dist-info/RECORD +261 -0
  244. synth_ai/zyk/lms/caching/constants.py +0 -1
  245. synth_ai/zyk/lms/cost/monitor.py +0 -1
  246. synth_ai/zyk/lms/cost/statefulness.py +0 -1
  247. synth_ai-0.1.9.dist-info/METADATA +0 -37
  248. synth_ai-0.1.9.dist-info/RECORD +0 -50
  249. /synth_ai/{zyk/lms/__init__.py → environments/reproducibility/helpers.py} +0 -0
  250. /synth_ai/{zyk/lms/caching → lm}/__init__.py +0 -0
  251. /synth_ai/{zyk/lms/core → lm/caching}/__init__.py +0 -0
  252. /synth_ai/{zyk/lms → lm}/caching/dbs.py +0 -0
  253. /synth_ai/{zyk/lms/cost → lm/core}/__init__.py +0 -0
  254. /synth_ai/{zyk/lms → lm}/core/exceptions.py +0 -0
  255. /synth_ai/{zyk/lms/structured_outputs → lm/cost}/__init__.py +0 -0
  256. /synth_ai/{zyk/lms/vendors → lm/structured_outputs}/__init__.py +0 -0
  257. /synth_ai/{zyk/lms → lm}/tools/__init__.py +0 -0
  258. /synth_ai/{zyk/lms → lm}/tools/base.py +0 -0
  259. /synth_ai/{zyk/lms/vendors/core → lm/vendors}/__init__.py +0 -0
  260. /synth_ai/{zyk/lms → lm}/vendors/base.py +0 -0
  261. /synth_ai/{zyk/lms/vendors/local → lm/vendors/core}/__init__.py +0 -0
  262. /synth_ai/{zyk/lms/vendors/supported → lm/vendors/local}/__init__.py +0 -0
  263. /synth_ai/{zyk/lms → lm}/vendors/local/ollama.py +0 -0
  264. {synth_ai-0.1.9.dist-info → synth_ai-0.2.1.dev0.dist-info}/WHEEL +0 -0
  265. {synth_ai-0.1.9.dist-info → synth_ai-0.2.1.dev0.dist-info}/licenses/LICENSE +0 -0
  266. {synth_ai-0.1.9.dist-info → synth_ai-0.2.1.dev0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1194 @@
1
+ """
2
+ Standardized Crafter Evaluation Framework
3
+ Provides detailed metrics, trajectory analysis, and achievement statistics.
4
+ """
5
+
6
+ import asyncio
7
+ import json
8
+ import time
9
+ import math
10
+ from dataclasses import dataclass, asdict
11
+ from typing import Dict, List, Optional, Set, Tuple, Any
12
+ from collections import defaultdict
13
+ import uuid
14
+
15
+ import pandas as pd
16
+ from tqdm import tqdm
17
+
18
+ # Achievement categories based on difficulty/complexity
19
+ ACHIEVEMENT_CATEGORIES = {
20
+ "easy": [
21
+ "collect_wood",
22
+ "collect_stone",
23
+ "collect_sapling",
24
+ "place_stone",
25
+ "place_table",
26
+ "wake_up",
27
+ "eat_plant",
28
+ "collect_drink",
29
+ ],
30
+ "medium": [
31
+ "make_wood_pickaxe",
32
+ "make_wood_sword",
33
+ "place_furnace",
34
+ "place_plant",
35
+ "collect_coal",
36
+ "collect_iron",
37
+ "eat_cow",
38
+ ],
39
+ "hard": [
40
+ "make_stone_pickaxe",
41
+ "make_stone_sword",
42
+ "make_iron_pickaxe",
43
+ "make_iron_sword",
44
+ "collect_diamond",
45
+ "defeat_skeleton",
46
+ "defeat_zombie",
47
+ ],
48
+ }
49
+
50
+ ALL_ACHIEVEMENTS = [ach for category in ACHIEVEMENT_CATEGORIES.values() for ach in category]
51
+
52
+ TERMINATION_REASONS = ["timeout", "death", "agent_quit", "environment_error"]
53
+
54
+ # SOTA Benchmarks for comparison
55
+ # ⚠️ IMPORTANT: These use different scoring methodologies and are NOT directly comparable!
56
+
57
+ HAFNER_SOTA_SCORES = {
58
+ # Official Hafner scores use log-adjusted multi-episode success rates
59
+ "rl_baselines_hafner": {
60
+ "Achievement Distillation + EnvGen (COLM 2024)": 35.3,
61
+ "PPO + EnvGen": 32.2,
62
+ "Curious Replay": 19.4,
63
+ "Human experts": 50.5,
64
+ "SPRING (GPT-4 planner)": 27.3,
65
+ "Plan2Explore (unsupervised)": 2.1,
66
+ }
67
+ }
68
+
69
+ BALROG_SOTA_SCORES = {
70
+ # BALROG scores use simple percentage: achievements_unlocked/22 * 100
71
+ "balrog_leaderboard": {
72
+ "Claude 3.5 Sonnet": 37.3,
73
+ "Gemini 1.5 Pro": 36.4,
74
+ "GPT-4o": 33.6,
75
+ "Claude 3 Opus": 33.1,
76
+ "GPT-4 Turbo": 32.7,
77
+ "Gemini 1.5 Flash": 31.7,
78
+ "Claude 3.5 Haiku": 31.2,
79
+ "GPT-4o-mini": 30.2,
80
+ "Llama 3.1 405B": 28.6,
81
+ "Gemini 1.0 Pro": 27.7,
82
+ "Claude 3 Haiku": 27.3,
83
+ "Llama 3.1 70B": 26.4,
84
+ "GPT-3.5 Turbo": 26.2,
85
+ "Llama 3.1 8B": 25.5,
86
+ "Gemini 1.5 Flash-8B": 25.0,
87
+ "Llama 3 70B": 22.7,
88
+ "Llama 3 8B": 20.0,
89
+ "Gemini 1.0 Pro Vision": 17.3,
90
+ "GPT-3.5 Turbo Instruct": 16.4,
91
+ }
92
+ }
93
+
94
+ # Model name mapping for SOTA percentage calculations
95
+ MODEL_NAME_TO_SOTA = {
96
+ "claude-3-5-sonnet-latest": "Claude 3.5 Sonnet",
97
+ "claude-3-5-sonnet-20241022": "Claude 3.5 Sonnet",
98
+ "claude-3-5-haiku-latest": "Claude 3.5 Haiku",
99
+ "claude-3-5-haiku-20241022": "Claude 3.5 Haiku",
100
+ "claude-3-opus-20240229": "Claude 3 Opus",
101
+ "claude-3-haiku-20240307": "Claude 3 Haiku",
102
+ "gpt-4o": "GPT-4o",
103
+ "gpt-4o-2024-11-20": "GPT-4o",
104
+ "gpt-4o-mini": "GPT-4o-mini",
105
+ "gpt-4o-mini-2024-07-18": "GPT-4o-mini",
106
+ "gpt-4-turbo": "GPT-4 Turbo",
107
+ "gpt-4-turbo-2024-04-09": "GPT-4 Turbo",
108
+ "gpt-3.5-turbo": "GPT-3.5 Turbo",
109
+ "gpt-3.5-turbo-instruct": "GPT-3.5 Turbo Instruct",
110
+ "gemini-1.5-pro-latest": "Gemini 1.5 Pro",
111
+ "gemini-1.5-flash-latest": "Gemini 1.5 Flash",
112
+ "gemini-1.0-pro": "Gemini 1.0 Pro",
113
+ }
114
+
115
+
116
+ def crafter_score(success_rates_percent: List[float]) -> float:
117
+ """
118
+ Compute the official Hafner adjusted Crafter score (2022).
119
+
120
+ Args:
121
+ success_rates_percent: List of success rates for each achievement (0-100 scale)
122
+
123
+ Returns:
124
+ Log-adjusted Crafter score as percentage (0-100)
125
+
126
+ Formula: exp(mean(log(1+si))) - 1 where si is each achievement's success rate in %
127
+ """
128
+ if not success_rates_percent:
129
+ return 0.0
130
+
131
+ N = len(success_rates_percent)
132
+ g = sum(math.log(1 + s) for s in success_rates_percent) / N
133
+ return math.exp(g) - 1
134
+
135
+
136
+ def balrog_score(achievements_unlocked: int, total_achievements: int = 22) -> float:
137
+ """
138
+ Compute BALROG-style Crafter score (simple percentage).
139
+
140
+ Args:
141
+ achievements_unlocked: Number of achievements unlocked in episode
142
+ total_achievements: Total possible achievements (22 in Crafter)
143
+
144
+ Returns:
145
+ Simple percentage score (0-100)
146
+
147
+ Formula: (achievements_unlocked / total_achievements) * 100
148
+ """
149
+ return (achievements_unlocked / total_achievements) * 100.0
150
+
151
+
152
+ @dataclass
153
+ class TrajectoryResult:
154
+ """Results from a single trajectory/episode."""
155
+
156
+ trajectory_id: str
157
+ model_name: str
158
+ difficulty: str
159
+ seed: int
160
+
161
+ # Core metrics
162
+ success: bool
163
+ total_steps: int
164
+ total_turns: int # Number of agent decision turns
165
+ total_reward: float
166
+
167
+ # Time metrics
168
+ total_duration_sec: float # Episode wall-clock duration in seconds
169
+
170
+ # Achievement tracking
171
+ achievements_unlocked: Set[str]
172
+ achievement_turn_unlocked: Dict[str, int] # achievement -> turn when unlocked
173
+
174
+ # Multi-action metrics
175
+ actions_per_turn: List[int] # Number of actions per turn
176
+ avg_actions_per_turn: float
177
+
178
+ # Termination analysis
179
+ termination_reason: str # "timeout", "death", "agent_quit", "environment_error"
180
+ final_health: Optional[float]
181
+ final_food: Optional[int]
182
+ final_drink: Optional[int]
183
+
184
+ # Trajectory data for detailed analysis
185
+ turn_by_turn_data: Optional[List[Dict[str, Any]]] = None
186
+
187
+
188
+ @dataclass
189
+ class AggregateResults:
190
+ """Aggregate results across multiple trajectories."""
191
+
192
+ model_name: str
193
+ difficulty: str
194
+ num_trajectories: int
195
+
196
+ # Success metrics
197
+ success_rate: float
198
+ avg_total_steps: float
199
+ avg_total_turns: float
200
+ avg_total_reward: float
201
+
202
+ # Achievement metrics
203
+ unique_achievements_unlocked: Set[str]
204
+ total_achievement_count: int
205
+ avg_achievements_per_trajectory: float
206
+ achievement_unlock_rates: Dict[str, float] # achievement -> % of trajectories that unlocked it
207
+ hafner_score: float # Official Hafner adjusted score (log-mean)
208
+ balrog_score_avg: float # Average BALROG-style score across trajectories
209
+ balrog_score_best: float # Best single BALROG-style score
210
+
211
+ # Multi-action metrics
212
+ avg_actions_per_turn_overall: float
213
+ actions_per_turn_distribution: Dict[int, int] # num_actions -> count
214
+
215
+ # Termination analysis
216
+ termination_breakdown: Dict[str, float] # reason -> percentage
217
+ avg_final_health: Optional[float]
218
+ avg_final_food: Optional[float]
219
+ avg_final_drink: Optional[float]
220
+
221
+ # Rollout duration stats (seconds)
222
+ median_duration_sec: float
223
+ p90_duration_sec: float
224
+ max_duration_sec: float
225
+
226
+
227
+ class CrafterEvalFramework:
228
+ """Standardized evaluation framework for Crafter environments."""
229
+
230
+ def __init__(self):
231
+ self.trajectory_results: List[TrajectoryResult] = []
232
+
233
+ async def run_single_trajectory(
234
+ self,
235
+ model_name: str,
236
+ difficulty: str,
237
+ seed: int,
238
+ max_turns: int = 30,
239
+ collect_detailed_data: bool = True,
240
+ ) -> TrajectoryResult:
241
+ """Run a single trajectory and collect detailed metrics."""
242
+ from src.synth_env.examples.crafter_classic.agent_demos.crafter_react_agent import (
243
+ ReActAgent,
244
+ CrafterHistoryObservationCallable,
245
+ CrafterMove,
246
+ )
247
+ from src.synth_env.examples.crafter_classic.environment import (
248
+ CrafterClassicEnvironment,
249
+ )
250
+ from src.synth_env.examples.crafter_classic.taskset import (
251
+ CrafterTaskInstance,
252
+ CrafterTaskInstanceMetadata,
253
+ )
254
+ from src.synth_env.tasks.core import Impetus, Intent
255
+ from synth_ai.zyk import LM
256
+
257
+ # Create task instance
258
+ metadata = CrafterTaskInstanceMetadata(
259
+ difficulty=difficulty,
260
+ seed=seed,
261
+ num_trees_radius=0,
262
+ num_cows_radius=0,
263
+ num_hostiles_radius=0,
264
+ )
265
+ instance = CrafterTaskInstance(
266
+ id=uuid.uuid4(),
267
+ impetus=Impetus(
268
+ instructions=f"Survive and unlock achievements in a {difficulty} environment."
269
+ ),
270
+ intent=Intent(rubric={}, gold_trajectories=None, gold_state_diff={}),
271
+ metadata=metadata,
272
+ is_reproducible=True,
273
+ initial_engine_snapshot=None,
274
+ )
275
+
276
+ # Setup environment and agent
277
+ hist_cb = CrafterHistoryObservationCallable(max_history=1)
278
+ env = CrafterClassicEnvironment(instance, custom_step_obs=hist_cb)
279
+
280
+ llm = LM(model_name=model_name, formatting_model_name=model_name, temperature=0.0)
281
+ agent = ReActAgent(llm, max_turns=max_turns)
282
+
283
+ # Initialize tracking
284
+ trajectory_id = str(uuid.uuid4())
285
+ achievements_unlocked = set()
286
+ achievement_turn_unlocked = {}
287
+ actions_per_turn = []
288
+ turn_by_turn_data = [] if collect_detailed_data else None
289
+
290
+ # Run episode
291
+ start_time = time.perf_counter()
292
+ obs_payload = await env.initialize()
293
+ turn_count = 0
294
+ termination_reason = "unknown"
295
+
296
+ # Create progress bar for this trajectory
297
+ pbar = tqdm(
298
+ total=max_turns,
299
+ desc=f"{model_name} ({difficulty}) Seed {seed}",
300
+ unit="turn",
301
+ leave=False,
302
+ ncols=100,
303
+ )
304
+
305
+ try:
306
+ while turn_count < max_turns:
307
+ turn_count += 1
308
+ pbar.update(1)
309
+ # Calculate achievement breakdown by difficulty
310
+ easy_count = len(
311
+ [a for a in achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["easy"]]
312
+ )
313
+ medium_count = len(
314
+ [a for a in achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["medium"]]
315
+ )
316
+ hard_count = len(
317
+ [a for a in achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["hard"]]
318
+ )
319
+ total_count = len(achievements_unlocked)
320
+
321
+ achievement_display = f"{total_count}({easy_count}/{medium_count}/{hard_count})"
322
+
323
+ pbar.set_postfix(
324
+ {
325
+ "achievements": achievement_display,
326
+ "steps": obs_payload.get("public", {}).num_steps_taken
327
+ if hasattr(obs_payload.get("public", {}), "num_steps_taken")
328
+ else 0,
329
+ }
330
+ )
331
+
332
+ current_formatted_obs = obs_payload["formatted_obs"]
333
+
334
+ # Track achievements at start of turn
335
+ current_achievements = set()
336
+ if "public" in obs_payload and hasattr(
337
+ obs_payload["public"], "achievements_status"
338
+ ):
339
+ current_achievements = {
340
+ ach
341
+ for ach, status in obs_payload["public"].achievements_status.items()
342
+ if status
343
+ }
344
+
345
+ # Check for new achievements
346
+ new_achievements = current_achievements - achievements_unlocked
347
+ for ach in new_achievements:
348
+ achievements_unlocked.add(ach)
349
+ achievement_turn_unlocked[ach] = turn_count
350
+ agent.current_achievements.add(ach)
351
+
352
+ # Agent decision
353
+ action_sequence = await agent.decide(current_formatted_obs, obs_payload)
354
+
355
+ if action_sequence == [-1]: # Agent terminated
356
+ termination_reason = "agent_quit"
357
+ break
358
+
359
+ actions_per_turn.append(len(action_sequence))
360
+
361
+ # Collect turn data
362
+ if collect_detailed_data:
363
+ turn_data = {
364
+ "turn": turn_count,
365
+ "actions_planned": len(action_sequence),
366
+ "achievements_at_start": list(current_achievements),
367
+ "new_achievements_this_turn": list(new_achievements),
368
+ "steps_before_turn": obs_payload.get("public", {}).num_steps_taken
369
+ if hasattr(obs_payload.get("public", {}), "num_steps_taken")
370
+ else 0,
371
+ }
372
+ turn_by_turn_data.append(turn_data)
373
+
374
+ # Execute actions
375
+ for i, act_idx in enumerate(action_sequence):
376
+ obs_payload = await env.step([[CrafterMove(act_idx)]])
377
+
378
+ if "error" in obs_payload:
379
+ termination_reason = "environment_error"
380
+ break
381
+
382
+ if obs_payload["private"].terminated or obs_payload["private"].truncated:
383
+ termination_reason = (
384
+ "timeout" if obs_payload["private"].truncated else "death"
385
+ )
386
+ break
387
+
388
+ if termination_reason in ["environment_error", "timeout", "death"]:
389
+ break
390
+
391
+ # Final metrics
392
+ if termination_reason == "unknown":
393
+ termination_reason = "timeout"
394
+
395
+ final_private = obs_payload.get("private")
396
+ final_public = obs_payload.get("public")
397
+
398
+ total_steps = (
399
+ final_public.num_steps_taken if hasattr(final_public, "num_steps_taken") else 0
400
+ )
401
+ total_reward = (
402
+ final_private.total_reward_episode
403
+ if hasattr(final_private, "total_reward_episode")
404
+ else 0.0
405
+ )
406
+
407
+ # Health/survival stats
408
+ final_health = None
409
+ final_food = None
410
+ final_drink = None
411
+ if hasattr(final_private, "player_internal_stats"):
412
+ stats = final_private.player_internal_stats
413
+ final_health = stats.get("health")
414
+ final_food = stats.get("food")
415
+ final_drink = stats.get("drink")
416
+
417
+ # Success determination
418
+ success = len(achievements_unlocked) > 0 or (
419
+ hasattr(final_private, "terminated") and final_private.terminated
420
+ )
421
+
422
+ avg_actions_per_turn = (
423
+ sum(actions_per_turn) / len(actions_per_turn) if actions_per_turn else 0.0
424
+ )
425
+
426
+ return TrajectoryResult(
427
+ trajectory_id=trajectory_id,
428
+ model_name=model_name,
429
+ difficulty=difficulty,
430
+ seed=seed,
431
+ success=success,
432
+ total_steps=total_steps,
433
+ total_turns=turn_count,
434
+ total_reward=total_reward,
435
+ total_duration_sec=time.perf_counter() - start_time,
436
+ achievements_unlocked=achievements_unlocked,
437
+ achievement_turn_unlocked=achievement_turn_unlocked,
438
+ actions_per_turn=actions_per_turn,
439
+ avg_actions_per_turn=avg_actions_per_turn,
440
+ termination_reason=termination_reason,
441
+ final_health=final_health,
442
+ final_food=final_food,
443
+ final_drink=final_drink,
444
+ turn_by_turn_data=turn_by_turn_data,
445
+ )
446
+ finally:
447
+ pbar.close()
448
+
449
+ async def run_evaluation(
450
+ self,
451
+ model_names: List[str],
452
+ difficulties: List[str] = ["easy", "hard"],
453
+ num_trajectories_per_condition: int = 3,
454
+ max_turns: int = 30,
455
+ collect_detailed_data: bool = True,
456
+ ) -> Dict[str, Any]:
457
+ """Run comprehensive evaluation across models and difficulties."""
458
+
459
+ print(f"🎯 Starting Crafter Evaluation")
460
+ print(f" Models: {model_names}")
461
+ print(f" Difficulties: {difficulties}")
462
+ print(f" Trajectories per condition: {num_trajectories_per_condition}")
463
+ print(f" Max turns per trajectory: {max_turns}")
464
+
465
+ all_results = []
466
+
467
+ for model_name in model_names:
468
+ for difficulty in difficulties:
469
+ print(f"\n🔄 Running {model_name} on {difficulty} difficulty...")
470
+
471
+ # Run trajectories for this condition
472
+ trajectory_tasks = []
473
+ for i in range(num_trajectories_per_condition):
474
+ seed = 1000 + i if difficulty == "easy" else 2000 + i
475
+ trajectory_tasks.append(
476
+ self.run_single_trajectory(
477
+ model_name=model_name,
478
+ difficulty=difficulty,
479
+ seed=seed,
480
+ max_turns=max_turns,
481
+ collect_detailed_data=collect_detailed_data,
482
+ )
483
+ )
484
+
485
+ condition_results = await asyncio.gather(*trajectory_tasks)
486
+ all_results.extend(condition_results)
487
+
488
+ self.trajectory_results = all_results
489
+ return self._generate_comprehensive_report()
490
+
491
+ def _generate_comprehensive_report(self) -> Dict[str, Any]:
492
+ """Generate comprehensive evaluation report with all metrics and tables."""
493
+
494
+ # Group results by model and difficulty
495
+ grouped_results = defaultdict(lambda: defaultdict(list))
496
+ for result in self.trajectory_results:
497
+ grouped_results[result.model_name][result.difficulty].append(result)
498
+
499
+ # Generate aggregate results
500
+ aggregate_results = []
501
+ for model_name, difficulties in grouped_results.items():
502
+ for difficulty, trajectories in difficulties.items():
503
+ agg = self._compute_aggregate_metrics(model_name, difficulty, trajectories)
504
+ aggregate_results.append(agg)
505
+
506
+ # Generate all tables and analyses
507
+ report = {
508
+ "evaluation_summary": self._generate_summary_table(aggregate_results),
509
+ "achievement_percentage_table": self._generate_achievement_percentage_table(
510
+ grouped_results
511
+ ),
512
+ "termination_breakdown_table": self._generate_termination_breakdown_table(
513
+ aggregate_results
514
+ ),
515
+ "multi_action_analysis": self._generate_multi_action_analysis(aggregate_results),
516
+ "trajectory_by_trajectory_breakdown": self._generate_trajectory_breakdown(),
517
+ "model_comparison_tables": self._generate_model_comparison_tables(aggregate_results),
518
+ "sota_comparison": self._generate_sota_comparison(aggregate_results),
519
+ "raw_aggregate_results": [asdict(agg) for agg in aggregate_results],
520
+ "raw_trajectory_results": [asdict(traj) for traj in self.trajectory_results],
521
+ }
522
+
523
+ return report
524
+
525
+ def _compute_aggregate_metrics(
526
+ self, model_name: str, difficulty: str, trajectories: List[TrajectoryResult]
527
+ ) -> AggregateResults:
528
+ """Compute aggregate metrics for a model-difficulty condition."""
529
+
530
+ num_trajectories = len(trajectories)
531
+ if num_trajectories == 0:
532
+ return AggregateResults(
533
+ model_name=model_name,
534
+ difficulty=difficulty,
535
+ num_trajectories=0,
536
+ success_rate=0.0,
537
+ avg_total_steps=0.0,
538
+ avg_total_turns=0.0,
539
+ avg_total_reward=0.0,
540
+ unique_achievements_unlocked=set(),
541
+ total_achievement_count=0,
542
+ avg_achievements_per_trajectory=0.0,
543
+ achievement_unlock_rates={},
544
+ hafner_score=0.0,
545
+ balrog_score_avg=0.0,
546
+ balrog_score_best=0.0,
547
+ avg_actions_per_turn_overall=0.0,
548
+ actions_per_turn_distribution={},
549
+ termination_breakdown={},
550
+ avg_final_health=None,
551
+ avg_final_food=None,
552
+ avg_final_drink=None,
553
+ median_duration_sec=0.0,
554
+ p90_duration_sec=0.0,
555
+ max_duration_sec=0.0,
556
+ )
557
+
558
+ # Success metrics
559
+ success_rate = sum(1 for t in trajectories if t.success) / num_trajectories
560
+ avg_total_steps = sum(t.total_steps for t in trajectories) / num_trajectories
561
+ avg_total_turns = sum(t.total_turns for t in trajectories) / num_trajectories
562
+ avg_total_reward = sum(t.total_reward for t in trajectories) / num_trajectories
563
+
564
+ # Achievement analysis
565
+ all_achievements = set()
566
+ total_achievement_count = 0
567
+ achievement_counts = defaultdict(int)
568
+
569
+ for traj in trajectories:
570
+ all_achievements.update(traj.achievements_unlocked)
571
+ total_achievement_count += len(traj.achievements_unlocked)
572
+ for ach in traj.achievements_unlocked:
573
+ achievement_counts[ach] += 1
574
+
575
+ achievement_unlock_rates = {
576
+ ach: count / num_trajectories for ach, count in achievement_counts.items()
577
+ }
578
+ avg_achievements_per_trajectory = total_achievement_count / num_trajectories
579
+
580
+ # Compute Hafner adjusted score across all achievements
581
+ all_achievement_rates = []
582
+ for achievement in ALL_ACHIEVEMENTS:
583
+ unlock_rate = achievement_counts.get(achievement, 0) / num_trajectories
584
+ all_achievement_rates.append(unlock_rate * 100.0) # Convert to percentage
585
+
586
+ hafner_adjusted_score = crafter_score(all_achievement_rates)
587
+
588
+ # Compute BALROG scores
589
+ balrog_scores = [balrog_score(len(traj.achievements_unlocked)) for traj in trajectories]
590
+ balrog_score_avg = sum(balrog_scores) / len(balrog_scores) if balrog_scores else 0.0
591
+ balrog_score_best = max(balrog_scores) if balrog_scores else 0.0
592
+
593
+ # Multi-action analysis
594
+ all_actions_per_turn = []
595
+ actions_per_turn_dist = defaultdict(int)
596
+ for traj in trajectories:
597
+ all_actions_per_turn.extend(traj.actions_per_turn)
598
+ for count in traj.actions_per_turn:
599
+ actions_per_turn_dist[count] += 1
600
+
601
+ avg_actions_per_turn_overall = (
602
+ sum(all_actions_per_turn) / len(all_actions_per_turn) if all_actions_per_turn else 0.0
603
+ )
604
+
605
+ # Termination analysis
606
+ termination_counts = defaultdict(int)
607
+ for traj in trajectories:
608
+ termination_counts[traj.termination_reason] += 1
609
+ termination_breakdown = {
610
+ reason: count / num_trajectories for reason, count in termination_counts.items()
611
+ }
612
+
613
+ # Survival stats
614
+ health_values = [t.final_health for t in trajectories if t.final_health is not None]
615
+ food_values = [t.final_food for t in trajectories if t.final_food is not None]
616
+ drink_values = [t.final_drink for t in trajectories if t.final_drink is not None]
617
+
618
+ avg_final_health = sum(health_values) / len(health_values) if health_values else None
619
+ avg_final_food = sum(food_values) / len(food_values) if food_values else None
620
+ avg_final_drink = sum(drink_values) / len(drink_values) if drink_values else None
621
+
622
+ # Duration stats
623
+ durations = [t.total_duration_sec for t in trajectories]
624
+ durations.sort()
625
+ median_duration_sec = durations[len(durations) // 2] if durations else 0.0
626
+ p90_duration_sec = durations[int(len(durations) * 0.9)] if durations else 0.0
627
+ max_duration_sec = durations[-1] if durations else 0.0
628
+
629
+ return AggregateResults(
630
+ model_name=model_name,
631
+ difficulty=difficulty,
632
+ num_trajectories=num_trajectories,
633
+ success_rate=success_rate,
634
+ avg_total_steps=avg_total_steps,
635
+ avg_total_turns=avg_total_turns,
636
+ avg_total_reward=avg_total_reward,
637
+ unique_achievements_unlocked=all_achievements,
638
+ total_achievement_count=total_achievement_count,
639
+ avg_achievements_per_trajectory=avg_achievements_per_trajectory,
640
+ achievement_unlock_rates=achievement_unlock_rates,
641
+ avg_actions_per_turn_overall=avg_actions_per_turn_overall,
642
+ actions_per_turn_distribution=dict(actions_per_turn_dist),
643
+ termination_breakdown=termination_breakdown,
644
+ avg_final_health=avg_final_health,
645
+ avg_final_food=avg_final_food,
646
+ avg_final_drink=avg_final_drink,
647
+ hafner_score=hafner_adjusted_score,
648
+ balrog_score_avg=balrog_score_avg,
649
+ balrog_score_best=balrog_score_best,
650
+ median_duration_sec=median_duration_sec,
651
+ p90_duration_sec=p90_duration_sec,
652
+ max_duration_sec=max_duration_sec,
653
+ )
654
+
655
+ def _generate_summary_table(self, aggregate_results: List[AggregateResults]) -> pd.DataFrame:
656
+ """Generate main summary table with key metrics."""
657
+
658
+ data = []
659
+ for agg in aggregate_results:
660
+ data.append(
661
+ {
662
+ "Model": agg.model_name,
663
+ "Difficulty": agg.difficulty,
664
+ "Success Rate": f"{agg.success_rate:.1%}",
665
+ "Hafner Score": f"{agg.hafner_score:.1f}%",
666
+ "BALROG Avg": f"{agg.balrog_score_avg:.1f}%",
667
+ "BALROG Best": f"{agg.balrog_score_best:.1f}%",
668
+ "Avg Steps": f"{agg.avg_total_steps:.1f}",
669
+ "Avg Turns": f"{agg.avg_total_turns:.1f}",
670
+ "Avg Reward": f"{agg.avg_total_reward:.3f}",
671
+ "Unique Achievements": len(agg.unique_achievements_unlocked),
672
+ "Avg Achievements/Traj": f"{agg.avg_achievements_per_trajectory:.2f}",
673
+ "Avg Actions/Turn": f"{agg.avg_actions_per_turn_overall:.1f}",
674
+ "Q2 Secs": f"{agg.median_duration_sec:.1f}",
675
+ "P90 Secs": f"{agg.p90_duration_sec:.1f}",
676
+ "Max Secs": f"{agg.max_duration_sec:.1f}",
677
+ }
678
+ )
679
+
680
+ return pd.DataFrame(data)
681
+
682
+ def _generate_achievement_percentage_table(
683
+ self, grouped_results: Dict[str, Dict[str, List[TrajectoryResult]]]
684
+ ) -> pd.DataFrame:
685
+ """Generate table showing percentage of trajectories achieving each achievement."""
686
+
687
+ data = []
688
+
689
+ for model_name, difficulties in grouped_results.items():
690
+ for difficulty, trajectories in difficulties.items():
691
+ if not trajectories:
692
+ continue
693
+
694
+ num_trajectories = len(trajectories)
695
+ row = {"Model": model_name, "Difficulty": difficulty}
696
+
697
+ # Count achievements
698
+ achievement_counts = defaultdict(int)
699
+ for traj in trajectories:
700
+ for ach in traj.achievements_unlocked:
701
+ achievement_counts[ach] += 1
702
+
703
+ # Add percentage for each achievement
704
+ for achievement in ALL_ACHIEVEMENTS:
705
+ count = achievement_counts[achievement]
706
+ percentage = count / num_trajectories if num_trajectories > 0 else 0.0
707
+ row[achievement] = f"{percentage:.1%}"
708
+
709
+ data.append(row)
710
+
711
+ df = pd.DataFrame(data)
712
+
713
+ # Reorder columns: Model, Difficulty, then achievements by category
714
+ base_cols = ["Model", "Difficulty"]
715
+ achievement_cols = []
716
+ for category in ["easy", "medium", "hard"]:
717
+ for ach in ACHIEVEMENT_CATEGORIES[category]:
718
+ if ach in df.columns:
719
+ achievement_cols.append(ach)
720
+
721
+ return df[base_cols + achievement_cols]
722
+
723
+ def _generate_termination_breakdown_table(
724
+ self, aggregate_results: List[AggregateResults]
725
+ ) -> pd.DataFrame:
726
+ """Generate table showing termination reason percentages."""
727
+
728
+ data = []
729
+ for agg in aggregate_results:
730
+ row = {
731
+ "Model": agg.model_name,
732
+ "Difficulty": agg.difficulty,
733
+ }
734
+
735
+ for reason in TERMINATION_REASONS:
736
+ percentage = agg.termination_breakdown.get(reason, 0.0)
737
+ row[f"{reason.title()} %"] = f"{percentage:.1%}"
738
+
739
+ data.append(row)
740
+
741
+ return pd.DataFrame(data)
742
+
743
+ def _generate_multi_action_analysis(
744
+ self, aggregate_results: List[AggregateResults]
745
+ ) -> Dict[str, pd.DataFrame]:
746
+ """Generate analysis of multi-action tool calls."""
747
+
748
+ # Summary table
749
+ summary_data = []
750
+ for agg in aggregate_results:
751
+ summary_data.append(
752
+ {
753
+ "Model": agg.model_name,
754
+ "Difficulty": agg.difficulty,
755
+ "Avg Actions/Turn": f"{agg.avg_actions_per_turn_overall:.2f}",
756
+ "Most Common": max(
757
+ agg.actions_per_turn_distribution.items(), key=lambda x: x[1]
758
+ )[0]
759
+ if agg.actions_per_turn_distribution
760
+ else 0,
761
+ "Distribution": str(dict(sorted(agg.actions_per_turn_distribution.items()))),
762
+ }
763
+ )
764
+
765
+ summary_df = pd.DataFrame(summary_data)
766
+
767
+ # Detailed distribution table
768
+ all_action_counts = set()
769
+ for agg in aggregate_results:
770
+ all_action_counts.update(agg.actions_per_turn_distribution.keys())
771
+
772
+ dist_data = []
773
+ for agg in aggregate_results:
774
+ row = {"Model": agg.model_name, "Difficulty": agg.difficulty}
775
+ total_turns = sum(agg.actions_per_turn_distribution.values())
776
+
777
+ for count in sorted(all_action_counts):
778
+ turns_with_count = agg.actions_per_turn_distribution.get(count, 0)
779
+ percentage = turns_with_count / total_turns if total_turns > 0 else 0.0
780
+ row[f"{count} Actions"] = f"{percentage:.1%}"
781
+
782
+ dist_data.append(row)
783
+
784
+ distribution_df = pd.DataFrame(dist_data)
785
+
786
+ return {"summary": summary_df, "distribution": distribution_df}
787
+
788
+ def _generate_trajectory_breakdown(self) -> pd.DataFrame:
789
+ """Generate detailed trajectory-by-trajectory breakdown."""
790
+
791
+ data = []
792
+ for traj in self.trajectory_results:
793
+ # Achievement category breakdown
794
+ easy_achievements = len(
795
+ [a for a in traj.achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["easy"]]
796
+ )
797
+ medium_achievements = len(
798
+ [a for a in traj.achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["medium"]]
799
+ )
800
+ hard_achievements = len(
801
+ [a for a in traj.achievements_unlocked if a in ACHIEVEMENT_CATEGORIES["hard"]]
802
+ )
803
+
804
+ data.append(
805
+ {
806
+ "Trajectory ID": traj.trajectory_id[:8], # Short ID
807
+ "Model": traj.model_name,
808
+ "Difficulty": traj.difficulty,
809
+ "Seed": traj.seed,
810
+ "Success": "✓" if traj.success else "✗",
811
+ "Steps": traj.total_steps,
812
+ "Turns": traj.total_turns,
813
+ "Reward": f"{traj.total_reward:.3f}",
814
+ "Total Achievements": len(traj.achievements_unlocked),
815
+ "Easy": easy_achievements,
816
+ "Medium": medium_achievements,
817
+ "Hard": hard_achievements,
818
+ "Avg Actions/Turn": f"{traj.avg_actions_per_turn:.1f}",
819
+ "Termination": traj.termination_reason,
820
+ "Final Health": traj.final_health,
821
+ "Achievements": ", ".join(sorted(traj.achievements_unlocked))
822
+ if traj.achievements_unlocked
823
+ else "None",
824
+ }
825
+ )
826
+
827
+ return pd.DataFrame(data)
828
+
829
+ def _generate_model_comparison_tables(
830
+ self, aggregate_results: List[AggregateResults]
831
+ ) -> Dict[str, Any]:
832
+ """Generate model-to-model comparison tables and deltas."""
833
+
834
+ if len(set(agg.model_name for agg in aggregate_results)) < 2:
835
+ return {"note": "Need at least 2 models for comparison"}
836
+
837
+ # Group by difficulty for comparison
838
+ by_difficulty = defaultdict(list)
839
+ for agg in aggregate_results:
840
+ by_difficulty[agg.difficulty].append(agg)
841
+
842
+ comparison_tables = {}
843
+
844
+ for difficulty, agg_list in by_difficulty.items():
845
+ if len(agg_list) < 2:
846
+ continue
847
+
848
+ # Sort by model name for consistent ordering
849
+ agg_list.sort(key=lambda x: x.model_name)
850
+
851
+ # Create comparison table
852
+ comparison_data = []
853
+ for agg in agg_list:
854
+ comparison_data.append(
855
+ {
856
+ "Model": agg.model_name,
857
+ "Success Rate": agg.success_rate,
858
+ "Avg Steps": agg.avg_total_steps,
859
+ "Avg Achievements": agg.avg_achievements_per_trajectory,
860
+ "Avg Actions/Turn": agg.avg_actions_per_turn_overall,
861
+ }
862
+ )
863
+
864
+ comparison_df = pd.DataFrame(comparison_data)
865
+
866
+ # Create delta table (difference from first model)
867
+ if len(agg_list) > 1:
868
+ baseline = agg_list[0]
869
+ delta_data = []
870
+
871
+ for agg in agg_list[1:]:
872
+ delta_data.append(
873
+ {
874
+ "Model vs Baseline": f"{agg.model_name} vs {baseline.model_name}",
875
+ "Success Rate Δ": f"{agg.success_rate - baseline.success_rate:+.1%}",
876
+ "Avg Steps Δ": f"{agg.avg_total_steps - baseline.avg_total_steps:+.1f}",
877
+ "Avg Achievements Δ": f"{agg.avg_achievements_per_trajectory - baseline.avg_achievements_per_trajectory:+.2f}",
878
+ "Avg Actions/Turn Δ": f"{agg.avg_actions_per_turn_overall - baseline.avg_actions_per_turn_overall:+.2f}",
879
+ }
880
+ )
881
+
882
+ delta_df = pd.DataFrame(delta_data) if delta_data else None
883
+ else:
884
+ delta_df = None
885
+
886
+ comparison_tables[difficulty] = {
887
+ "comparison": comparison_df,
888
+ "deltas": delta_df,
889
+ }
890
+
891
+ return comparison_tables
892
+
893
+ def _generate_achievement_summary_table(
894
+ self, grouped_results: Dict[str, Dict[str, List[TrajectoryResult]]]
895
+ ) -> pd.DataFrame:
896
+ """Generate a vertical achievement summary table that's easier to read."""
897
+
898
+ data = []
899
+
900
+ # For each achievement, show rates across all model/difficulty combinations
901
+ for category_name, achievements in ACHIEVEMENT_CATEGORIES.items():
902
+ for achievement in achievements:
903
+ row = {
904
+ "Category": category_name.capitalize(),
905
+ "Achievement": achievement.replace("_", " ").title(),
906
+ }
907
+
908
+ # Add columns for each model/difficulty combination
909
+ for model_name, difficulties in grouped_results.items():
910
+ for difficulty, trajectories in difficulties.items():
911
+ if not trajectories:
912
+ continue
913
+
914
+ num_trajectories = len(trajectories)
915
+ count = sum(
916
+ 1 for traj in trajectories if achievement in traj.achievements_unlocked
917
+ )
918
+ percentage = count / num_trajectories if num_trajectories > 0 else 0.0
919
+
920
+ col_name = f"{model_name} ({difficulty})"
921
+ row[col_name] = f"{count}/{num_trajectories} ({percentage:.1%})"
922
+
923
+ data.append(row)
924
+
925
+ return pd.DataFrame(data)
926
+
927
+ def _generate_sota_comparison(
928
+ self, aggregate_results: List[AggregateResults]
929
+ ) -> Dict[str, pd.DataFrame]:
930
+ """Generate comparison tables with SOTA benchmarks, separating Hafner and BALROG methodologies."""
931
+
932
+ # ⚠️ CRITICAL: Hafner and BALROG scores use different methodologies and are NOT comparable!
933
+
934
+ # Create our results table for both methodologies
935
+ our_hafner_data = []
936
+ our_balrog_data = []
937
+
938
+ for agg in aggregate_results:
939
+ # Hafner results
940
+ hafner_row = {
941
+ "System": f"{agg.model_name} (multi-action)",
942
+ "Hafner Score": f"{agg.hafner_score:.1f}%",
943
+ "Category": "Current Evaluation (Hafner)",
944
+ }
945
+ our_hafner_data.append(hafner_row)
946
+
947
+ # BALROG results
948
+ balrog_row = {
949
+ "System": f"{agg.model_name} (multi-action)",
950
+ "BALROG Score (Avg)": f"{agg.balrog_score_avg:.1f}%",
951
+ "BALROG Score (Best)": f"{agg.balrog_score_best:.1f}%",
952
+ "Category": "Current Evaluation (BALROG)",
953
+ }
954
+
955
+ # Add percentage comparison to BALROG SOTA if we can map the model name
956
+ if agg.model_name in MODEL_NAME_TO_SOTA:
957
+ sota_name = MODEL_NAME_TO_SOTA[agg.model_name]
958
+ if sota_name in BALROG_SOTA_SCORES["balrog_leaderboard"]:
959
+ balrog_sota_score = BALROG_SOTA_SCORES["balrog_leaderboard"][sota_name]
960
+ percentage_of_balrog_sota_avg = (agg.balrog_score_avg / balrog_sota_score) * 100
961
+ percentage_of_balrog_sota_best = (
962
+ agg.balrog_score_best / balrog_sota_score
963
+ ) * 100
964
+ balrog_row["% of BALROG SOTA (Avg)"] = f"{percentage_of_balrog_sota_avg:.1f}%"
965
+ balrog_row["% of BALROG SOTA (Best)"] = f"{percentage_of_balrog_sota_best:.1f}%"
966
+ balrog_row["BALROG SOTA Reference"] = f"{sota_name} ({balrog_sota_score:.1f}%)"
967
+
968
+ our_balrog_data.append(balrog_row)
969
+
970
+ our_hafner_df = pd.DataFrame(our_hafner_data)
971
+ our_balrog_df = pd.DataFrame(our_balrog_data)
972
+
973
+ # Create nearby comparisons for BALROG methodology only (since that's what we can compare to)
974
+ balrog_nearby_comparisons = []
975
+ all_balrog_scores = []
976
+
977
+ # Add BALROG leaderboard scores
978
+ for system, score in BALROG_SOTA_SCORES["balrog_leaderboard"].items():
979
+ all_balrog_scores.append(
980
+ {"System": system, "Score": score, "Category": "BALROG Leaderboard"}
981
+ )
982
+
983
+ # Sort BALROG scores
984
+ all_balrog_scores.sort(key=lambda x: x["Score"], reverse=True)
985
+
986
+ # For each of our models, find nearby BALROG scores
987
+ for agg in aggregate_results:
988
+ # Use average BALROG score for comparison
989
+ model_balrog_score = agg.balrog_score_avg
990
+
991
+ # Find position where this model would fit
992
+ insert_pos = 0
993
+ for i, sota_entry in enumerate(all_balrog_scores):
994
+ if model_balrog_score > sota_entry["Score"]:
995
+ insert_pos = i
996
+ break
997
+ insert_pos = i + 1
998
+
999
+ # Get 2 scores above and 2 scores below (if available)
1000
+ start_idx = max(0, insert_pos - 2)
1001
+ end_idx = min(len(all_balrog_scores), insert_pos + 3)
1002
+
1003
+ nearby_scores = all_balrog_scores[start_idx:end_idx]
1004
+
1005
+ # Create comparison table for this model
1006
+ comparison_data = []
1007
+
1008
+ # Add scores above
1009
+ for sota_entry in nearby_scores[: insert_pos - start_idx]:
1010
+ comparison_data.append(
1011
+ {
1012
+ "System": sota_entry["System"],
1013
+ "BALROG Score": f"{sota_entry['Score']:.1f}%",
1014
+ "Category": sota_entry["Category"],
1015
+ }
1016
+ )
1017
+
1018
+ # Add our model
1019
+ row = {
1020
+ "System": f"{agg.model_name} (multi-action)",
1021
+ "BALROG Score": f"{agg.balrog_score_avg:.1f}%",
1022
+ "Category": "Current Evaluation",
1023
+ }
1024
+
1025
+ # Add percentage of BALROG SOTA if we can map the model name
1026
+ if agg.model_name in MODEL_NAME_TO_SOTA:
1027
+ sota_name = MODEL_NAME_TO_SOTA[agg.model_name]
1028
+ if sota_name in BALROG_SOTA_SCORES["balrog_leaderboard"]:
1029
+ balrog_sota_score = BALROG_SOTA_SCORES["balrog_leaderboard"][sota_name]
1030
+ percentage_of_balrog_sota = (agg.balrog_score_avg / balrog_sota_score) * 100
1031
+ row["% of BALROG SOTA"] = f"{percentage_of_balrog_sota:.1f}%"
1032
+ row["BALROG SOTA Reference"] = f"{sota_name} ({balrog_sota_score:.1f}%)"
1033
+
1034
+ comparison_data.append(row)
1035
+
1036
+ # Add scores below
1037
+ for sota_entry in nearby_scores[insert_pos - start_idx :]:
1038
+ comparison_data.append(
1039
+ {
1040
+ "System": sota_entry["System"],
1041
+ "BALROG Score": f"{sota_entry['Score']:.1f}%",
1042
+ "Category": sota_entry["Category"],
1043
+ }
1044
+ )
1045
+
1046
+ balrog_nearby_comparisons.append(
1047
+ {"model": agg.model_name, "comparison": pd.DataFrame(comparison_data)}
1048
+ )
1049
+
1050
+ return {
1051
+ "our_hafner_results": our_hafner_df,
1052
+ "our_balrog_results": our_balrog_df,
1053
+ "balrog_nearby_comparisons": balrog_nearby_comparisons,
1054
+ "methodology_note": "⚠️ CRITICAL: Hafner scores (log-adjusted multi-episode) and BALROG scores (simple single-episode percentage) use different methodologies and are NOT directly comparable!",
1055
+ }
1056
+
1057
+ def print_report(self, report: Dict[str, Any]):
1058
+ """Print a formatted evaluation report."""
1059
+
1060
+ print("\n" + "=" * 80)
1061
+ print("🎯 CRAFTER EVALUATION REPORT")
1062
+ print("=" * 80)
1063
+
1064
+ # Summary table
1065
+ print("\n📊 EVALUATION SUMMARY")
1066
+ summary_df = report["evaluation_summary"]
1067
+ # Clean formatting for summary table
1068
+ for col in summary_df.columns:
1069
+ if len(col) > 12: # Truncate long column names
1070
+ summary_df = summary_df.rename(columns={col: col[:12]})
1071
+ print(summary_df.to_string(index=False, max_colwidth=12))
1072
+
1073
+ # Create and show vertical achievement table
1074
+ print("\n🏆 ACHIEVEMENT UNLOCK RATES")
1075
+ print("Format: unlocked/total (percentage)")
1076
+
1077
+ # Group results for achievement summary
1078
+ grouped_results = defaultdict(lambda: defaultdict(list))
1079
+ for traj in self.trajectory_results:
1080
+ grouped_results[traj.model_name][traj.difficulty].append(traj)
1081
+
1082
+ achievement_summary = self._generate_achievement_summary_table(grouped_results)
1083
+
1084
+ # Print by category for better readability
1085
+ for category in ["Easy", "Medium", "Hard"]:
1086
+ category_data = achievement_summary[achievement_summary["Category"] == category]
1087
+ if not category_data.empty:
1088
+ print(f"\n{category.upper()} ACHIEVEMENTS:")
1089
+ category_display = category_data.drop("Category", axis=1)
1090
+ print(category_display.to_string(index=False))
1091
+
1092
+ # # Termination breakdown
1093
+ # print("\n⚰️ TERMINATION BREAKDOWN")
1094
+ # print(report["termination_breakdown_table"].to_string(index=False))
1095
+
1096
+ # # Multi-action analysis
1097
+ # print("\n⚡ MULTI-ACTION ANALYSIS")
1098
+ # multi_action = report["multi_action_analysis"]
1099
+
1100
+ # # Clean summary table
1101
+ # summary_clean = multi_action["summary"].copy()
1102
+ # summary_clean = summary_clean.drop(columns=["Distribution"], errors='ignore') # Remove cluttered distribution column
1103
+ # print("Summary:")
1104
+ # print(summary_clean.to_string(index=False, max_colwidth=15))
1105
+
1106
+ # # Show distribution in cleaner format
1107
+ # print("\nAction Count Distribution:")
1108
+ # dist_clean = multi_action["distribution"].copy()
1109
+ # # Only show columns with meaningful data
1110
+ # cols_to_show = ["Model", "Difficulty"] + [col for col in dist_clean.columns if "Actions" in col and not dist_clean[col].str.contains("0.0%").all()]
1111
+ # if len(cols_to_show) > 8: # Limit to prevent overflow
1112
+ # cols_to_show = cols_to_show[:8]
1113
+ # print(dist_clean[cols_to_show].to_string(index=False, max_colwidth=10))
1114
+
1115
+ # Model comparisons
1116
+ if "note" not in report["model_comparison_tables"]:
1117
+ print("\n🔄 MODEL COMPARISONS")
1118
+ for difficulty, tables in report["model_comparison_tables"].items():
1119
+ print(f"\n{difficulty.upper()} Difficulty:")
1120
+ print(tables["comparison"].to_string(index=False))
1121
+ if tables["deltas"] is not None:
1122
+ print(f"\nDeltas vs Baseline:")
1123
+ print(tables["deltas"].to_string(index=False))
1124
+
1125
+ # Trajectory breakdown (summary stats only for space)
1126
+ traj_df = report["trajectory_by_trajectory_breakdown"]
1127
+ print(f"\n📋 TRAJECTORY BREAKDOWN ({len(traj_df)} total trajectories)")
1128
+ print("Sample trajectories:")
1129
+ sample_cols = [
1130
+ "Model",
1131
+ "Difficulty",
1132
+ "Success",
1133
+ "Steps",
1134
+ "Total Achievements",
1135
+ "Termination",
1136
+ ]
1137
+ sample_df = traj_df[sample_cols].head(5) # Show fewer rows for cleaner display
1138
+ print(sample_df.to_string(index=False, max_colwidth=12))
1139
+ if len(traj_df) > 5:
1140
+ print(f"... and {len(traj_df) - 5} more trajectories")
1141
+
1142
+ # SOTA comparison
1143
+ sota_comparison = report["sota_comparison"]
1144
+ print("\n🏆 SOTA COMPARISON")
1145
+ print(sota_comparison["methodology_note"])
1146
+
1147
+ print("\n📊 HAFNER METHODOLOGY RESULTS (Multi-episode log-adjusted)")
1148
+ hafner_df = sota_comparison["our_hafner_results"]
1149
+ print(hafner_df.to_string(index=False, max_colwidth=20))
1150
+
1151
+ print("\n📊 BALROG METHODOLOGY RESULTS (Single-episode percentage)")
1152
+ balrog_df = sota_comparison["our_balrog_results"]
1153
+ # Clean up column names for better display
1154
+ balrog_clean = balrog_df.copy()
1155
+ if "% of BALROG SOTA (Avg)" in balrog_clean.columns:
1156
+ balrog_clean = balrog_clean.rename(columns={"% of BALROG SOTA (Avg)": "% SOTA Avg"})
1157
+ if "% of BALROG SOTA (Best)" in balrog_clean.columns:
1158
+ balrog_clean = balrog_clean.rename(columns={"% of BALROG SOTA (Best)": "% SOTA Best"})
1159
+ print(balrog_clean.to_string(index=False, max_colwidth=20))
1160
+
1161
+ print("\n🎯 BALROG vs Nearby SOTA Benchmarks (Apples-to-Apples)")
1162
+ for comparison in sota_comparison["balrog_nearby_comparisons"]:
1163
+ print(f"\n{comparison['model']} vs Nearby BALROG Scores:")
1164
+ comp_df = comparison["comparison"]
1165
+ # Clean up long reference columns
1166
+ comp_clean = comp_df.copy()
1167
+ if "BALROG SOTA Reference" in comp_clean.columns:
1168
+ comp_clean = comp_clean.drop(
1169
+ columns=["BALROG SOTA Reference"]
1170
+ ) # Too long for display
1171
+ print(comp_clean.to_string(index=False, max_colwidth=18))
1172
+
1173
+ print("\n" + "=" * 80)
1174
+
1175
+
1176
+ # Convenience function for quick evaluations
1177
+ async def run_crafter_eval(
1178
+ model_names: List[str],
1179
+ difficulties: List[str] = ["easy", "hard"],
1180
+ num_trajectories: int = 3,
1181
+ max_turns: int = 30,
1182
+ ) -> Dict[str, Any]:
1183
+ """Quick evaluation runner with automatic report generation."""
1184
+
1185
+ framework = CrafterEvalFramework()
1186
+ report = await framework.run_evaluation(
1187
+ model_names=model_names,
1188
+ difficulties=difficulties,
1189
+ num_trajectories_per_condition=num_trajectories,
1190
+ max_turns=max_turns,
1191
+ )
1192
+
1193
+ framework.print_report(report)
1194
+ return report