supervisely 6.73.417__py3-none-any.whl → 6.73.419__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- supervisely/api/entity_annotation/figure_api.py +89 -45
- supervisely/nn/inference/inference.py +61 -45
- supervisely/nn/inference/instance_segmentation/instance_segmentation.py +1 -0
- supervisely/nn/inference/object_detection/object_detection.py +1 -0
- supervisely/nn/inference/session.py +4 -4
- supervisely/nn/model/model_api.py +31 -20
- supervisely/nn/model/prediction.py +11 -0
- supervisely/nn/model/prediction_session.py +33 -6
- supervisely/nn/tracker/__init__.py +1 -2
- supervisely/nn/tracker/base_tracker.py +44 -0
- supervisely/nn/tracker/botsort/__init__.py +1 -0
- supervisely/nn/tracker/botsort/botsort_config.yaml +31 -0
- supervisely/nn/tracker/botsort/osnet_reid/osnet.py +566 -0
- supervisely/nn/tracker/botsort/osnet_reid/osnet_reid_interface.py +88 -0
- supervisely/nn/tracker/botsort/tracker/__init__.py +0 -0
- supervisely/nn/tracker/{bot_sort → botsort/tracker}/basetrack.py +1 -2
- supervisely/nn/tracker/{utils → botsort/tracker}/gmc.py +51 -59
- supervisely/nn/tracker/{deep_sort/deep_sort → botsort/tracker}/kalman_filter.py +71 -33
- supervisely/nn/tracker/botsort/tracker/matching.py +202 -0
- supervisely/nn/tracker/{bot_sort/bot_sort.py → botsort/tracker/mc_bot_sort.py} +68 -81
- supervisely/nn/tracker/botsort_tracker.py +259 -0
- supervisely/project/project.py +1 -1
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/METADATA +5 -3
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/RECORD +29 -42
- supervisely/nn/tracker/bot_sort/__init__.py +0 -21
- supervisely/nn/tracker/bot_sort/fast_reid_interface.py +0 -152
- supervisely/nn/tracker/bot_sort/matching.py +0 -127
- supervisely/nn/tracker/bot_sort/sly_tracker.py +0 -401
- supervisely/nn/tracker/deep_sort/__init__.py +0 -6
- supervisely/nn/tracker/deep_sort/deep_sort/__init__.py +0 -1
- supervisely/nn/tracker/deep_sort/deep_sort/detection.py +0 -49
- supervisely/nn/tracker/deep_sort/deep_sort/iou_matching.py +0 -81
- supervisely/nn/tracker/deep_sort/deep_sort/linear_assignment.py +0 -202
- supervisely/nn/tracker/deep_sort/deep_sort/nn_matching.py +0 -176
- supervisely/nn/tracker/deep_sort/deep_sort/track.py +0 -166
- supervisely/nn/tracker/deep_sort/deep_sort/tracker.py +0 -145
- supervisely/nn/tracker/deep_sort/deep_sort.py +0 -301
- supervisely/nn/tracker/deep_sort/generate_clip_detections.py +0 -90
- supervisely/nn/tracker/deep_sort/preprocessing.py +0 -70
- supervisely/nn/tracker/deep_sort/sly_tracker.py +0 -273
- supervisely/nn/tracker/tracker.py +0 -285
- supervisely/nn/tracker/utils/kalman_filter.py +0 -492
- supervisely/nn/tracking/__init__.py +0 -1
- supervisely/nn/tracking/boxmot.py +0 -114
- supervisely/nn/tracking/tracking.py +0 -24
- /supervisely/nn/tracker/{utils → botsort/osnet_reid}/__init__.py +0 -0
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/LICENSE +0 -0
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/WHEEL +0 -0
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/entry_points.txt +0 -0
- {supervisely-6.73.417.dist-info → supervisely-6.73.419.dist-info}/top_level.txt +0 -0
|
@@ -1,492 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
|
|
3
|
-
"""
|
|
4
|
-
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
|
5
|
-
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
|
6
|
-
function and used as Mahalanobis gating threshold.
|
|
7
|
-
"""
|
|
8
|
-
chi2inv95 = {
|
|
9
|
-
1: 3.8415,
|
|
10
|
-
2: 5.9915,
|
|
11
|
-
3: 7.8147,
|
|
12
|
-
4: 9.4877,
|
|
13
|
-
5: 11.070,
|
|
14
|
-
6: 12.592,
|
|
15
|
-
7: 14.067,
|
|
16
|
-
8: 15.507,
|
|
17
|
-
9: 16.919,
|
|
18
|
-
}
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class KalmanFilterXYWH(object):
|
|
22
|
-
"""
|
|
23
|
-
A simple Kalman filter for tracking bounding boxes in image space.
|
|
24
|
-
|
|
25
|
-
The 8-dimensional state space
|
|
26
|
-
|
|
27
|
-
x, y, w, h, vx, vy, vw, vh
|
|
28
|
-
|
|
29
|
-
contains the bounding box center position (x, y), width w, height h,
|
|
30
|
-
and their respective velocities.
|
|
31
|
-
|
|
32
|
-
Object motion follows a constant velocity model. The bounding box location
|
|
33
|
-
(x, y, w, h) is taken as direct observation of the state space (linear
|
|
34
|
-
observation model).
|
|
35
|
-
|
|
36
|
-
"""
|
|
37
|
-
|
|
38
|
-
def __init__(self):
|
|
39
|
-
ndim, dt = 4, 1.0
|
|
40
|
-
|
|
41
|
-
# Create Kalman filter model matrices.
|
|
42
|
-
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
|
43
|
-
for i in range(ndim):
|
|
44
|
-
self._motion_mat[i, ndim + i] = dt
|
|
45
|
-
self._update_mat = np.eye(ndim, 2 * ndim)
|
|
46
|
-
|
|
47
|
-
# Motion and observation uncertainty are chosen relative to the current
|
|
48
|
-
# state estimate. These weights control the amount of uncertainty in
|
|
49
|
-
# the model. This is a bit hacky.
|
|
50
|
-
self._std_weight_position = 1.0 / 20
|
|
51
|
-
self._std_weight_velocity = 1.0 / 160
|
|
52
|
-
|
|
53
|
-
def initiate(self, measurement):
|
|
54
|
-
"""Create track from unassociated measurement.
|
|
55
|
-
|
|
56
|
-
Parameters
|
|
57
|
-
----------
|
|
58
|
-
measurement : ndarray
|
|
59
|
-
Bounding box coordinates (x, y, w, h) with center position (x, y),
|
|
60
|
-
width w, and height h.
|
|
61
|
-
|
|
62
|
-
Returns
|
|
63
|
-
-------
|
|
64
|
-
(ndarray, ndarray)
|
|
65
|
-
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
|
66
|
-
dimensional) of the new track. Unobserved velocities are initialized
|
|
67
|
-
to 0 mean.
|
|
68
|
-
|
|
69
|
-
"""
|
|
70
|
-
mean_pos = measurement
|
|
71
|
-
mean_vel = np.zeros_like(mean_pos)
|
|
72
|
-
mean = np.r_[mean_pos, mean_vel]
|
|
73
|
-
|
|
74
|
-
std = [
|
|
75
|
-
2 * self._std_weight_position * measurement[2],
|
|
76
|
-
2 * self._std_weight_position * measurement[3],
|
|
77
|
-
2 * self._std_weight_position * measurement[2],
|
|
78
|
-
2 * self._std_weight_position * measurement[3],
|
|
79
|
-
10 * self._std_weight_velocity * measurement[2],
|
|
80
|
-
10 * self._std_weight_velocity * measurement[3],
|
|
81
|
-
10 * self._std_weight_velocity * measurement[2],
|
|
82
|
-
10 * self._std_weight_velocity * measurement[3],
|
|
83
|
-
]
|
|
84
|
-
covariance = np.diag(np.square(std))
|
|
85
|
-
return mean, covariance
|
|
86
|
-
|
|
87
|
-
def predict(self, mean, covariance):
|
|
88
|
-
"""Run Kalman filter prediction step.
|
|
89
|
-
|
|
90
|
-
Parameters
|
|
91
|
-
----------
|
|
92
|
-
mean : ndarray
|
|
93
|
-
The 8 dimensional mean vector of the object state at the previous
|
|
94
|
-
time step.
|
|
95
|
-
covariance : ndarray
|
|
96
|
-
The 8x8 dimensional covariance matrix of the object state at the
|
|
97
|
-
previous time step.
|
|
98
|
-
|
|
99
|
-
Returns
|
|
100
|
-
-------
|
|
101
|
-
(ndarray, ndarray)
|
|
102
|
-
Returns the mean vector and covariance matrix of the predicted
|
|
103
|
-
state. Unobserved velocities are initialized to 0 mean.
|
|
104
|
-
|
|
105
|
-
"""
|
|
106
|
-
std_pos = [
|
|
107
|
-
self._std_weight_position * mean[2],
|
|
108
|
-
self._std_weight_position * mean[3],
|
|
109
|
-
self._std_weight_position * mean[2],
|
|
110
|
-
self._std_weight_position * mean[3],
|
|
111
|
-
]
|
|
112
|
-
std_vel = [
|
|
113
|
-
self._std_weight_velocity * mean[2],
|
|
114
|
-
self._std_weight_velocity * mean[3],
|
|
115
|
-
self._std_weight_velocity * mean[2],
|
|
116
|
-
self._std_weight_velocity * mean[3],
|
|
117
|
-
]
|
|
118
|
-
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
|
119
|
-
|
|
120
|
-
mean = np.dot(mean, self._motion_mat.T)
|
|
121
|
-
covariance = (
|
|
122
|
-
np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
|
123
|
-
)
|
|
124
|
-
|
|
125
|
-
return mean, covariance
|
|
126
|
-
|
|
127
|
-
def project(self, mean, covariance):
|
|
128
|
-
"""Project state distribution to measurement space.
|
|
129
|
-
|
|
130
|
-
Parameters
|
|
131
|
-
----------
|
|
132
|
-
mean : ndarray
|
|
133
|
-
The state's mean vector (8 dimensional array).
|
|
134
|
-
covariance : ndarray
|
|
135
|
-
The state's covariance matrix (8x8 dimensional).
|
|
136
|
-
|
|
137
|
-
Returns
|
|
138
|
-
-------
|
|
139
|
-
(ndarray, ndarray)
|
|
140
|
-
Returns the projected mean and covariance matrix of the given state
|
|
141
|
-
estimate.
|
|
142
|
-
|
|
143
|
-
"""
|
|
144
|
-
std = [
|
|
145
|
-
self._std_weight_position * mean[2],
|
|
146
|
-
self._std_weight_position * mean[3],
|
|
147
|
-
self._std_weight_position * mean[2],
|
|
148
|
-
self._std_weight_position * mean[3],
|
|
149
|
-
]
|
|
150
|
-
innovation_cov = np.diag(np.square(std))
|
|
151
|
-
|
|
152
|
-
mean = np.dot(self._update_mat, mean)
|
|
153
|
-
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
|
|
154
|
-
return mean, covariance + innovation_cov
|
|
155
|
-
|
|
156
|
-
def multi_predict(self, mean, covariance):
|
|
157
|
-
"""Run Kalman filter prediction step (Vectorized version).
|
|
158
|
-
Parameters
|
|
159
|
-
----------
|
|
160
|
-
mean : ndarray
|
|
161
|
-
The Nx8 dimensional mean matrix of the object states at the previous
|
|
162
|
-
time step.
|
|
163
|
-
covariance : ndarray
|
|
164
|
-
The Nx8x8 dimensional covariance matrics of the object states at the
|
|
165
|
-
previous time step.
|
|
166
|
-
Returns
|
|
167
|
-
-------
|
|
168
|
-
(ndarray, ndarray)
|
|
169
|
-
Returns the mean vector and covariance matrix of the predicted
|
|
170
|
-
state. Unobserved velocities are initialized to 0 mean.
|
|
171
|
-
"""
|
|
172
|
-
std_pos = [
|
|
173
|
-
self._std_weight_position * mean[:, 2],
|
|
174
|
-
self._std_weight_position * mean[:, 3],
|
|
175
|
-
self._std_weight_position * mean[:, 2],
|
|
176
|
-
self._std_weight_position * mean[:, 3],
|
|
177
|
-
]
|
|
178
|
-
std_vel = [
|
|
179
|
-
self._std_weight_velocity * mean[:, 2],
|
|
180
|
-
self._std_weight_velocity * mean[:, 3],
|
|
181
|
-
self._std_weight_velocity * mean[:, 2],
|
|
182
|
-
self._std_weight_velocity * mean[:, 3],
|
|
183
|
-
]
|
|
184
|
-
sqr = np.square(np.r_[std_pos, std_vel]).T
|
|
185
|
-
|
|
186
|
-
motion_cov = []
|
|
187
|
-
for i in range(len(mean)):
|
|
188
|
-
motion_cov.append(np.diag(sqr[i]))
|
|
189
|
-
motion_cov = np.asarray(motion_cov)
|
|
190
|
-
|
|
191
|
-
mean = np.dot(mean, self._motion_mat.T)
|
|
192
|
-
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
|
|
193
|
-
covariance = np.dot(left, self._motion_mat.T) + motion_cov
|
|
194
|
-
|
|
195
|
-
return mean, covariance
|
|
196
|
-
|
|
197
|
-
def update(self, mean, covariance, measurement):
|
|
198
|
-
"""Run Kalman filter correction step.
|
|
199
|
-
|
|
200
|
-
Parameters
|
|
201
|
-
----------
|
|
202
|
-
mean : ndarray
|
|
203
|
-
The predicted state's mean vector (8 dimensional).
|
|
204
|
-
covariance : ndarray
|
|
205
|
-
The state's covariance matrix (8x8 dimensional).
|
|
206
|
-
measurement : ndarray
|
|
207
|
-
The 4 dimensional measurement vector (x, y, w, h), where (x, y)
|
|
208
|
-
is the center position, w the width, and h the height of the
|
|
209
|
-
bounding box.
|
|
210
|
-
|
|
211
|
-
Returns
|
|
212
|
-
-------
|
|
213
|
-
(ndarray, ndarray)
|
|
214
|
-
Returns the measurement-corrected state distribution.
|
|
215
|
-
|
|
216
|
-
"""
|
|
217
|
-
import scipy.linalg # pylint: disable=import-error
|
|
218
|
-
|
|
219
|
-
projected_mean, projected_cov = self.project(mean, covariance)
|
|
220
|
-
|
|
221
|
-
chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
|
|
222
|
-
kalman_gain = scipy.linalg.cho_solve(
|
|
223
|
-
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False
|
|
224
|
-
).T
|
|
225
|
-
innovation = measurement - projected_mean
|
|
226
|
-
|
|
227
|
-
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
|
228
|
-
new_covariance = covariance - np.linalg.multi_dot(
|
|
229
|
-
(kalman_gain, projected_cov, kalman_gain.T)
|
|
230
|
-
)
|
|
231
|
-
return new_mean, new_covariance
|
|
232
|
-
|
|
233
|
-
def gating_distance(self, mean, covariance, measurements, only_position=False, metric="maha"):
|
|
234
|
-
"""Compute gating distance between state distribution and measurements.
|
|
235
|
-
A suitable distance threshold can be obtained from `chi2inv95`. If
|
|
236
|
-
`only_position` is False, the chi-square distribution has 4 degrees of
|
|
237
|
-
freedom, otherwise 2.
|
|
238
|
-
Parameters
|
|
239
|
-
----------
|
|
240
|
-
mean : ndarray
|
|
241
|
-
Mean vector over the state distribution (8 dimensional).
|
|
242
|
-
covariance : ndarray
|
|
243
|
-
Covariance of the state distribution (8x8 dimensional).
|
|
244
|
-
measurements : ndarray
|
|
245
|
-
An Nx4 dimensional matrix of N measurements, each in
|
|
246
|
-
format (x, y, a, h) where (x, y) is the bounding box center
|
|
247
|
-
position, a the aspect ratio, and h the height.
|
|
248
|
-
only_position : Optional[bool]
|
|
249
|
-
If True, distance computation is done with respect to the bounding
|
|
250
|
-
box center position only.
|
|
251
|
-
Returns
|
|
252
|
-
-------
|
|
253
|
-
ndarray
|
|
254
|
-
Returns an array of length N, where the i-th element contains the
|
|
255
|
-
squared Mahalanobis distance between (mean, covariance) and
|
|
256
|
-
`measurements[i]`.
|
|
257
|
-
"""
|
|
258
|
-
import scipy.linalg # pylint: disable=import-error
|
|
259
|
-
|
|
260
|
-
mean, covariance = self.project(mean, covariance)
|
|
261
|
-
if only_position:
|
|
262
|
-
mean, covariance = mean[:2], covariance[:2, :2]
|
|
263
|
-
measurements = measurements[:, :2]
|
|
264
|
-
|
|
265
|
-
d = measurements - mean
|
|
266
|
-
if metric == "gaussian":
|
|
267
|
-
return np.sum(d * d, axis=1)
|
|
268
|
-
elif metric == "maha":
|
|
269
|
-
cholesky_factor = np.linalg.cholesky(covariance)
|
|
270
|
-
z = scipy.linalg.solve_triangular(
|
|
271
|
-
cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
|
|
272
|
-
)
|
|
273
|
-
squared_maha = np.sum(z * z, axis=0)
|
|
274
|
-
return squared_maha
|
|
275
|
-
else:
|
|
276
|
-
raise ValueError("invalid distance metric")
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
class KalmanFilterXYAH(object):
|
|
280
|
-
"""
|
|
281
|
-
A simple Kalman filter for tracking bounding boxes in image space.
|
|
282
|
-
|
|
283
|
-
The 8-dimensional state space
|
|
284
|
-
|
|
285
|
-
x, y, a, h, vx, vy, va, vh
|
|
286
|
-
|
|
287
|
-
contains the bounding box center position (x, y), aspect ratio a, height h,
|
|
288
|
-
and their respective velocities.
|
|
289
|
-
|
|
290
|
-
Object motion follows a constant velocity model. The bounding box location
|
|
291
|
-
(x, y, a, h) is taken as direct observation of the state space (linear
|
|
292
|
-
observation model).
|
|
293
|
-
|
|
294
|
-
"""
|
|
295
|
-
|
|
296
|
-
def __init__(self):
|
|
297
|
-
ndim, dt = 4, 1.0
|
|
298
|
-
|
|
299
|
-
# Create Kalman filter model matrices.
|
|
300
|
-
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
|
301
|
-
for i in range(ndim):
|
|
302
|
-
self._motion_mat[i, ndim + i] = dt
|
|
303
|
-
self._update_mat = np.eye(ndim, 2 * ndim)
|
|
304
|
-
|
|
305
|
-
# Motion and observation uncertainty are chosen relative to the current
|
|
306
|
-
# state estimate. These weights control the amount of uncertainty in
|
|
307
|
-
# the model. This is a bit hacky.
|
|
308
|
-
self._std_weight_position = 1.0 / 20
|
|
309
|
-
self._std_weight_velocity = 1.0 / 160
|
|
310
|
-
|
|
311
|
-
def initiate(self, measurement):
|
|
312
|
-
"""Create track from unassociated measurement.
|
|
313
|
-
|
|
314
|
-
Parameters
|
|
315
|
-
----------
|
|
316
|
-
measurement : ndarray
|
|
317
|
-
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
|
318
|
-
aspect ratio a, and height h.
|
|
319
|
-
|
|
320
|
-
Returns
|
|
321
|
-
-------
|
|
322
|
-
(ndarray, ndarray)
|
|
323
|
-
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
|
324
|
-
dimensional) of the new track. Unobserved velocities are initialized
|
|
325
|
-
to 0 mean.
|
|
326
|
-
|
|
327
|
-
"""
|
|
328
|
-
mean_pos = measurement
|
|
329
|
-
mean_vel = np.zeros_like(mean_pos)
|
|
330
|
-
mean = np.r_[mean_pos, mean_vel]
|
|
331
|
-
|
|
332
|
-
std = [
|
|
333
|
-
2 * self._std_weight_position * measurement[3],
|
|
334
|
-
2 * self._std_weight_position * measurement[3],
|
|
335
|
-
1e-2,
|
|
336
|
-
2 * self._std_weight_position * measurement[3],
|
|
337
|
-
10 * self._std_weight_velocity * measurement[3],
|
|
338
|
-
10 * self._std_weight_velocity * measurement[3],
|
|
339
|
-
1e-5,
|
|
340
|
-
10 * self._std_weight_velocity * measurement[3],
|
|
341
|
-
]
|
|
342
|
-
covariance = np.diag(np.square(std))
|
|
343
|
-
return mean, covariance
|
|
344
|
-
|
|
345
|
-
def predict(self, mean, covariance):
|
|
346
|
-
"""Run Kalman filter prediction step.
|
|
347
|
-
|
|
348
|
-
Parameters
|
|
349
|
-
----------
|
|
350
|
-
mean : ndarray
|
|
351
|
-
The 8 dimensional mean vector of the object state at the previous
|
|
352
|
-
time step.
|
|
353
|
-
covariance : ndarray
|
|
354
|
-
The 8x8 dimensional covariance matrix of the object state at the
|
|
355
|
-
previous time step.
|
|
356
|
-
|
|
357
|
-
Returns
|
|
358
|
-
-------
|
|
359
|
-
(ndarray, ndarray)
|
|
360
|
-
Returns the mean vector and covariance matrix of the predicted
|
|
361
|
-
state. Unobserved velocities are initialized to 0 mean.
|
|
362
|
-
|
|
363
|
-
"""
|
|
364
|
-
std_pos = [
|
|
365
|
-
self._std_weight_position * mean[3],
|
|
366
|
-
self._std_weight_position * mean[3],
|
|
367
|
-
1e-2,
|
|
368
|
-
self._std_weight_position * mean[3],
|
|
369
|
-
]
|
|
370
|
-
std_vel = [
|
|
371
|
-
self._std_weight_velocity * mean[3],
|
|
372
|
-
self._std_weight_velocity * mean[3],
|
|
373
|
-
1e-5,
|
|
374
|
-
self._std_weight_velocity * mean[3],
|
|
375
|
-
]
|
|
376
|
-
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
|
377
|
-
|
|
378
|
-
mean = np.dot(self._motion_mat, mean)
|
|
379
|
-
covariance = (
|
|
380
|
-
np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
|
381
|
-
)
|
|
382
|
-
|
|
383
|
-
return mean, covariance
|
|
384
|
-
|
|
385
|
-
def project(self, mean, covariance):
|
|
386
|
-
"""Project state distribution to measurement space.
|
|
387
|
-
|
|
388
|
-
Parameters
|
|
389
|
-
----------
|
|
390
|
-
mean : ndarray
|
|
391
|
-
The state's mean vector (8 dimensional array).
|
|
392
|
-
covariance : ndarray
|
|
393
|
-
The state's covariance matrix (8x8 dimensional).
|
|
394
|
-
|
|
395
|
-
Returns
|
|
396
|
-
-------
|
|
397
|
-
(ndarray, ndarray)
|
|
398
|
-
Returns the projected mean and covariance matrix of the given state
|
|
399
|
-
estimate.
|
|
400
|
-
|
|
401
|
-
"""
|
|
402
|
-
std = [
|
|
403
|
-
self._std_weight_position * mean[3],
|
|
404
|
-
self._std_weight_position * mean[3],
|
|
405
|
-
1e-1,
|
|
406
|
-
self._std_weight_position * mean[3],
|
|
407
|
-
]
|
|
408
|
-
innovation_cov = np.diag(np.square(std))
|
|
409
|
-
|
|
410
|
-
mean = np.dot(self._update_mat, mean)
|
|
411
|
-
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
|
|
412
|
-
return mean, covariance + innovation_cov
|
|
413
|
-
|
|
414
|
-
def update(self, mean, covariance, measurement):
|
|
415
|
-
"""Run Kalman filter correction step.
|
|
416
|
-
|
|
417
|
-
Parameters
|
|
418
|
-
----------
|
|
419
|
-
mean : ndarray
|
|
420
|
-
The predicted state's mean vector (8 dimensional).
|
|
421
|
-
covariance : ndarray
|
|
422
|
-
The state's covariance matrix (8x8 dimensional).
|
|
423
|
-
measurement : ndarray
|
|
424
|
-
The 4 dimensional measurement vector (x, y, a, h), where (x, y)
|
|
425
|
-
is the center position, a the aspect ratio, and h the height of the
|
|
426
|
-
bounding box.
|
|
427
|
-
|
|
428
|
-
Returns
|
|
429
|
-
-------
|
|
430
|
-
(ndarray, ndarray)
|
|
431
|
-
Returns the measurement-corrected state distribution.
|
|
432
|
-
|
|
433
|
-
"""
|
|
434
|
-
import scipy.linalg # pylint: disable=import-error
|
|
435
|
-
|
|
436
|
-
projected_mean, projected_cov = self.project(mean, covariance)
|
|
437
|
-
|
|
438
|
-
chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
|
|
439
|
-
kalman_gain = scipy.linalg.cho_solve(
|
|
440
|
-
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False
|
|
441
|
-
).T
|
|
442
|
-
innovation = measurement - projected_mean
|
|
443
|
-
|
|
444
|
-
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
|
445
|
-
new_covariance = covariance - np.linalg.multi_dot(
|
|
446
|
-
(kalman_gain, projected_cov, kalman_gain.T)
|
|
447
|
-
)
|
|
448
|
-
return new_mean, new_covariance
|
|
449
|
-
|
|
450
|
-
def gating_distance(self, mean, covariance, measurements, only_position=False):
|
|
451
|
-
"""Compute gating distance between state distribution and measurements.
|
|
452
|
-
|
|
453
|
-
A suitable distance threshold can be obtained from `chi2inv95`. If
|
|
454
|
-
`only_position` is False, the chi-square distribution has 4 degrees of
|
|
455
|
-
freedom, otherwise 2.
|
|
456
|
-
|
|
457
|
-
Parameters
|
|
458
|
-
----------
|
|
459
|
-
mean : ndarray
|
|
460
|
-
Mean vector over the state distribution (8 dimensional).
|
|
461
|
-
covariance : ndarray
|
|
462
|
-
Covariance of the state distribution (8x8 dimensional).
|
|
463
|
-
measurements : ndarray
|
|
464
|
-
An Nx4 dimensional matrix of N measurements, each in
|
|
465
|
-
format (x, y, a, h) where (x, y) is the bounding box center
|
|
466
|
-
position, a the aspect ratio, and h the height.
|
|
467
|
-
only_position : Optional[bool]
|
|
468
|
-
If True, distance computation is done with respect to the bounding
|
|
469
|
-
box center position only.
|
|
470
|
-
|
|
471
|
-
Returns
|
|
472
|
-
-------
|
|
473
|
-
ndarray
|
|
474
|
-
Returns an array of length N, where the i-th element contains the
|
|
475
|
-
squared Mahalanobis distance between (mean, covariance) and
|
|
476
|
-
`measurements[i]`.
|
|
477
|
-
|
|
478
|
-
"""
|
|
479
|
-
import scipy.linalg # pylint: disable=import-error
|
|
480
|
-
|
|
481
|
-
mean, covariance = self.project(mean, covariance)
|
|
482
|
-
if only_position:
|
|
483
|
-
mean, covariance = mean[:2], covariance[:2, :2]
|
|
484
|
-
measurements = measurements[:, :2]
|
|
485
|
-
|
|
486
|
-
cholesky_factor = np.linalg.cholesky(covariance)
|
|
487
|
-
d = measurements - mean
|
|
488
|
-
z = scipy.linalg.solve_triangular(
|
|
489
|
-
cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
|
|
490
|
-
)
|
|
491
|
-
squared_maha = np.sum(z * z, axis=0)
|
|
492
|
-
return squared_maha
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
from supervisely.nn.tracking.tracking import track
|
|
@@ -1,114 +0,0 @@
|
|
|
1
|
-
from typing import Iterable, List, Optional, Union
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
|
|
5
|
-
from supervisely.annotation.annotation import Annotation
|
|
6
|
-
from supervisely.geometry.rectangle import Rectangle
|
|
7
|
-
from supervisely.nn.model.model_api import Prediction
|
|
8
|
-
from supervisely.video_annotation.frame import Frame
|
|
9
|
-
from supervisely.video_annotation.frame_collection import FrameCollection
|
|
10
|
-
from supervisely.video_annotation.video_annotation import VideoAnnotation
|
|
11
|
-
from supervisely.video_annotation.video_figure import VideoFigure
|
|
12
|
-
from supervisely.video_annotation.video_object import VideoObject
|
|
13
|
-
from supervisely.video_annotation.video_object_collection import VideoObjectCollection
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def _none_generator():
|
|
17
|
-
while True:
|
|
18
|
-
yield None
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def apply_boxmot(
|
|
22
|
-
tracker,
|
|
23
|
-
predictions: Union[List[Prediction], List[Annotation]],
|
|
24
|
-
class_names: List[str],
|
|
25
|
-
frames: Optional[Iterable[np.ndarray]] = None,
|
|
26
|
-
) -> VideoAnnotation:
|
|
27
|
-
if frames is None:
|
|
28
|
-
frames = _none_generator()
|
|
29
|
-
results = []
|
|
30
|
-
annotations = []
|
|
31
|
-
frames_count = 0
|
|
32
|
-
for prediction, frame in zip(predictions, frames):
|
|
33
|
-
frames_count += 1
|
|
34
|
-
if isinstance(prediction, Prediction):
|
|
35
|
-
annotation = prediction.annotation
|
|
36
|
-
if frame is None:
|
|
37
|
-
frame = prediction.load_image()
|
|
38
|
-
else:
|
|
39
|
-
annotation = prediction
|
|
40
|
-
frame_shape = frame.shape[:2]
|
|
41
|
-
annotations.append(annotation)
|
|
42
|
-
detections = to_boxes(annotation, class_names) # N x (x, y, x, y, conf, label)
|
|
43
|
-
tracks = tracker.update(
|
|
44
|
-
detections, frame
|
|
45
|
-
) # M x (x, y, x, y, track_id, conf, label, det_id)
|
|
46
|
-
results.append(tracks)
|
|
47
|
-
return create_video_annotation(annotations, results, class_names, frame_shape, frames_count)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
def to_boxes(ann: Annotation, class_names: List[str]) -> np.ndarray:
|
|
51
|
-
"""
|
|
52
|
-
Convert annotation to detections array in boxmot format.
|
|
53
|
-
:param ann: Supervisely Annotation object
|
|
54
|
-
:type ann: Annotation
|
|
55
|
-
:param class_names: model class names
|
|
56
|
-
:type class_names: List[str]
|
|
57
|
-
:return: detections array N x (x, y, x, y, conf, label)
|
|
58
|
-
:rtype: np.ndarray
|
|
59
|
-
"""
|
|
60
|
-
# convert ann to N x (x, y, x, y, conf, cls) np.array
|
|
61
|
-
cls2label = {class_name: i for i, class_name in enumerate(class_names)}
|
|
62
|
-
detections = []
|
|
63
|
-
for label in ann.labels:
|
|
64
|
-
cat = cls2label[label.obj_class.name]
|
|
65
|
-
bbox = label.geometry.to_bbox()
|
|
66
|
-
conf = label.tags.get("confidence").value
|
|
67
|
-
detections.append([bbox.left, bbox.top, bbox.right, bbox.bottom, conf, cat])
|
|
68
|
-
detections = np.array(detections)
|
|
69
|
-
return detections
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
def create_video_annotation(
|
|
73
|
-
annotations: List[Annotation],
|
|
74
|
-
tracking_results: list,
|
|
75
|
-
class_names: List[str],
|
|
76
|
-
frame_shape: tuple,
|
|
77
|
-
frames_count: int,
|
|
78
|
-
) -> VideoAnnotation:
|
|
79
|
-
img_h, img_w = frame_shape
|
|
80
|
-
video_objects = {} # track_id -> VideoObject
|
|
81
|
-
frames = []
|
|
82
|
-
cat2obj = {}
|
|
83
|
-
name2cat = {class_name: i for i, class_name in enumerate(class_names)}
|
|
84
|
-
obj_classes = {}
|
|
85
|
-
for annotation in annotations:
|
|
86
|
-
for label in annotation.labels:
|
|
87
|
-
obj_classes.setdefault(label.obj_class.name, label.obj_class)
|
|
88
|
-
for obj_name, cat in name2cat.items():
|
|
89
|
-
obj_class = obj_classes.get(obj_name)
|
|
90
|
-
if obj_class is None:
|
|
91
|
-
raise ValueError(f"Object class {obj_name} not found in annotations.")
|
|
92
|
-
cat2obj[cat] = obj_class
|
|
93
|
-
for i, tracks in enumerate(tracking_results):
|
|
94
|
-
frame_figures = []
|
|
95
|
-
for track in tracks:
|
|
96
|
-
# crop bbox to image size
|
|
97
|
-
dims = np.array([img_w, img_h, img_w, img_h]) - 1
|
|
98
|
-
track[:4] = np.clip(track[:4], 0, dims)
|
|
99
|
-
x1, y1, x2, y2, track_id, conf, cat = track[:7]
|
|
100
|
-
cat = int(cat)
|
|
101
|
-
track_id = int(track_id)
|
|
102
|
-
rect = Rectangle(y1, x1, y2, x2)
|
|
103
|
-
video_object = video_objects.setdefault(track_id, VideoObject(cat2obj[cat]))
|
|
104
|
-
frame_figures.append(VideoFigure(video_object, rect, i))
|
|
105
|
-
frames.append(Frame(i, frame_figures))
|
|
106
|
-
|
|
107
|
-
objects = list(video_objects.values())
|
|
108
|
-
video_annotation = VideoAnnotation(
|
|
109
|
-
img_size=frame_shape,
|
|
110
|
-
frames_count=frames_count,
|
|
111
|
-
objects=VideoObjectCollection(objects),
|
|
112
|
-
frames=FrameCollection(frames),
|
|
113
|
-
)
|
|
114
|
-
return video_annotation
|
|
@@ -1,24 +0,0 @@
|
|
|
1
|
-
from typing import Any, Callable
|
|
2
|
-
|
|
3
|
-
from supervisely.nn.model.model_api import ModelAPI
|
|
4
|
-
from supervisely.nn.tracking.boxmot import apply_boxmot
|
|
5
|
-
from supervisely.video_annotation.video_annotation import VideoAnnotation
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
def _get_apply_fn(tracker: Any) -> Callable:
|
|
9
|
-
if tracker.__class__.__module__.startswith("boxmot"):
|
|
10
|
-
return apply_boxmot
|
|
11
|
-
else:
|
|
12
|
-
raise ValueError(
|
|
13
|
-
f"Tracker {tracker.__class__.__module__} is not supported. Please, use boxmot tracker."
|
|
14
|
-
)
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def track(video_id: int, tracker, detector: ModelAPI, **kwargs) -> VideoAnnotation:
|
|
18
|
-
apply_fn = _get_apply_fn(tracker)
|
|
19
|
-
if "classes" in kwargs:
|
|
20
|
-
classes = kwargs["classes"]
|
|
21
|
-
else:
|
|
22
|
-
classes = detector.get_classes()
|
|
23
|
-
predictions = detector.predict_detached(video_id=video_id, **kwargs)
|
|
24
|
-
return apply_fn(tracker, predictions, classes)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|