stouputils 1.14.3__py3-none-any.whl → 1.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- stouputils/data_science/config/get.py +51 -51
- stouputils/data_science/data_processing/image/__init__.py +66 -66
- stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
- stouputils/data_science/data_processing/image/axis_flip.py +58 -58
- stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
- stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
- stouputils/data_science/data_processing/image/blur.py +59 -59
- stouputils/data_science/data_processing/image/brightness.py +54 -54
- stouputils/data_science/data_processing/image/canny.py +110 -110
- stouputils/data_science/data_processing/image/clahe.py +92 -92
- stouputils/data_science/data_processing/image/common.py +30 -30
- stouputils/data_science/data_processing/image/contrast.py +53 -53
- stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
- stouputils/data_science/data_processing/image/denoise.py +378 -378
- stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
- stouputils/data_science/data_processing/image/invert.py +64 -64
- stouputils/data_science/data_processing/image/laplacian.py +60 -60
- stouputils/data_science/data_processing/image/median_blur.py +52 -52
- stouputils/data_science/data_processing/image/noise.py +59 -59
- stouputils/data_science/data_processing/image/normalize.py +65 -65
- stouputils/data_science/data_processing/image/random_erase.py +66 -66
- stouputils/data_science/data_processing/image/resize.py +69 -69
- stouputils/data_science/data_processing/image/rotation.py +80 -80
- stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
- stouputils/data_science/data_processing/image/sharpening.py +55 -55
- stouputils/data_science/data_processing/image/shearing.py +64 -64
- stouputils/data_science/data_processing/image/threshold.py +64 -64
- stouputils/data_science/data_processing/image/translation.py +71 -71
- stouputils/data_science/data_processing/image/zoom.py +83 -83
- stouputils/data_science/data_processing/image_augmentation.py +118 -118
- stouputils/data_science/data_processing/image_preprocess.py +183 -183
- stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
- stouputils/data_science/data_processing/technique.py +481 -481
- stouputils/data_science/dataset/__init__.py +45 -45
- stouputils/data_science/dataset/dataset.py +292 -292
- stouputils/data_science/dataset/dataset_loader.py +135 -135
- stouputils/data_science/dataset/grouping_strategy.py +296 -296
- stouputils/data_science/dataset/image_loader.py +100 -100
- stouputils/data_science/dataset/xy_tuple.py +696 -696
- stouputils/data_science/metric_dictionnary.py +106 -106
- stouputils/data_science/mlflow_utils.py +206 -206
- stouputils/data_science/models/abstract_model.py +149 -149
- stouputils/data_science/models/all.py +85 -85
- stouputils/data_science/models/keras/all.py +38 -38
- stouputils/data_science/models/keras/convnext.py +62 -62
- stouputils/data_science/models/keras/densenet.py +50 -50
- stouputils/data_science/models/keras/efficientnet.py +60 -60
- stouputils/data_science/models/keras/mobilenet.py +56 -56
- stouputils/data_science/models/keras/resnet.py +52 -52
- stouputils/data_science/models/keras/squeezenet.py +233 -233
- stouputils/data_science/models/keras/vgg.py +42 -42
- stouputils/data_science/models/keras/xception.py +38 -38
- stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
- stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
- stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
- stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
- stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
- stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
- stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
- stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
- stouputils/data_science/models/keras_utils/visualizations.py +416 -416
- stouputils/data_science/models/sandbox.py +116 -116
- stouputils/data_science/range_tuple.py +234 -234
- stouputils/data_science/utils.py +285 -285
- stouputils/decorators.py +53 -39
- stouputils/decorators.pyi +2 -2
- stouputils/installer/__init__.py +18 -18
- stouputils/installer/linux.py +144 -144
- stouputils/installer/main.py +223 -223
- stouputils/installer/windows.py +136 -136
- stouputils/io.py +16 -9
- stouputils/print.py +229 -2
- stouputils/print.pyi +90 -1
- stouputils/py.typed +1 -1
- {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/METADATA +1 -1
- {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/RECORD +78 -78
- {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/WHEEL +1 -1
- {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/entry_points.txt +0 -0
stouputils/print.pyi
CHANGED
|
@@ -9,6 +9,7 @@ BLUE: str
|
|
|
9
9
|
MAGENTA: str
|
|
10
10
|
CYAN: str
|
|
11
11
|
LINE_UP: str
|
|
12
|
+
BOLD: str
|
|
12
13
|
BAR_FORMAT: str
|
|
13
14
|
T = TypeVar('T')
|
|
14
15
|
previous_args_kwards: tuple[Any, Any]
|
|
@@ -35,7 +36,85 @@ def colored_for_loop[T](iterable: Iterable[T], desc: str = 'Processing', color:
|
|
|
35
36
|
\t\t... time.sleep(0.01)
|
|
36
37
|
\t\t>>> # Time sleeping loop: 100%|██████████████████| 10/10 [ 95.72it/s, 00:00<00:00]
|
|
37
38
|
\t'''
|
|
38
|
-
def
|
|
39
|
+
def format_colored(*values: Any) -> str:
|
|
40
|
+
''' Format text with Python 3.14 style colored formatting.
|
|
41
|
+
|
|
42
|
+
\tDynamically colors text by analyzing each word:
|
|
43
|
+
\t- File paths in magenta
|
|
44
|
+
\t- Numbers in magenta
|
|
45
|
+
\t- Function names (built-in and callable objects) in magenta
|
|
46
|
+
\t- Exception names in bold magenta
|
|
47
|
+
|
|
48
|
+
\tArgs:
|
|
49
|
+
\t\tvalues\t(Any):\tValues to format (like the print function)
|
|
50
|
+
|
|
51
|
+
\tReturns:
|
|
52
|
+
\t\tstr: The formatted text with ANSI color codes
|
|
53
|
+
|
|
54
|
+
\tExamples:
|
|
55
|
+
\t\t>>> # Test function names with parentheses
|
|
56
|
+
\t\t>>> result = format_colored("Call print() with 42 items")
|
|
57
|
+
\t\t>>> result.count(MAGENTA) == 2 # print and 42
|
|
58
|
+
\t\tTrue
|
|
59
|
+
|
|
60
|
+
\t\t>>> # Test function names without parentheses
|
|
61
|
+
\t\t>>> result = format_colored("Use len and sum functions")
|
|
62
|
+
\t\t>>> result.count(MAGENTA) == 2 # len and sum
|
|
63
|
+
\t\tTrue
|
|
64
|
+
|
|
65
|
+
\t\t>>> # Test exceptions (bold magenta)
|
|
66
|
+
\t\t>>> result = format_colored("Got ValueError when parsing")
|
|
67
|
+
\t\t>>> result.count(MAGENTA) == 1 and result.count(BOLD) == 1 # ValueError in bold magenta
|
|
68
|
+
\t\tTrue
|
|
69
|
+
|
|
70
|
+
\t\t>>> # Test file paths
|
|
71
|
+
\t\t>>> result = format_colored("Processing ./data.csv file")
|
|
72
|
+
\t\t>>> result.count(MAGENTA) == 1 # ./data.csv
|
|
73
|
+
\t\tTrue
|
|
74
|
+
|
|
75
|
+
\t\t>>> # Test file paths with quotes
|
|
76
|
+
\t\t>>> result = format_colored(\'File "/path/to/script.py" line 42\')
|
|
77
|
+
\t\t>>> result.count(MAGENTA) == 2 # /path/to/script.py and 42
|
|
78
|
+
\t\tTrue
|
|
79
|
+
|
|
80
|
+
\t\t>>> # Test numbers
|
|
81
|
+
\t\t>>> result = format_colored("Found 100 items and 3.14 value")
|
|
82
|
+
\t\t>>> result.count(MAGENTA) == 2 # 100 and 3.14
|
|
83
|
+
\t\tTrue
|
|
84
|
+
|
|
85
|
+
\t\t>>> # Test mixed content
|
|
86
|
+
\t\t>>> result = format_colored("Call sum() got IndexError at line 256 in utils.py")
|
|
87
|
+
\t\t>>> result.count(MAGENTA) == 3 # sum, IndexError (bold), and 256
|
|
88
|
+
\t\tTrue
|
|
89
|
+
\t\t>>> result.count(BOLD) == 1 # IndexError is bold
|
|
90
|
+
\t\tTrue
|
|
91
|
+
|
|
92
|
+
\t\t>>> # Test plain text (no coloring)
|
|
93
|
+
\t\t>>> result = format_colored("This is plain text")
|
|
94
|
+
\t\t>>> result.count(MAGENTA) == 0 and result == "This is plain text"
|
|
95
|
+
\t\tTrue
|
|
96
|
+
\t'''
|
|
97
|
+
def colored(*values: Any, file: TextIO | None = None, **print_kwargs: Any) -> None:
|
|
98
|
+
''' Print with Python 3.14 style colored formatting.
|
|
99
|
+
|
|
100
|
+
\tDynamically colors text by analyzing each word:
|
|
101
|
+
\t- File paths in magenta
|
|
102
|
+
\t- Numbers in magenta
|
|
103
|
+
\t- Function names (built-in and callable objects) in magenta
|
|
104
|
+
\t- Exception names in bold magenta
|
|
105
|
+
|
|
106
|
+
\tArgs:
|
|
107
|
+
\t\tvalues\t\t\t(Any):\t\tValues to print (like the print function)
|
|
108
|
+
\t\tfile\t\t\t(TextIO):\tFile to write the message to (default: sys.stdout)
|
|
109
|
+
\t\tprint_kwargs\t(dict):\t\tKeyword arguments to pass to the print function
|
|
110
|
+
|
|
111
|
+
\tExamples:
|
|
112
|
+
\t\t>>> colored("File \'/path/to/file.py\', line 42, in function_name") # doctest: +SKIP
|
|
113
|
+
\t\t>>> colored("KeyboardInterrupt") # doctest: +SKIP
|
|
114
|
+
\t\t>>> colored("Processing data.csv with 100 items") # doctest: +SKIP
|
|
115
|
+
\t\t>>> colored("Using print and len functions") # doctest: +SKIP
|
|
116
|
+
\t'''
|
|
117
|
+
def info(*values: Any, color: str = ..., text: str = 'INFO ', prefix: str = '', file: TextIO | list[TextIO] | None = None, use_colored: bool = False, **print_kwargs: Any) -> None:
|
|
39
118
|
''' Print an information message looking like "[INFO HH:MM:SS] message" in green by default.
|
|
40
119
|
|
|
41
120
|
\tArgs:
|
|
@@ -44,6 +123,7 @@ def info(*values: Any, color: str = ..., text: str = 'INFO ', prefix: str = '',
|
|
|
44
123
|
\t\ttext\t\t\t(str):\t\t\t\t\tText of the message (default: "INFO ")
|
|
45
124
|
\t\tprefix\t\t\t(str):\t\t\t\t\tPrefix to add to the values
|
|
46
125
|
\t\tfile\t\t\t(TextIO|list[TextIO]):\tFile(s) to write the message to (default: sys.stdout)
|
|
126
|
+
\t\tuse_colored\t\t(bool):\t\t\t\t\tWhether to use the colored() function to format the message
|
|
47
127
|
\t\tprint_kwargs\t(dict):\t\t\t\t\tKeyword arguments to pass to the print function
|
|
48
128
|
\t'''
|
|
49
129
|
def debug(*values: Any, **print_kwargs: Any) -> None:
|
|
@@ -134,3 +214,12 @@ def is_same_print(*args: Any, **kwargs: Any) -> bool:
|
|
|
134
214
|
""" Checks if the current print call is the same as the previous one. """
|
|
135
215
|
def current_time() -> str:
|
|
136
216
|
''' Get the current time as "HH:MM:SS" if less than 24 hours since import, else "YYYY-MM-DD HH:MM:SS" '''
|
|
217
|
+
def infoc(*args: Any, **kwargs: Any) -> None: ...
|
|
218
|
+
def debugc(*args: Any, **kwargs: Any) -> None: ...
|
|
219
|
+
def alt_debugc(*args: Any, **kwargs: Any) -> None: ...
|
|
220
|
+
def warningc(*args: Any, **kwargs: Any) -> None: ...
|
|
221
|
+
def errorc(*args: Any, **kwargs: Any) -> None: ...
|
|
222
|
+
def progressc(*args: Any, **kwargs: Any) -> None: ...
|
|
223
|
+
def suggestionc(*args: Any, **kwargs: Any) -> None: ...
|
|
224
|
+
def whatisitc(*args: Any, **kwargs: Any) -> None: ...
|
|
225
|
+
def breakpointc(*args: Any, **kwargs: Any) -> None: ...
|
stouputils/py.typed
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
|
|
1
|
+
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: stouputils
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.15.0
|
|
4
4
|
Summary: Stouputils is a collection of utility modules designed to simplify and enhance the development process. It includes a range of tools for tasks such as execution of doctests, display utilities, decorators, as well as context managers, and many more.
|
|
5
5
|
Keywords: utilities,tools,helpers,development,python
|
|
6
6
|
Author: Stoupy51
|
|
@@ -37,104 +37,104 @@ stouputils/continuous_delivery/stubs.py,sha256=xUAcP21Y03PLEr7X6LrIBMvPeLI8Rp-Ey
|
|
|
37
37
|
stouputils/continuous_delivery/stubs.pyi,sha256=sLZypdz1oGoymQIRPez50rnH8TQhvEIx6A7xUdGtnys,2390
|
|
38
38
|
stouputils/ctx.py,sha256=KVVDmL3pAPX2WM_QzjsmctbG-YfjJ-4aWBSoI7eU_ws,15586
|
|
39
39
|
stouputils/ctx.pyi,sha256=-7AJwD9bKzKBFsYlgyULPznstq3LvXRXe2r_2at72FI,9799
|
|
40
|
-
stouputils/data_science/config/get.py,sha256
|
|
40
|
+
stouputils/data_science/config/get.py,sha256=smdWcu5bBlY38WGtC3GzIF2el-gpvSlDMRNsypmr0JM,1773
|
|
41
41
|
stouputils/data_science/config/set.py,sha256=PBBnWhgSptWTPkMtq3N1UxmEz_E4ywUcl3daS43wA2M,4175
|
|
42
|
-
stouputils/data_science/data_processing/image/__init__.py,sha256=
|
|
43
|
-
stouputils/data_science/data_processing/image/auto_contrast.py,sha256=
|
|
44
|
-
stouputils/data_science/data_processing/image/axis_flip.py,sha256=
|
|
45
|
-
stouputils/data_science/data_processing/image/bias_field_correction.py,sha256=
|
|
46
|
-
stouputils/data_science/data_processing/image/binary_threshold.py,sha256=
|
|
47
|
-
stouputils/data_science/data_processing/image/blur.py,sha256=
|
|
48
|
-
stouputils/data_science/data_processing/image/brightness.py,sha256=
|
|
49
|
-
stouputils/data_science/data_processing/image/canny.py,sha256=
|
|
50
|
-
stouputils/data_science/data_processing/image/clahe.py,sha256=
|
|
51
|
-
stouputils/data_science/data_processing/image/common.py,sha256=
|
|
52
|
-
stouputils/data_science/data_processing/image/contrast.py,sha256=
|
|
53
|
-
stouputils/data_science/data_processing/image/curvature_flow_filter.py,sha256=
|
|
54
|
-
stouputils/data_science/data_processing/image/denoise.py,sha256=
|
|
55
|
-
stouputils/data_science/data_processing/image/histogram_equalization.py,sha256=
|
|
56
|
-
stouputils/data_science/data_processing/image/invert.py,sha256=
|
|
57
|
-
stouputils/data_science/data_processing/image/laplacian.py,sha256=
|
|
58
|
-
stouputils/data_science/data_processing/image/median_blur.py,sha256=
|
|
59
|
-
stouputils/data_science/data_processing/image/noise.py,sha256=
|
|
60
|
-
stouputils/data_science/data_processing/image/normalize.py,sha256=
|
|
61
|
-
stouputils/data_science/data_processing/image/random_erase.py,sha256=
|
|
62
|
-
stouputils/data_science/data_processing/image/resize.py,sha256=
|
|
63
|
-
stouputils/data_science/data_processing/image/rotation.py,sha256=
|
|
64
|
-
stouputils/data_science/data_processing/image/salt_pepper.py,sha256=
|
|
65
|
-
stouputils/data_science/data_processing/image/sharpening.py,sha256=
|
|
66
|
-
stouputils/data_science/data_processing/image/shearing.py,sha256=
|
|
67
|
-
stouputils/data_science/data_processing/image/threshold.py,sha256=
|
|
68
|
-
stouputils/data_science/data_processing/image/translation.py,sha256=
|
|
69
|
-
stouputils/data_science/data_processing/image/zoom.py,sha256=
|
|
70
|
-
stouputils/data_science/data_processing/image_augmentation.py,sha256=
|
|
71
|
-
stouputils/data_science/data_processing/image_preprocess.py,sha256=
|
|
72
|
-
stouputils/data_science/data_processing/prosthesis_detection.py,sha256=
|
|
73
|
-
stouputils/data_science/data_processing/technique.py,sha256=
|
|
74
|
-
stouputils/data_science/dataset/__init__.py,sha256=
|
|
75
|
-
stouputils/data_science/dataset/dataset.py,sha256=
|
|
76
|
-
stouputils/data_science/dataset/dataset_loader.py,sha256=
|
|
77
|
-
stouputils/data_science/dataset/grouping_strategy.py,sha256=
|
|
78
|
-
stouputils/data_science/dataset/image_loader.py,sha256=
|
|
79
|
-
stouputils/data_science/dataset/xy_tuple.py,sha256=
|
|
80
|
-
stouputils/data_science/metric_dictionnary.py,sha256=
|
|
42
|
+
stouputils/data_science/data_processing/image/__init__.py,sha256=ovzV48Bn0tyKXnAMMdujzwT89-1g-PK7GYNlHBrMt9Q,1889
|
|
43
|
+
stouputils/data_science/data_processing/image/auto_contrast.py,sha256=xDwnv-suNHgO1sjWK09WulJeQVyGJIGH0ZyqrJldeX4,2368
|
|
44
|
+
stouputils/data_science/data_processing/image/axis_flip.py,sha256=fu7aD_qZltymmC541JpZs2XJcN4A1EO2Vp_44S-ZCv0,1721
|
|
45
|
+
stouputils/data_science/data_processing/image/bias_field_correction.py,sha256=nBOD2t2ZzGal-x6NRqFxWdsKVb_9ELqjY9G4Q06CzQ4,2461
|
|
46
|
+
stouputils/data_science/data_processing/image/binary_threshold.py,sha256=vRd7PMp5srRwyPAbAm9bGexb6uU-C-zWT7itNyOSMLE,2526
|
|
47
|
+
stouputils/data_science/data_processing/image/blur.py,sha256=i92IEiy_nYV-s025k6tMJn0IsD-C39TWYGIuP1oxmOU,1752
|
|
48
|
+
stouputils/data_science/data_processing/image/brightness.py,sha256=_uv-qouAWh8Up9DpTQImZcbxSNx8xQ7ltGbA-F7PkSE,1725
|
|
49
|
+
stouputils/data_science/data_processing/image/canny.py,sha256=3T_B3Lt3oLRSJC-JSJ4JONMXSnLUiHNREjB_69T76V4,3970
|
|
50
|
+
stouputils/data_science/data_processing/image/clahe.py,sha256=ryAT7uxfxzGv3GdialqVlmkS1UCGT79Jg39mCuM9Mzs,3134
|
|
51
|
+
stouputils/data_science/data_processing/image/common.py,sha256=wCRO6x8c1bV7PNDylcRogkePNfteUcYoXtgZuaKJthY,754
|
|
52
|
+
stouputils/data_science/data_processing/image/contrast.py,sha256=deC3m5c4sCpF0LpjUPne6DookXskBEUfEA8sBTCrpcM,1667
|
|
53
|
+
stouputils/data_science/data_processing/image/curvature_flow_filter.py,sha256=SdI_x6sWsIlHSTAgbPERRsyi8kKgQojcwQYtcUCttBQ,2527
|
|
54
|
+
stouputils/data_science/data_processing/image/denoise.py,sha256=V6y1lIcRZqXSLt9gQee77Zv_ghxbx25umHFV-L1ogOU,13125
|
|
55
|
+
stouputils/data_science/data_processing/image/histogram_equalization.py,sha256=EwPEY7vS3JLAAH7lvXuyD9EyBIWPCkD08nvWiXyWAB4,4693
|
|
56
|
+
stouputils/data_science/data_processing/image/invert.py,sha256=RRFZEEjE-7vbq9x-ldZp2mXYggPg7xA3CJUpQ2iXdQw,1942
|
|
57
|
+
stouputils/data_science/data_processing/image/laplacian.py,sha256=Uf8kj--_8Obdr9rQl_MXRcmqlCWYNZ8Jh6gOKnjWuF4,2086
|
|
58
|
+
stouputils/data_science/data_processing/image/median_blur.py,sha256=a3VuZAyggmodIWPX2zEAnjtED_HezdE6PMxDot06y2s,1552
|
|
59
|
+
stouputils/data_science/data_processing/image/noise.py,sha256=U3MA-Jw5DAjSE24-zptUt85QoUXzYtt1c7JhlscE3iI,1936
|
|
60
|
+
stouputils/data_science/data_processing/image/normalize.py,sha256=uCZNrf-WHT41ZvRNxBiNlGtGZ71ocrBRIUjYO2BMuO0,1982
|
|
61
|
+
stouputils/data_science/data_processing/image/random_erase.py,sha256=M1kmscbG0idwZd33b8ZUEj50Nn-QARSIZlTXqfOsY_Q,2173
|
|
62
|
+
stouputils/data_science/data_processing/image/resize.py,sha256=p-EE_77sgweelDhNoXNuX3qW23jEpgZtDmfJdhPonhA,2128
|
|
63
|
+
stouputils/data_science/data_processing/image/rotation.py,sha256=ZY0oQnQPzikt9lmJSPo4MVE_nNI67_7apYSNJT-GHbY,2566
|
|
64
|
+
stouputils/data_science/data_processing/image/salt_pepper.py,sha256=Dp9_BNVPifM54PAQsIcmKN0n6GuklFboqCH3E-vqMpE,2155
|
|
65
|
+
stouputils/data_science/data_processing/image/sharpening.py,sha256=HHZNalFXyEQRdp3pN1bI3fZKcHdnkWZRb9OBt7Sw3O0,1635
|
|
66
|
+
stouputils/data_science/data_processing/image/shearing.py,sha256=ikT5YuE3w31lC9lX7qtM8JTJGpzfHmX-gMcdLy8eS3Y,2102
|
|
67
|
+
stouputils/data_science/data_processing/image/threshold.py,sha256=rQjlpzoVJqq8KwAB0LF_LZBm2bcaovEN7IElfHD7bKM,2365
|
|
68
|
+
stouputils/data_science/data_processing/image/translation.py,sha256=PKwKOA9L6OuTiROFd6cO9ze2d0nGzwLN6u1R59AKoqU,2531
|
|
69
|
+
stouputils/data_science/data_processing/image/zoom.py,sha256=p8QSL6El7KYEM_iLmC_wANdv1oWNKHpeQBb_fsCYOiw,2696
|
|
70
|
+
stouputils/data_science/data_processing/image_augmentation.py,sha256=7fUKxI3laHiVWOG91Y1OfKQn45-KQ1GO3gIywNR5FRI,4807
|
|
71
|
+
stouputils/data_science/data_processing/image_preprocess.py,sha256=qjko0aL-8T5cLIifOvhDBPSmmr4JRRqdtrWnapxd59s,6501
|
|
72
|
+
stouputils/data_science/data_processing/prosthesis_detection.py,sha256=SgJuKhdXX2xL05ABVePs-jEB22l83KNhEOJh7pjxtcE,13470
|
|
73
|
+
stouputils/data_science/data_processing/technique.py,sha256=rql-ObXZKxEZDerYstGNNPsGUNV73aSU7ABDM6-lhXE,20136
|
|
74
|
+
stouputils/data_science/dataset/__init__.py,sha256=FptJEc5mkzIM95ZmHv3SW3RCfE9SSykroE7uBA86zH0,1604
|
|
75
|
+
stouputils/data_science/dataset/dataset.py,sha256=IRca5EXiLQf4QgPnKY4b3hAG4p1s-QQ46r7mIx0NOIQ,11566
|
|
76
|
+
stouputils/data_science/dataset/dataset_loader.py,sha256=XExz1oYcQUYxSKU0-U7FTaCzIHK0rdCdHKOH0OOv5Rg,4562
|
|
77
|
+
stouputils/data_science/dataset/grouping_strategy.py,sha256=rykG-TfSEzDyb7R8HjZfoNJMiepknOMF8nDSOZFNBgA,10946
|
|
78
|
+
stouputils/data_science/dataset/image_loader.py,sha256=pqQvAEfxVvyzpdvbiSMIQGIj27v8bP3aLtHmbXBywE8,4000
|
|
79
|
+
stouputils/data_science/dataset/xy_tuple.py,sha256=tovKezsldERHEJX_DI9NzuA_6WOiwQFwZoL5u_zVzvc,26074
|
|
80
|
+
stouputils/data_science/metric_dictionnary.py,sha256=_bOybn8Bt-Fbp4Qis18hYmrA3t8oAjunAd7v432edFY,3950
|
|
81
81
|
stouputils/data_science/metric_utils.py,sha256=cHO1eS-gUZdfGfx4sMUXczMgrJScPLesciN9NGLQysI,34006
|
|
82
|
-
stouputils/data_science/mlflow_utils.py,sha256=
|
|
83
|
-
stouputils/data_science/models/abstract_model.py,sha256=
|
|
84
|
-
stouputils/data_science/models/all.py,sha256=
|
|
82
|
+
stouputils/data_science/mlflow_utils.py,sha256=_fM7LljiojYgGF3zpOlIVzKW_CnVVJzpCLwmPEKrUVw,7275
|
|
83
|
+
stouputils/data_science/models/abstract_model.py,sha256=cZmYA4-Sb5Q2ySzQqsNy3KoEWAgcsQdzMTC1ff3gyPg,4104
|
|
84
|
+
stouputils/data_science/models/all.py,sha256=BfBJO8PGGMDbWuAXB90JT-vne8rAo0yVnyL_t4PuO5E,3124
|
|
85
85
|
stouputils/data_science/models/base_keras.py,sha256=bOQ6Uk0dILgcjnCT2KehUdc99btOzf5C7xC3Ljx4FUM,27764
|
|
86
|
-
stouputils/data_science/models/keras/all.py,sha256
|
|
87
|
-
stouputils/data_science/models/keras/convnext.py,sha256=
|
|
88
|
-
stouputils/data_science/models/keras/densenet.py,sha256=
|
|
89
|
-
stouputils/data_science/models/keras/efficientnet.py,sha256=
|
|
90
|
-
stouputils/data_science/models/keras/mobilenet.py,sha256=
|
|
91
|
-
stouputils/data_science/models/keras/resnet.py,sha256=
|
|
92
|
-
stouputils/data_science/models/keras/squeezenet.py,sha256=
|
|
93
|
-
stouputils/data_science/models/keras/vgg.py,sha256=
|
|
94
|
-
stouputils/data_science/models/keras/xception.py,sha256=
|
|
95
|
-
stouputils/data_science/models/keras_utils/callbacks/__init__.py,sha256=
|
|
96
|
-
stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py,sha256=
|
|
97
|
-
stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py,sha256=
|
|
98
|
-
stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py,sha256=
|
|
99
|
-
stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py,sha256=
|
|
100
|
-
stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py,sha256=
|
|
101
|
-
stouputils/data_science/models/keras_utils/losses/__init__.py,sha256=
|
|
102
|
-
stouputils/data_science/models/keras_utils/losses/next_generation_loss.py,sha256=
|
|
103
|
-
stouputils/data_science/models/keras_utils/visualizations.py,sha256=
|
|
86
|
+
stouputils/data_science/models/keras/all.py,sha256=-InRH5x-5bZsbBGqnuCxDtAg59dTcvhDqYsnqiJtmgs,1041
|
|
87
|
+
stouputils/data_science/models/keras/convnext.py,sha256=3CMhnK_dZgCS6Y0XorRu1QKm12RexdH7HG1-ZISHBlo,2595
|
|
88
|
+
stouputils/data_science/models/keras/densenet.py,sha256=b4mPfwvibhrrIBpFtkcmRWmJXxfx0pNfxcE7t0KLSQg,1858
|
|
89
|
+
stouputils/data_science/models/keras/efficientnet.py,sha256=or4zHeBt82nBnXSNr3AJdziNz8F4wTZZeAmR2IRPkps,2502
|
|
90
|
+
stouputils/data_science/models/keras/mobilenet.py,sha256=ugPYSp_2g3QL_qPBfOZZx0gk2kMeZpic6WkFDvLoveM,2313
|
|
91
|
+
stouputils/data_science/models/keras/resnet.py,sha256=DJexThuFCnYj4cRaa80CunizkOtEu721nLN4UjC3Cko,1841
|
|
92
|
+
stouputils/data_science/models/keras/squeezenet.py,sha256=fvM3xrpRUwKWL6Ter04HosoZkvfK9OCHuH7v1qPXAzY,8590
|
|
93
|
+
stouputils/data_science/models/keras/vgg.py,sha256=D3UJ2uGu8O6bXUUv2tBFwFrXru-oUSjtsbvBPo1WPfc,1545
|
|
94
|
+
stouputils/data_science/models/keras/xception.py,sha256=PHMAQHgM6P9OocC__BBiTLYtc_q7NQ_liug0tQWZ328,1295
|
|
95
|
+
stouputils/data_science/models/keras_utils/callbacks/__init__.py,sha256=211evA7wPJVL5rJ-qGZq1oMj5e-RpZr0_HGfMupGGfo,873
|
|
96
|
+
stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py,sha256=b321QLJu3q7S6ThQeHu7s6PXsm5h0JIFugq5wcUiYLo,7860
|
|
97
|
+
stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py,sha256=p6gIR-Rj2NBGAfWRrhDsS_XViA50nBcPCDDTXCylonk,5206
|
|
98
|
+
stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py,sha256=_9UXBP-Ryef_WCpRaWT0exhSX8VLezXF-FRDMlYTc58,966
|
|
99
|
+
stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py,sha256=MD3V3Uj-7D6Z5jPr09GKBx2HnOgKn7CY4BHzuyVWCoo,9854
|
|
100
|
+
stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py,sha256=WeP3YyoXyMBuLmzW9TqSIx1Sf1dEOoNYhNLvsK3JlSs,2378
|
|
101
|
+
stouputils/data_science/models/keras_utils/losses/__init__.py,sha256=W8NELTZJ217yY8-Pr614a6W5o4_yWuEboCm4e1N6yZY,186
|
|
102
|
+
stouputils/data_science/models/keras_utils/losses/next_generation_loss.py,sha256=U0HfYUVNi1b5YRA9XtB9dpSZ7D3jkEUrEonmlVd3sbY,1634
|
|
103
|
+
stouputils/data_science/models/keras_utils/visualizations.py,sha256=XQDPgLHosKdUxV-B6s73lVmgiTqmmxuov-VTNxnA5_c,15867
|
|
104
104
|
stouputils/data_science/models/model_interface.py,sha256=om1hnEYHTILfLJRcoTDhR7Rj0lbmW_8zIJkTIGuTqOQ,37140
|
|
105
|
-
stouputils/data_science/models/sandbox.py,sha256=
|
|
106
|
-
stouputils/data_science/range_tuple.py,sha256=
|
|
105
|
+
stouputils/data_science/models/sandbox.py,sha256=ZeuoXNHnVvMlm6umCgTl2Ss0zyQSlxFEV9xJb3ET1Qw,4269
|
|
106
|
+
stouputils/data_science/range_tuple.py,sha256=5f5PQcwENZEMV0O6U5IpZ2_ylNMB_graDyv-wxrDUhk,6908
|
|
107
107
|
stouputils/data_science/scripts/augment_dataset.py,sha256=zGcQ2uSn_DO570NIFEs2DUc_d5uvWxLfY-RavjdO3aU,3469
|
|
108
108
|
stouputils/data_science/scripts/exhaustive_process.py,sha256=Ty2lHBZBweWxH6smpjoUEqpGz6JmMUO_oaNZO7d-gtQ,5483
|
|
109
109
|
stouputils/data_science/scripts/preprocess_dataset.py,sha256=OLC2KjEtSMeyHHPpNOATfNDuq0lZ09utKhsuzBA4MN4,2929
|
|
110
110
|
stouputils/data_science/scripts/routine.py,sha256=FkTLzmcdm_qUp69D-dPAKJm2RfXZZLtPgje6lEopu2I,7662
|
|
111
|
-
stouputils/data_science/utils.py,sha256=
|
|
112
|
-
stouputils/decorators.py,sha256=
|
|
113
|
-
stouputils/decorators.pyi,sha256=
|
|
111
|
+
stouputils/data_science/utils.py,sha256=HFXI2RQZ53RbBOn_4Act2bi0z4xQlTtsuR5Am80v9JU,11084
|
|
112
|
+
stouputils/decorators.py,sha256=miZ8r2g8VhmQs2_knkKuUagdQabriZe7w0fCOEB69Nw,21838
|
|
113
|
+
stouputils/decorators.pyi,sha256=vbPRsvox4dotqcln3StgE6iZ1cWCOeAn56M9zMpdw2U,10948
|
|
114
114
|
stouputils/image.py,sha256=NtduEVzgbCuZhDRpDZHGTW7-wTs7MqoxUwSQcipvb08,16633
|
|
115
115
|
stouputils/image.pyi,sha256=Dkf64KmXJTAEcbtYDHFZ1kqEHqOf2FgJ2Z2BlJgp4fU,8455
|
|
116
|
-
stouputils/installer/__init__.py,sha256=
|
|
116
|
+
stouputils/installer/__init__.py,sha256=DBwI9w3xvw0NR_jDMxmURwPi1F79kPLe7EuNjmrxW_U,502
|
|
117
117
|
stouputils/installer/__init__.pyi,sha256=ZB-8frAUOW-0pCEJL-e2AdbFodivv46v3EBYwEXCxRo,117
|
|
118
118
|
stouputils/installer/common.py,sha256=UJr5u02h4LQZQdkmVOkJ3vvW_0-ROGgVMMh0PNoVS1A,2209
|
|
119
119
|
stouputils/installer/common.pyi,sha256=5aG0-58omFkkNYeVHnQ0uHUBsaI7xoMD-WqWVdOgOms,1403
|
|
120
120
|
stouputils/installer/downloader.py,sha256=IIV_zI1lnKCD-9OsnroOoo4nDPOLr2Vn6oOYHnXshj8,3659
|
|
121
121
|
stouputils/installer/downloader.pyi,sha256=8Xp0sXyba4flHAZ0nNqNlFU4VUmfPvllmPUkWalkvRA,1273
|
|
122
|
-
stouputils/installer/linux.py,sha256=
|
|
122
|
+
stouputils/installer/linux.py,sha256=6BsMFoBDn1-RPMCW8rAciuxHwxbk9QTX0DmA-meQdDE,5512
|
|
123
123
|
stouputils/installer/linux.pyi,sha256=V-EbY7seOFnC6LL844bqWRNvQ7rHmMhDkcFj5r1V7Tk,1943
|
|
124
|
-
stouputils/installer/main.py,sha256=
|
|
124
|
+
stouputils/installer/main.py,sha256=8wrx_cnQo1dFGRf6x8vtxh6-96tQ-AzMyvJ0S64j0io,8538
|
|
125
125
|
stouputils/installer/main.pyi,sha256=r3j4GoMBpU06MpOqjSwoDTiSMOmbA3WWUA87970b6KE,3134
|
|
126
|
-
stouputils/installer/windows.py,sha256=
|
|
126
|
+
stouputils/installer/windows.py,sha256=r2AIuoyAmtMEuoCtQBH9GWQWI-JUT2J9zoH28j9ruOU,4880
|
|
127
127
|
stouputils/installer/windows.pyi,sha256=tHogIFhPVDQS0I10liLkAxnpaFFAvmFtEVMpPIae5LU,1616
|
|
128
|
-
stouputils/io.py,sha256=
|
|
128
|
+
stouputils/io.py,sha256=XG2cReP8wzmoe0LyMtUqvEqixiHehPvXW23h5hBf_Pw,17202
|
|
129
129
|
stouputils/io.pyi,sha256=TCBTVEWUkI3dO_jWI9oPMF9SbnT1yLzFChE551JPbSY,9076
|
|
130
130
|
stouputils/parallel.py,sha256=_o96klxFYgDPyxCeqFp5qNOtJhhXHQYmFIfqbJYnxko,19061
|
|
131
131
|
stouputils/parallel.pyi,sha256=ug9I-Ni2q9cwwByXERQuxW-UM3rqw3dCiurnJjOWUpI,11576
|
|
132
|
-
stouputils/print.py,sha256=
|
|
133
|
-
stouputils/print.pyi,sha256=
|
|
134
|
-
stouputils/py.typed,sha256=
|
|
132
|
+
stouputils/print.py,sha256=crcvgJO-NCbQ6-C3Prsxvsn8E9mPKI186t_xcQ6O2Uo,24527
|
|
133
|
+
stouputils/print.pyi,sha256=SRAAdObriW_LPcqvDGrCpjfGLrswRhIyJmCvC9_3OpM,10232
|
|
134
|
+
stouputils/py.typed,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
135
135
|
stouputils/version_pkg.py,sha256=Jsp-s03L14DkiZ94vQgrlQmaxApfn9DC8M_nzT1SJLk,7014
|
|
136
136
|
stouputils/version_pkg.pyi,sha256=QPvqp1U3QA-9C_CC1dT9Vahv1hXEhstbM7x5uzMZSsQ,755
|
|
137
|
-
stouputils-1.
|
|
138
|
-
stouputils-1.
|
|
139
|
-
stouputils-1.
|
|
140
|
-
stouputils-1.
|
|
137
|
+
stouputils-1.15.0.dist-info/WHEEL,sha256=XjEbIc5-wIORjWaafhI6vBtlxDBp7S9KiujWF1EM7Ak,79
|
|
138
|
+
stouputils-1.15.0.dist-info/entry_points.txt,sha256=tx0z9VOnE-sfkmbFbA93zaBMzV3XSsKEJa_BWIqUzxw,57
|
|
139
|
+
stouputils-1.15.0.dist-info/METADATA,sha256=1FFyPDRUgvHlhXrDArmApMkI6nwy3rDZbqWWKWlPQ1Q,13615
|
|
140
|
+
stouputils-1.15.0.dist-info/RECORD,,
|
|
File without changes
|