stouputils 1.14.3__py3-none-any.whl → 1.15.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. stouputils/data_science/config/get.py +51 -51
  2. stouputils/data_science/data_processing/image/__init__.py +66 -66
  3. stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
  4. stouputils/data_science/data_processing/image/axis_flip.py +58 -58
  5. stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
  6. stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
  7. stouputils/data_science/data_processing/image/blur.py +59 -59
  8. stouputils/data_science/data_processing/image/brightness.py +54 -54
  9. stouputils/data_science/data_processing/image/canny.py +110 -110
  10. stouputils/data_science/data_processing/image/clahe.py +92 -92
  11. stouputils/data_science/data_processing/image/common.py +30 -30
  12. stouputils/data_science/data_processing/image/contrast.py +53 -53
  13. stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
  14. stouputils/data_science/data_processing/image/denoise.py +378 -378
  15. stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
  16. stouputils/data_science/data_processing/image/invert.py +64 -64
  17. stouputils/data_science/data_processing/image/laplacian.py +60 -60
  18. stouputils/data_science/data_processing/image/median_blur.py +52 -52
  19. stouputils/data_science/data_processing/image/noise.py +59 -59
  20. stouputils/data_science/data_processing/image/normalize.py +65 -65
  21. stouputils/data_science/data_processing/image/random_erase.py +66 -66
  22. stouputils/data_science/data_processing/image/resize.py +69 -69
  23. stouputils/data_science/data_processing/image/rotation.py +80 -80
  24. stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
  25. stouputils/data_science/data_processing/image/sharpening.py +55 -55
  26. stouputils/data_science/data_processing/image/shearing.py +64 -64
  27. stouputils/data_science/data_processing/image/threshold.py +64 -64
  28. stouputils/data_science/data_processing/image/translation.py +71 -71
  29. stouputils/data_science/data_processing/image/zoom.py +83 -83
  30. stouputils/data_science/data_processing/image_augmentation.py +118 -118
  31. stouputils/data_science/data_processing/image_preprocess.py +183 -183
  32. stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
  33. stouputils/data_science/data_processing/technique.py +481 -481
  34. stouputils/data_science/dataset/__init__.py +45 -45
  35. stouputils/data_science/dataset/dataset.py +292 -292
  36. stouputils/data_science/dataset/dataset_loader.py +135 -135
  37. stouputils/data_science/dataset/grouping_strategy.py +296 -296
  38. stouputils/data_science/dataset/image_loader.py +100 -100
  39. stouputils/data_science/dataset/xy_tuple.py +696 -696
  40. stouputils/data_science/metric_dictionnary.py +106 -106
  41. stouputils/data_science/mlflow_utils.py +206 -206
  42. stouputils/data_science/models/abstract_model.py +149 -149
  43. stouputils/data_science/models/all.py +85 -85
  44. stouputils/data_science/models/keras/all.py +38 -38
  45. stouputils/data_science/models/keras/convnext.py +62 -62
  46. stouputils/data_science/models/keras/densenet.py +50 -50
  47. stouputils/data_science/models/keras/efficientnet.py +60 -60
  48. stouputils/data_science/models/keras/mobilenet.py +56 -56
  49. stouputils/data_science/models/keras/resnet.py +52 -52
  50. stouputils/data_science/models/keras/squeezenet.py +233 -233
  51. stouputils/data_science/models/keras/vgg.py +42 -42
  52. stouputils/data_science/models/keras/xception.py +38 -38
  53. stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
  54. stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
  55. stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
  56. stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
  57. stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
  58. stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
  59. stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
  60. stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
  61. stouputils/data_science/models/keras_utils/visualizations.py +416 -416
  62. stouputils/data_science/models/sandbox.py +116 -116
  63. stouputils/data_science/range_tuple.py +234 -234
  64. stouputils/data_science/utils.py +285 -285
  65. stouputils/decorators.py +53 -39
  66. stouputils/decorators.pyi +2 -2
  67. stouputils/installer/__init__.py +18 -18
  68. stouputils/installer/linux.py +144 -144
  69. stouputils/installer/main.py +223 -223
  70. stouputils/installer/windows.py +136 -136
  71. stouputils/io.py +16 -9
  72. stouputils/print.py +229 -2
  73. stouputils/print.pyi +90 -1
  74. stouputils/py.typed +1 -1
  75. {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/METADATA +1 -1
  76. {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/RECORD +78 -78
  77. {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/WHEEL +1 -1
  78. {stouputils-1.14.3.dist-info → stouputils-1.15.0.dist-info}/entry_points.txt +0 -0
@@ -1,100 +1,100 @@
1
- """
2
- This module contains utility functions for loading image data from directories.
3
-
4
- It provides alternatives to Keras image loading functions, focused on
5
- efficient image loading, resizing, and preprocessing using PIL.
6
- The main functionality allows loading images from directories into
7
- numpy arrays suitable for machine learning model input.
8
- """
9
- # pyright: reportUnknownMemberType=false
10
-
11
- # Imports
12
- from __future__ import annotations
13
-
14
- import os
15
- from typing import Any
16
-
17
- import numpy as np
18
- from ...decorators import handle_error, LogLevels
19
- from ...parallel import multithreading
20
- from ...print import warning
21
- from ...io import clean_path
22
- from numpy.typing import NDArray
23
- from PIL import Image
24
-
25
- # Constants
26
- ALLOWLIST_FORMATS: tuple[str, ...] = tuple(ex for ex, f in Image.registered_extensions().items() if f in Image.OPEN)
27
- """ List of image formats supported by PIL """
28
-
29
- # Functions
30
- def load_images_from_directory(
31
- directory_path: str,
32
- image_size: tuple[int, int] = (224, 224),
33
- color_mode: str | None = "RGB",
34
- resample: Image.Resampling = Image.Resampling.LANCZOS,
35
- to_float32: bool = True,
36
- **kwargs: Any
37
- ) -> list[tuple[NDArray[Any], str]]:
38
- """ Load images from a directory using PIL instead of Keras.
39
-
40
- This function loads all images from a directory and its subdirectories, resizes them to the specified size,
41
- converts them to the specified color mode, and returns them as a list of numpy arrays.
42
- Unlike Keras' image_dataset_from_directory, this function doesn't create batches or labels.
43
- If directory_path is a file path, it will load that single image.
44
-
45
- Args:
46
- directory_path (str): Path to the directory containing images or a single image file
47
- image_size (tuple[int, int]): Size to which images should be resized
48
- color_mode (str | None): Color mode to use ("RGB" or "grayscale")
49
- resample (Image.Resampling): Resampling filter to use when resizing
50
- to_float32 (bool): Whether to convert the image to float32 (between 0 and 1)
51
- **kwargs (Any): Additional arguments (ignored, for compatibility)
52
-
53
- Returns:
54
- list[tuple[NDArray[Any], str]]: List of tuples containing images
55
- with shape (height, width, channels) and their file paths
56
- """
57
- # Function to load images from a directory
58
- def _load_image(img_path: str) -> tuple[NDArray[Any], str]:
59
- # Open image using PIL and decorate with error handling the Image.open function
60
- img: Image.Image = handle_error(
61
- message=f"Failed to open image: '{img_path}'",
62
- error_log=LogLevels.WARNING_TRACEBACK
63
- )(Image.open)(img_path)
64
-
65
- # Resize image with proper resampling
66
- img = img.resize(image_size, resample=resample)
67
-
68
- # If grayscale, convert to grayscale, else convert to correct color mode
69
- is_grayscale: bool = color_mode is not None and color_mode.lower() == "grayscale"
70
- img = img.convert("L" if is_grayscale else color_mode)
71
-
72
- # Convert to numpy array to float32 without normalizing (not this function's job)
73
- img_array: NDArray[Any] = np.array(img, dtype=np.float32) if to_float32 else np.array(img)
74
-
75
- # Add channel dimension if grayscale
76
- if is_grayscale:
77
- img_array = np.expand_dims(img_array, axis=-1) # Add channel dimension, e.g. (224, 224, 1)
78
-
79
- return img_array, img_path
80
-
81
- # If directory_path is a file, return the image
82
- if os.path.isfile(directory_path):
83
-
84
- # Check if the file is an image
85
- if any(directory_path.endswith(ext) for ext in ALLOWLIST_FORMATS):
86
- return [_load_image(directory_path)]
87
-
88
- # If the file is not an image, warn the user
89
- else:
90
- warning(f"File '{directory_path}' is not a supported image format")
91
- return []
92
-
93
- # Find all image files
94
- image_files: list[str] = []
95
- for root, _, files in os.walk(directory_path):
96
- image_files.extend(clean_path(f"{root}/{f}") for f in files if f.endswith(ALLOWLIST_FORMATS))
97
-
98
- # Load and process images in parallel
99
- return multithreading(_load_image, image_files)
100
-
1
+ """
2
+ This module contains utility functions for loading image data from directories.
3
+
4
+ It provides alternatives to Keras image loading functions, focused on
5
+ efficient image loading, resizing, and preprocessing using PIL.
6
+ The main functionality allows loading images from directories into
7
+ numpy arrays suitable for machine learning model input.
8
+ """
9
+ # pyright: reportUnknownMemberType=false
10
+
11
+ # Imports
12
+ from __future__ import annotations
13
+
14
+ import os
15
+ from typing import Any
16
+
17
+ import numpy as np
18
+ from ...decorators import handle_error, LogLevels
19
+ from ...parallel import multithreading
20
+ from ...print import warning
21
+ from ...io import clean_path
22
+ from numpy.typing import NDArray
23
+ from PIL import Image
24
+
25
+ # Constants
26
+ ALLOWLIST_FORMATS: tuple[str, ...] = tuple(ex for ex, f in Image.registered_extensions().items() if f in Image.OPEN)
27
+ """ List of image formats supported by PIL """
28
+
29
+ # Functions
30
+ def load_images_from_directory(
31
+ directory_path: str,
32
+ image_size: tuple[int, int] = (224, 224),
33
+ color_mode: str | None = "RGB",
34
+ resample: Image.Resampling = Image.Resampling.LANCZOS,
35
+ to_float32: bool = True,
36
+ **kwargs: Any
37
+ ) -> list[tuple[NDArray[Any], str]]:
38
+ """ Load images from a directory using PIL instead of Keras.
39
+
40
+ This function loads all images from a directory and its subdirectories, resizes them to the specified size,
41
+ converts them to the specified color mode, and returns them as a list of numpy arrays.
42
+ Unlike Keras' image_dataset_from_directory, this function doesn't create batches or labels.
43
+ If directory_path is a file path, it will load that single image.
44
+
45
+ Args:
46
+ directory_path (str): Path to the directory containing images or a single image file
47
+ image_size (tuple[int, int]): Size to which images should be resized
48
+ color_mode (str | None): Color mode to use ("RGB" or "grayscale")
49
+ resample (Image.Resampling): Resampling filter to use when resizing
50
+ to_float32 (bool): Whether to convert the image to float32 (between 0 and 1)
51
+ **kwargs (Any): Additional arguments (ignored, for compatibility)
52
+
53
+ Returns:
54
+ list[tuple[NDArray[Any], str]]: List of tuples containing images
55
+ with shape (height, width, channels) and their file paths
56
+ """
57
+ # Function to load images from a directory
58
+ def _load_image(img_path: str) -> tuple[NDArray[Any], str]:
59
+ # Open image using PIL and decorate with error handling the Image.open function
60
+ img: Image.Image = handle_error(
61
+ message=f"Failed to open image: '{img_path}'",
62
+ error_log=LogLevels.WARNING_TRACEBACK
63
+ )(Image.open)(img_path)
64
+
65
+ # Resize image with proper resampling
66
+ img = img.resize(image_size, resample=resample)
67
+
68
+ # If grayscale, convert to grayscale, else convert to correct color mode
69
+ is_grayscale: bool = color_mode is not None and color_mode.lower() == "grayscale"
70
+ img = img.convert("L" if is_grayscale else color_mode)
71
+
72
+ # Convert to numpy array to float32 without normalizing (not this function's job)
73
+ img_array: NDArray[Any] = np.array(img, dtype=np.float32) if to_float32 else np.array(img)
74
+
75
+ # Add channel dimension if grayscale
76
+ if is_grayscale:
77
+ img_array = np.expand_dims(img_array, axis=-1) # Add channel dimension, e.g. (224, 224, 1)
78
+
79
+ return img_array, img_path
80
+
81
+ # If directory_path is a file, return the image
82
+ if os.path.isfile(directory_path):
83
+
84
+ # Check if the file is an image
85
+ if any(directory_path.endswith(ext) for ext in ALLOWLIST_FORMATS):
86
+ return [_load_image(directory_path)]
87
+
88
+ # If the file is not an image, warn the user
89
+ else:
90
+ warning(f"File '{directory_path}' is not a supported image format")
91
+ return []
92
+
93
+ # Find all image files
94
+ image_files: list[str] = []
95
+ for root, _, files in os.walk(directory_path):
96
+ image_files.extend(clean_path(f"{root}/{f}") for f in files if f.endswith(ALLOWLIST_FORMATS))
97
+
98
+ # Load and process images in parallel
99
+ return multithreading(_load_image, image_files)
100
+