ssb-sgis 1.0.2__py3-none-any.whl → 1.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sgis/__init__.py +20 -9
- sgis/debug_config.py +24 -0
- sgis/exceptions.py +2 -2
- sgis/geopandas_tools/bounds.py +33 -36
- sgis/geopandas_tools/buffer_dissolve_explode.py +136 -35
- sgis/geopandas_tools/centerlines.py +4 -91
- sgis/geopandas_tools/cleaning.py +1576 -583
- sgis/geopandas_tools/conversion.py +38 -19
- sgis/geopandas_tools/duplicates.py +29 -8
- sgis/geopandas_tools/general.py +263 -100
- sgis/geopandas_tools/geometry_types.py +4 -4
- sgis/geopandas_tools/neighbors.py +19 -15
- sgis/geopandas_tools/overlay.py +2 -2
- sgis/geopandas_tools/point_operations.py +5 -5
- sgis/geopandas_tools/polygon_operations.py +510 -105
- sgis/geopandas_tools/polygons_as_rings.py +40 -8
- sgis/geopandas_tools/sfilter.py +29 -12
- sgis/helpers.py +3 -3
- sgis/io/dapla_functions.py +238 -19
- sgis/io/read_parquet.py +1 -1
- sgis/maps/examine.py +27 -12
- sgis/maps/explore.py +450 -65
- sgis/maps/legend.py +177 -76
- sgis/maps/map.py +206 -103
- sgis/maps/maps.py +178 -105
- sgis/maps/thematicmap.py +243 -83
- sgis/networkanalysis/_service_area.py +6 -1
- sgis/networkanalysis/closing_network_holes.py +2 -2
- sgis/networkanalysis/cutting_lines.py +15 -8
- sgis/networkanalysis/directednetwork.py +1 -1
- sgis/networkanalysis/finding_isolated_networks.py +15 -8
- sgis/networkanalysis/networkanalysis.py +17 -19
- sgis/networkanalysis/networkanalysisrules.py +1 -1
- sgis/networkanalysis/traveling_salesman.py +1 -1
- sgis/parallel/parallel.py +64 -27
- sgis/raster/__init__.py +0 -6
- sgis/raster/base.py +208 -0
- sgis/raster/cube.py +54 -8
- sgis/raster/image_collection.py +3257 -0
- sgis/raster/indices.py +17 -5
- sgis/raster/raster.py +138 -243
- sgis/raster/sentinel_config.py +120 -0
- sgis/raster/zonal.py +0 -1
- {ssb_sgis-1.0.2.dist-info → ssb_sgis-1.0.4.dist-info}/METADATA +6 -7
- ssb_sgis-1.0.4.dist-info/RECORD +62 -0
- sgis/raster/methods_as_functions.py +0 -0
- sgis/raster/torchgeo.py +0 -171
- ssb_sgis-1.0.2.dist-info/RECORD +0 -61
- {ssb_sgis-1.0.2.dist-info → ssb_sgis-1.0.4.dist-info}/LICENSE +0 -0
- {ssb_sgis-1.0.2.dist-info → ssb_sgis-1.0.4.dist-info}/WHEEL +0 -0
sgis/geopandas_tools/cleaning.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
|
|
1
|
+
# %%
|
|
2
2
|
import warnings
|
|
3
3
|
from collections.abc import Callable
|
|
4
4
|
from typing import Any
|
|
@@ -8,36 +8,49 @@ import pandas as pd
|
|
|
8
8
|
import shapely
|
|
9
9
|
from geopandas import GeoDataFrame
|
|
10
10
|
from geopandas import GeoSeries
|
|
11
|
-
from geopandas.array import GeometryArray
|
|
12
11
|
from numpy.typing import NDArray
|
|
12
|
+
from shapely import Geometry
|
|
13
|
+
from shapely import STRtree
|
|
13
14
|
from shapely import extract_unique_points
|
|
14
15
|
from shapely import get_coordinates
|
|
15
|
-
from shapely import
|
|
16
|
-
from shapely import
|
|
16
|
+
from shapely import linearrings
|
|
17
|
+
from shapely import polygons
|
|
17
18
|
from shapely.errors import GEOSException
|
|
19
|
+
from shapely.geometry import LinearRing
|
|
18
20
|
from shapely.geometry import LineString
|
|
19
21
|
from shapely.geometry import Point
|
|
20
22
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
23
|
+
try:
|
|
24
|
+
import numba
|
|
25
|
+
except ImportError:
|
|
26
|
+
|
|
27
|
+
class numba:
|
|
28
|
+
"""Placeholder."""
|
|
29
|
+
|
|
30
|
+
@staticmethod
|
|
31
|
+
def njit(func) -> Callable:
|
|
32
|
+
"""Placeholder that does nothing."""
|
|
33
|
+
|
|
34
|
+
def wrapper(*args, **kwargs):
|
|
35
|
+
return func(*args, **kwargs)
|
|
36
|
+
|
|
37
|
+
return wrapper
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
from ..debug_config import _DEBUG_CONFIG
|
|
41
|
+
from ..maps.maps import explore
|
|
24
42
|
from .conversion import to_gdf
|
|
25
|
-
from .
|
|
43
|
+
from .conversion import to_geoseries
|
|
26
44
|
from .duplicates import update_geometries
|
|
27
|
-
|
|
28
|
-
# from .general import sort_large_first as _sort_large_first
|
|
29
45
|
from .general import clean_geoms
|
|
30
|
-
from .general import sort_large_first
|
|
31
|
-
from .general import sort_small_first
|
|
32
|
-
from .general import to_lines
|
|
33
46
|
from .geometry_types import make_all_singlepart
|
|
34
47
|
from .geometry_types import to_single_geom_type
|
|
35
48
|
from .overlay import clean_overlay
|
|
36
49
|
from .polygon_operations import eliminate_by_longest
|
|
37
|
-
from .polygon_operations import
|
|
38
|
-
from .
|
|
50
|
+
from .polygon_operations import split_by_neighbors
|
|
51
|
+
from .polygons_as_rings import PolygonsAsRings
|
|
52
|
+
from .sfilter import sfilter
|
|
39
53
|
from .sfilter import sfilter_inverse
|
|
40
|
-
from .sfilter import sfilter_split
|
|
41
54
|
|
|
42
55
|
warnings.simplefilter(action="ignore", category=UserWarning)
|
|
43
56
|
warnings.simplefilter(action="ignore", category=RuntimeWarning)
|
|
@@ -47,12 +60,31 @@ PRECISION = 1e-3
|
|
|
47
60
|
BUFFER_RES = 50
|
|
48
61
|
|
|
49
62
|
|
|
63
|
+
# def explore(*args, **kwargs):
|
|
64
|
+
# pass
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
# def explore_locals(*args, **kwargs):
|
|
68
|
+
# pass
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
# def no_njit(func):
|
|
72
|
+
# def wrapper(*args, **kwargs):
|
|
73
|
+
# result = func(*args, **kwargs)
|
|
74
|
+
# return result
|
|
75
|
+
|
|
76
|
+
# return wrapper
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
# numba.njit = no_njit
|
|
80
|
+
|
|
81
|
+
|
|
50
82
|
def coverage_clean(
|
|
51
83
|
gdf: GeoDataFrame,
|
|
52
84
|
tolerance: int | float,
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
85
|
+
mask: GeoDataFrame | GeoSeries | Geometry | None = None,
|
|
86
|
+
snap_to_anchors: bool = True,
|
|
87
|
+
**kwargs,
|
|
56
88
|
) -> GeoDataFrame:
|
|
57
89
|
"""Fix thin gaps, holes, slivers and double surfaces.
|
|
58
90
|
|
|
@@ -78,15 +110,10 @@ def coverage_clean(
|
|
|
78
110
|
for polygons to be eliminated. Any gap, hole, sliver or double
|
|
79
111
|
surface that are empty after a negative buffer of tolerance / 2
|
|
80
112
|
are eliminated into the neighbor with the longest shared border.
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
If "error", an Exception is raised if there are any double surfaces thicker
|
|
86
|
-
than the tolerance. If "ignore", double surfaces are kept as is.
|
|
87
|
-
grid_sizes: One or more grid_sizes used in overlay and dissolve operations that
|
|
88
|
-
might raise a GEOSException. Defaults to (None,), meaning no grid_sizes.
|
|
89
|
-
n_jobs: Number of threads.
|
|
113
|
+
mask: Mask to clip gdf to.
|
|
114
|
+
snap_to_anchors: If True (default), snaps to anchor nodes in gdf. If False,
|
|
115
|
+
only snaps to mask nodes (mask cannot be None in this case).
|
|
116
|
+
**kwargs: Temporary backwards compatibility to avoid TypeErrors.
|
|
90
117
|
|
|
91
118
|
Returns:
|
|
92
119
|
A GeoDataFrame with cleaned polygons.
|
|
@@ -94,648 +121,1614 @@ def coverage_clean(
|
|
|
94
121
|
if not len(gdf):
|
|
95
122
|
return gdf
|
|
96
123
|
|
|
97
|
-
|
|
124
|
+
gdf_original = gdf.copy()
|
|
98
125
|
|
|
99
|
-
|
|
100
|
-
|
|
126
|
+
# more_than_one = get_num_geometries(gdf.geometry.values) > 1
|
|
127
|
+
# gdf.loc[more_than_one, gdf._geometry_column_name] = gdf.loc[
|
|
128
|
+
# more_than_one, gdf._geometry_column_name
|
|
129
|
+
# ].apply(_unary_union_for_notna)
|
|
101
130
|
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
pass
|
|
131
|
+
if mask is not None:
|
|
132
|
+
try:
|
|
133
|
+
mask: GeoDataFrame = mask[["geometry"]].pipe(make_all_singlepart)
|
|
134
|
+
except Exception:
|
|
135
|
+
mask: GeoDataFrame = (
|
|
136
|
+
to_geoseries(mask).to_frame("geometry").pipe(make_all_singlepart)
|
|
137
|
+
)
|
|
110
138
|
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
.pipe(make_all_singlepart)
|
|
114
|
-
|
|
139
|
+
# mask: GeoDataFrame = close_all_holes(
|
|
140
|
+
# dissexp_by_cluster(gdf[["geometry"]])
|
|
141
|
+
# ).pipe(make_all_singlepart)
|
|
142
|
+
# mask = GeoDataFrame(
|
|
143
|
+
# {
|
|
144
|
+
# "geometry": [
|
|
145
|
+
# mask.union_all()
|
|
146
|
+
# .buffer(
|
|
147
|
+
# PRECISION,
|
|
148
|
+
# resolution=1,
|
|
149
|
+
# join_style=2,
|
|
150
|
+
# )
|
|
151
|
+
# .buffer(
|
|
152
|
+
# -PRECISION,
|
|
153
|
+
# resolution=1,
|
|
154
|
+
# join_style=2,
|
|
155
|
+
# )
|
|
156
|
+
# ]
|
|
157
|
+
# },
|
|
158
|
+
# crs=gdf.crs,
|
|
159
|
+
# ).pipe(make_all_singlepart)
|
|
160
|
+
# # gaps = shapely.union_all(get_gaps(mask).geometry.values)
|
|
161
|
+
# # mask = shapely.get_parts(extract_unique_points(mask.geometry.values))
|
|
162
|
+
# # not_by_gaps = shapely.distance(mask, gaps) > PRECISION
|
|
163
|
+
# # mask = GeoDataFrame({"geometry": mask[not_by_gaps]})
|
|
164
|
+
|
|
165
|
+
gdf = snap_polygons(gdf, tolerance, mask=mask, snap_to_anchors=snap_to_anchors)
|
|
166
|
+
|
|
167
|
+
if mask is not None:
|
|
168
|
+
missing_from_mask = clean_overlay(
|
|
169
|
+
mask, gdf, how="difference", geom_type="polygon"
|
|
170
|
+
).loc[lambda x: x.buffer(-tolerance + PRECISION).is_empty]
|
|
171
|
+
gdf, _ = eliminate_by_longest(gdf, missing_from_mask)
|
|
172
|
+
|
|
173
|
+
missing_from_gdf = sfilter_inverse(gdf_original, gdf.buffer(-PRECISION)).loc[
|
|
174
|
+
lambda x: (~x.buffer(-PRECISION).is_empty)
|
|
175
|
+
]
|
|
176
|
+
return pd.concat([gdf, missing_from_gdf], ignore_index=True).pipe(
|
|
177
|
+
update_geometries, geom_type="polygon"
|
|
115
178
|
)
|
|
116
179
|
|
|
117
|
-
try:
|
|
118
|
-
gaps = get_gaps(gdf, include_interiors=True)
|
|
119
|
-
except GEOSException:
|
|
120
|
-
for i, grid_size in enumerate(grid_sizes):
|
|
121
|
-
try:
|
|
122
|
-
gaps = get_gaps(gdf, include_interiors=True, grid_size=grid_size)
|
|
123
|
-
if grid_size:
|
|
124
|
-
# in order to not get more gaps
|
|
125
|
-
gaps.geometry = gaps.buffer(grid_size)
|
|
126
|
-
break
|
|
127
|
-
except GEOSException as e:
|
|
128
|
-
if i == len(grid_sizes) - 1:
|
|
129
|
-
explore_geosexception(e, gdf)
|
|
130
|
-
raise e
|
|
131
|
-
|
|
132
|
-
gaps["_was_gap"] = 1
|
|
133
|
-
|
|
134
|
-
if duplicate_action == "ignore":
|
|
135
|
-
double = GeoDataFrame({"geometry": []}, crs=gdf.crs)
|
|
136
|
-
double["_double_idx"] = None
|
|
137
|
-
else:
|
|
138
|
-
double = get_intersections(gdf, n_jobs=n_jobs)
|
|
139
|
-
double["_double_idx"] = range(len(double))
|
|
140
180
|
|
|
141
|
-
|
|
181
|
+
def snap_polygons(
|
|
182
|
+
gdf: GeoDataFrame,
|
|
183
|
+
tolerance: int | float,
|
|
184
|
+
mask: GeoDataFrame | GeoSeries | Geometry | None = None,
|
|
185
|
+
snap_to_anchors: bool = True,
|
|
186
|
+
) -> GeoDataFrame:
|
|
187
|
+
if not len(gdf):
|
|
188
|
+
return gdf.copy()
|
|
142
189
|
|
|
143
|
-
|
|
190
|
+
gdf_orig = gdf.copy()
|
|
144
191
|
|
|
145
|
-
|
|
146
|
-
lambda x: (x.buffer(-tolerance / 2).is_empty)
|
|
147
|
-
]
|
|
192
|
+
crs = gdf.crs
|
|
148
193
|
|
|
149
|
-
|
|
194
|
+
gdf = (
|
|
195
|
+
clean_geoms(gdf)
|
|
196
|
+
.pipe(make_all_singlepart, ignore_index=True)
|
|
197
|
+
.pipe(to_single_geom_type, "polygon")
|
|
198
|
+
)
|
|
150
199
|
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
200
|
+
gdf.crs = None
|
|
201
|
+
|
|
202
|
+
gdf = gdf[lambda x: ~x.buffer(-tolerance / 2 - PRECISION).is_empty]
|
|
203
|
+
# gdf = gdf[lambda x: ~x.buffer(-tolerance / 3).is_empty]
|
|
204
|
+
|
|
205
|
+
# donuts_without_spikes = (
|
|
206
|
+
# gdf.geometry.buffer(tolerance / 2, resolution=1, join_style=2)
|
|
207
|
+
# .buffer(-tolerance, resolution=1, join_style=2)
|
|
208
|
+
# .buffer(tolerance / 2, resolution=1, join_style=2)
|
|
209
|
+
# .pipe(to_lines)
|
|
210
|
+
# .buffer(tolerance)
|
|
211
|
+
# )
|
|
212
|
+
|
|
213
|
+
gdf.geometry = (
|
|
214
|
+
PolygonsAsRings(gdf.geometry.values)
|
|
215
|
+
.apply_numpy_func(
|
|
216
|
+
_snap_linearrings,
|
|
217
|
+
kwargs=dict(
|
|
218
|
+
tolerance=tolerance,
|
|
219
|
+
mask=mask,
|
|
220
|
+
snap_to_anchors=snap_to_anchors,
|
|
221
|
+
),
|
|
159
222
|
)
|
|
160
|
-
|
|
161
|
-
elif not all_are_thin and duplicate_action == "error":
|
|
162
|
-
raise ValueError("Large double surfaces.")
|
|
163
|
-
|
|
164
|
-
to_eliminate = pd.concat([thin_gaps_and_double, slivers], ignore_index=True)
|
|
165
|
-
|
|
166
|
-
to_eliminate = to_eliminate.loc[lambda x: ~x.buffer(-PRECISION / 10).is_empty]
|
|
167
|
-
|
|
168
|
-
to_eliminate = try_for_grid_size(
|
|
169
|
-
split_by_neighbors,
|
|
170
|
-
grid_sizes=grid_sizes,
|
|
171
|
-
args=(to_eliminate, gdf),
|
|
172
|
-
kwargs=dict(tolerance=tolerance),
|
|
223
|
+
.to_numpy()
|
|
173
224
|
)
|
|
174
225
|
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
226
|
+
gdf = (
|
|
227
|
+
to_single_geom_type(make_all_singlepart(clean_geoms(gdf)), "polygon")
|
|
228
|
+
.reset_index(drop=True)
|
|
229
|
+
.set_crs(crs)
|
|
230
|
+
)
|
|
178
231
|
|
|
179
|
-
|
|
232
|
+
missing = clean_overlay(gdf_orig, gdf, how="difference").loc[
|
|
233
|
+
lambda x: ~x.buffer(-tolerance / 2).is_empty
|
|
234
|
+
]
|
|
180
235
|
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
236
|
+
if mask is None:
|
|
237
|
+
mask = GeoDataFrame({"geometry": []})
|
|
238
|
+
explore(
|
|
239
|
+
gdf,
|
|
240
|
+
# gdf_orig,
|
|
241
|
+
# thin,
|
|
242
|
+
mask,
|
|
243
|
+
missing,
|
|
244
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
245
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
186
246
|
),
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
247
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
248
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
249
|
+
),
|
|
250
|
+
center=(5.36765872, 59.01199837, 1),
|
|
190
251
|
)
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
252
|
+
explore(
|
|
253
|
+
gdf,
|
|
254
|
+
gdf_orig,
|
|
255
|
+
# thin,
|
|
256
|
+
mask,
|
|
257
|
+
missing,
|
|
258
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
259
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
260
|
+
),
|
|
261
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
262
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
263
|
+
),
|
|
264
|
+
center=(5.36820681, 59.01182298, 2),
|
|
200
265
|
)
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
except GEOSException as e:
|
|
215
|
-
if i == len(grid_sizes) - 1:
|
|
216
|
-
explore_geosexception(e, gdf, intersecting, isolated)
|
|
217
|
-
raise e
|
|
218
|
-
|
|
219
|
-
not_really_isolated = isolated[["geometry", "_eliminate_idx", "_cluster"]].merge(
|
|
220
|
-
without_double.drop(columns=["geometry"]),
|
|
221
|
-
on="_cluster",
|
|
222
|
-
how="inner",
|
|
266
|
+
explore(
|
|
267
|
+
gdf,
|
|
268
|
+
gdf_orig,
|
|
269
|
+
# thin,
|
|
270
|
+
mask,
|
|
271
|
+
missing,
|
|
272
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
273
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
274
|
+
),
|
|
275
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
276
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
277
|
+
),
|
|
278
|
+
center=(5.37327042, 59.01099359, 5),
|
|
223
279
|
)
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
280
|
+
explore(
|
|
281
|
+
gdf,
|
|
282
|
+
gdf_orig,
|
|
283
|
+
# thin,
|
|
284
|
+
mask,
|
|
285
|
+
missing,
|
|
286
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
287
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
288
|
+
),
|
|
289
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
290
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
291
|
+
),
|
|
292
|
+
center=(5.36853688, 59.01169013, 5),
|
|
232
293
|
)
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
294
|
+
explore(
|
|
295
|
+
gdf,
|
|
296
|
+
# gdf_orig,
|
|
297
|
+
missing,
|
|
298
|
+
mask,
|
|
299
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
300
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
301
|
+
),
|
|
302
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
303
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
304
|
+
),
|
|
305
|
+
center=(5.37142966, 59.009799, 0.01),
|
|
306
|
+
max_zoom=40,
|
|
237
307
|
)
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
"_eliminate_idx",
|
|
252
|
-
"index_right",
|
|
253
|
-
"_double_idx",
|
|
254
|
-
"_area_per_poly",
|
|
255
|
-
],
|
|
256
|
-
errors="ignore",
|
|
308
|
+
explore(
|
|
309
|
+
gdf,
|
|
310
|
+
# gdf_orig,
|
|
311
|
+
missing,
|
|
312
|
+
mask,
|
|
313
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
314
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
315
|
+
),
|
|
316
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
317
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
318
|
+
),
|
|
319
|
+
center=(5.36866312, 59.00842846, 0.01),
|
|
320
|
+
max_zoom=40,
|
|
257
321
|
)
|
|
258
322
|
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
)
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
dissexp(
|
|
274
|
-
many_hits,
|
|
275
|
-
by="_poly_idx",
|
|
276
|
-
aggfunc="first",
|
|
277
|
-
dropna=True,
|
|
278
|
-
grid_size=grid_size,
|
|
279
|
-
n_jobs=n_jobs,
|
|
280
|
-
)
|
|
281
|
-
.sort_index()
|
|
282
|
-
.reset_index(drop=True)
|
|
283
|
-
)
|
|
284
|
-
break
|
|
285
|
-
except GEOSException as e:
|
|
286
|
-
if i == len(grid_sizes) - 1:
|
|
287
|
-
explore_geosexception(e, gdf, without_double, isolated, really_isolated)
|
|
288
|
-
raise e
|
|
289
|
-
|
|
290
|
-
cleaned = pd.concat([many_hits, one_hit], ignore_index=True)
|
|
291
|
-
|
|
292
|
-
gdf = gdf.drop(columns="_poly_idx")
|
|
323
|
+
explore(
|
|
324
|
+
gdf,
|
|
325
|
+
# gdf_orig,
|
|
326
|
+
missing,
|
|
327
|
+
mask,
|
|
328
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
329
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
330
|
+
),
|
|
331
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
332
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
333
|
+
),
|
|
334
|
+
center=(5.37707146, 59.01065274, 0.4),
|
|
335
|
+
max_zoom=40,
|
|
336
|
+
)
|
|
293
337
|
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
e,
|
|
309
|
-
gdf,
|
|
310
|
-
cleaned,
|
|
311
|
-
without_double,
|
|
312
|
-
isolated,
|
|
313
|
-
really_isolated,
|
|
314
|
-
)
|
|
315
|
-
raise e
|
|
338
|
+
explore(
|
|
339
|
+
gdf,
|
|
340
|
+
# gdf_orig,
|
|
341
|
+
missing,
|
|
342
|
+
mask,
|
|
343
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
344
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
345
|
+
),
|
|
346
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
347
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
348
|
+
),
|
|
349
|
+
center=(-52074.0241, 6580847.4464, 0.1),
|
|
350
|
+
max_zoom=40,
|
|
351
|
+
)
|
|
316
352
|
|
|
317
|
-
|
|
353
|
+
explore(
|
|
354
|
+
gdf,
|
|
355
|
+
# gdf_orig,
|
|
356
|
+
missing,
|
|
357
|
+
mask,
|
|
358
|
+
mask_p=to_gdf(mask.extract_unique_points().explode()).assign(
|
|
359
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
360
|
+
),
|
|
361
|
+
gdf_p=to_gdf(gdf.extract_unique_points().explode()).assign(
|
|
362
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
363
|
+
),
|
|
364
|
+
center=(5.38389153, 59.00548223, 1),
|
|
365
|
+
max_zoom=40,
|
|
366
|
+
)
|
|
318
367
|
|
|
319
|
-
#
|
|
320
|
-
|
|
368
|
+
# explore(
|
|
369
|
+
# gdf_orig,
|
|
370
|
+
# gdf,
|
|
371
|
+
# dups=get_intersections(gdf, geom_type="polygon"),
|
|
372
|
+
# msk=mask,
|
|
373
|
+
# gaps=get_gaps(gdf),
|
|
374
|
+
# updated=update_geometries(gdf, geom_type="polygon"),
|
|
375
|
+
# # browser=False,
|
|
376
|
+
# )
|
|
377
|
+
|
|
378
|
+
# gdf = update_geometries(gdf, geom_type="polygon")
|
|
379
|
+
|
|
380
|
+
return gdf # .pipe(clean_clip, mask, geom_type="polygon")
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
# @numba.njit
|
|
384
|
+
def _snap_to_anchors(
|
|
385
|
+
geoms,
|
|
386
|
+
indices: NDArray[np.int32],
|
|
387
|
+
anchors,
|
|
388
|
+
anchor_indices,
|
|
389
|
+
mask,
|
|
390
|
+
mask_indices,
|
|
391
|
+
was_midpoint,
|
|
392
|
+
was_midpoint_mask,
|
|
393
|
+
tolerance: int | float,
|
|
394
|
+
) -> tuple[NDArray, NDArray, NDArray]:
|
|
395
|
+
|
|
396
|
+
coords, all_distances = _snap_to_anchors_inner(
|
|
397
|
+
geoms,
|
|
398
|
+
indices,
|
|
399
|
+
anchors,
|
|
400
|
+
anchor_indices,
|
|
401
|
+
mask,
|
|
402
|
+
mask_indices,
|
|
403
|
+
was_midpoint,
|
|
404
|
+
was_midpoint_mask,
|
|
405
|
+
tolerance,
|
|
406
|
+
)
|
|
321
407
|
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
408
|
+
not_inf = coords[:, 0] != np.inf
|
|
409
|
+
all_distances = all_distances[not_inf]
|
|
410
|
+
indices = indices[not_inf]
|
|
411
|
+
coords = coords[not_inf]
|
|
412
|
+
|
|
413
|
+
is_snapped = np.full(len(coords), False)
|
|
414
|
+
|
|
415
|
+
n_coords = len(coords)
|
|
416
|
+
|
|
417
|
+
range_indices = np.arange(len(coords))
|
|
418
|
+
|
|
419
|
+
range_index = -1
|
|
420
|
+
for index in np.unique(indices):
|
|
421
|
+
cond = indices == index
|
|
422
|
+
these_coords = coords[cond]
|
|
423
|
+
|
|
424
|
+
# explore(ll=to_gdf(LineString(shapely.points(these_coords)), 25833))
|
|
425
|
+
|
|
426
|
+
# assert np.array_equal(these_coords[0], these_coords[-1]), these_coords
|
|
427
|
+
|
|
428
|
+
these_range_indices = range_indices[cond]
|
|
429
|
+
these_distances = all_distances[cond]
|
|
430
|
+
for i in range(len(these_coords)):
|
|
431
|
+
range_index += 1
|
|
432
|
+
if is_snapped[range_index]:
|
|
433
|
+
print(i, "000")
|
|
434
|
+
continue
|
|
435
|
+
# distances = all_distances[range_index]
|
|
436
|
+
distances = these_distances[i]
|
|
437
|
+
# distances = these_distances[:, i]
|
|
438
|
+
min_dist = np.min(distances)
|
|
439
|
+
if min_dist > tolerance: # or min_dist == 0:
|
|
440
|
+
print(i, "111", min_dist)
|
|
441
|
+
continue
|
|
442
|
+
|
|
443
|
+
is_snapped_now = False
|
|
444
|
+
|
|
445
|
+
for j in np.argsort(distances):
|
|
446
|
+
if distances[j] > tolerance: # TODO or distances[j] == 0:
|
|
447
|
+
break
|
|
448
|
+
|
|
449
|
+
if was_midpoint_mask[j]:
|
|
450
|
+
continue
|
|
451
|
+
|
|
452
|
+
anchor = anchors[j]
|
|
453
|
+
ring = these_coords.copy()
|
|
454
|
+
ring[i] = anchor
|
|
455
|
+
|
|
456
|
+
# snap the nexts points to same anchor if neighboring points have same anchor
|
|
457
|
+
# in order to properly check if the ring will be simple after snapping
|
|
458
|
+
indices_with_same_anchor = [range_index]
|
|
459
|
+
# these_coords = coords[indices==index]
|
|
460
|
+
|
|
461
|
+
pos_counter = 0
|
|
462
|
+
# has_same_anchor_pos = True
|
|
463
|
+
# has_same_anchor_neg = True
|
|
464
|
+
while (
|
|
465
|
+
pos_counter + i < len(these_distances) - 1
|
|
466
|
+
): # has_same_anchor_pos or has_same_anchor_neg:
|
|
467
|
+
pos_counter += 1
|
|
468
|
+
|
|
469
|
+
# if indices[i + pos_counter] != index:
|
|
470
|
+
# break
|
|
471
|
+
# next_distances = all_distances[range_index + pos_counter]
|
|
472
|
+
next_distances = these_distances[i + pos_counter]
|
|
473
|
+
has_same_anchor_pos = False
|
|
474
|
+
for j2 in np.argsort(next_distances):
|
|
475
|
+
if was_midpoint_mask[j2]:
|
|
476
|
+
continue
|
|
477
|
+
if next_distances[j2] > tolerance:
|
|
478
|
+
break
|
|
479
|
+
|
|
480
|
+
has_same_anchor_pos = j2 == j
|
|
481
|
+
# print(
|
|
482
|
+
# "pos c",
|
|
483
|
+
# i,
|
|
484
|
+
# j,
|
|
485
|
+
# j2,
|
|
486
|
+
# pos_counter,
|
|
487
|
+
# has_same_anchor_pos,
|
|
488
|
+
# distances[j],
|
|
489
|
+
# next_distances[j2],
|
|
490
|
+
# )
|
|
491
|
+
break
|
|
492
|
+
if has_same_anchor_pos:
|
|
493
|
+
ring[i + pos_counter] = anchor
|
|
494
|
+
indices_with_same_anchor.append(range_index + pos_counter)
|
|
495
|
+
else:
|
|
496
|
+
break
|
|
497
|
+
|
|
498
|
+
# for j4 in np.arange(
|
|
499
|
+
# indices_with_same_anchor[0], indices_with_same_anchor[-1]
|
|
500
|
+
# ):
|
|
501
|
+
# ring[j4 - range_index + i] = anchor
|
|
502
|
+
# indices_with_same_anchor.append(j4)
|
|
503
|
+
|
|
504
|
+
if i == 0:
|
|
505
|
+
# snap points at the end of the line if same anchor
|
|
506
|
+
neg_counter = 0
|
|
507
|
+
# has_same_anchor_neg = True
|
|
508
|
+
while True: # has_same_anchor_pos or has_same_anchor_neg:
|
|
509
|
+
neg_counter -= 1
|
|
510
|
+
|
|
511
|
+
# if indices[i + pos_counter] != index:
|
|
512
|
+
# break
|
|
513
|
+
this_range_index = these_range_indices[neg_counter]
|
|
514
|
+
# next_distances = all_distances[this_range_index]
|
|
515
|
+
next_distances = these_distances[neg_counter]
|
|
516
|
+
has_same_anchor_neg = False
|
|
517
|
+
for j3 in np.argsort(next_distances):
|
|
518
|
+
if was_midpoint_mask[j3]:
|
|
519
|
+
continue
|
|
520
|
+
if next_distances[j3] > tolerance:
|
|
521
|
+
break
|
|
522
|
+
|
|
523
|
+
has_same_anchor_neg = j3 == j
|
|
524
|
+
# print(
|
|
525
|
+
# "neg c",
|
|
526
|
+
# i,
|
|
527
|
+
# j,
|
|
528
|
+
# j3,
|
|
529
|
+
# pos_counter,
|
|
530
|
+
# # has_same_anchor,
|
|
531
|
+
# distances[j],
|
|
532
|
+
# next_distances[j3],
|
|
533
|
+
# )
|
|
534
|
+
break
|
|
535
|
+
if has_same_anchor_neg:
|
|
536
|
+
ring[neg_counter] = anchor
|
|
537
|
+
indices_with_same_anchor.append(this_range_index)
|
|
538
|
+
else:
|
|
539
|
+
break
|
|
540
|
+
|
|
541
|
+
# for j5 in np.arange(0, indices_with_same_anchor[-1]):
|
|
542
|
+
# ring[j5 - range_index + i] = anchor
|
|
543
|
+
# indices_with_same_anchor.append(j5)
|
|
544
|
+
|
|
545
|
+
indices_with_same_anchor = np.unique(indices_with_same_anchor)
|
|
546
|
+
|
|
547
|
+
line_is_simple: bool = LineString(ring).is_simple
|
|
548
|
+
|
|
549
|
+
# if i in [67, 68, 69, 173, 174, 175, 176, 177]: # or
|
|
550
|
+
if Point(these_coords[i]).intersects(
|
|
551
|
+
to_gdf([12.08375303, 67.50052183], 4326)
|
|
552
|
+
.to_crs(25833)
|
|
553
|
+
.buffer(10)
|
|
554
|
+
.union_all()
|
|
555
|
+
):
|
|
556
|
+
# for xxx, yyy in locals().items():
|
|
557
|
+
# if len(str(yyy)) > 50:
|
|
558
|
+
# continue
|
|
559
|
+
# print(xxx)
|
|
560
|
+
# print(yyy)
|
|
561
|
+
|
|
562
|
+
# print("prev:", was_midpoint_mask[j - 1])
|
|
563
|
+
# print(distances[np.argsort(distances)])
|
|
564
|
+
# print(anchors[np.argsort(distances)])
|
|
565
|
+
# print(ring)
|
|
566
|
+
explore(
|
|
567
|
+
out_coords=to_gdf(
|
|
568
|
+
shapely.linestrings(coords, indices=indices), 25833
|
|
569
|
+
),
|
|
570
|
+
llll=to_gdf(LineString(ring), 25833),
|
|
571
|
+
# this=to_gdf(this),
|
|
572
|
+
# next_=to_gdf(next_),
|
|
573
|
+
# line=to_gdf(LineString(np.array([this, next_])), 25833),
|
|
574
|
+
geom=to_gdf(these_coords[i], 25833),
|
|
575
|
+
prev=to_gdf(these_coords[i - 1], 25833),
|
|
576
|
+
nxt=to_gdf(these_coords[i + 1], 25833),
|
|
577
|
+
nxt2=to_gdf(these_coords[i + 2], 25833),
|
|
578
|
+
anchor=to_gdf(anchor, 25833),
|
|
579
|
+
# browser=True,
|
|
580
|
+
)
|
|
581
|
+
|
|
582
|
+
print(
|
|
583
|
+
"line_is_simple", line_is_simple, range_index, i, index, j
|
|
584
|
+
) # , j2, j3, x)
|
|
585
|
+
|
|
586
|
+
if not line_is_simple:
|
|
587
|
+
# for j4 in range(len(ring)):
|
|
588
|
+
# this_p = ring[j4]
|
|
589
|
+
# for j5 in range(len(ring)):
|
|
590
|
+
# that_p = ring[j5]
|
|
591
|
+
# dist_ = np.sqrt(
|
|
592
|
+
# (this_p[0] - that_p[0]) ** 2
|
|
593
|
+
# + (this_p[1] - that_p[1]) ** 2
|
|
594
|
+
# )
|
|
595
|
+
# if dist_ > 0 and dist_ < 1e-5:
|
|
596
|
+
# print(this_p)
|
|
597
|
+
# print(that_p)
|
|
598
|
+
# ring[j5] = this_p
|
|
599
|
+
|
|
600
|
+
print(LineString(ring).wkt)
|
|
601
|
+
# explore(
|
|
602
|
+
# out_coords=to_gdf(
|
|
603
|
+
# shapely.linestrings(coords, indices=indices), 25833
|
|
604
|
+
# ),
|
|
605
|
+
# llll=to_gdf(LineString(ring), 25833),
|
|
606
|
+
# # this=to_gdf(this),
|
|
607
|
+
# # next_=to_gdf(next_),
|
|
608
|
+
# # line=to_gdf(LineString(np.array([this, next_])), 25833),
|
|
609
|
+
# geom=to_gdf(these_coords[i], 25833),
|
|
610
|
+
# prev=to_gdf(these_coords[i - 1], 25833),
|
|
611
|
+
# nxt=to_gdf(these_coords[i + 1], 25833),
|
|
612
|
+
# nxt2=to_gdf(these_coords[i + 2], 25833),
|
|
613
|
+
# anchor=to_gdf(anchor, 25833),
|
|
614
|
+
# # browser=True,
|
|
615
|
+
# )
|
|
616
|
+
|
|
617
|
+
line_is_simple: bool = LineString(ring).is_simple
|
|
618
|
+
|
|
619
|
+
if line_is_simple:
|
|
620
|
+
# coords[i] = anchors[j]
|
|
621
|
+
# is_snapped_to[j] = True
|
|
622
|
+
# is_snapped[i] = True
|
|
623
|
+
# explore(
|
|
624
|
+
# out_coords=to_gdf(
|
|
625
|
+
# shapely.linestrings(coords, indices=indices), 25833
|
|
626
|
+
# ),
|
|
627
|
+
# llll=to_gdf(LineString(ring), 25833),
|
|
628
|
+
# # this=to_gdf(this),
|
|
629
|
+
# # next_=to_gdf(next_),
|
|
630
|
+
# # line=to_gdf(LineString(np.array([this, next_])), 25833),
|
|
631
|
+
# anc=to_gdf(anchors[j]),
|
|
632
|
+
# geom=to_gdf(coords[i], 25833),
|
|
633
|
+
# these=to_gdf(coords[i : i + n_points_with_same_anchor ], 25833),
|
|
634
|
+
# prev=to_gdf(coords[i - 1], 25833),
|
|
635
|
+
# prev2=to_gdf(coords[i - 2], 25833),
|
|
636
|
+
# nxt=to_gdf(coords[i + n_points_with_same_anchor + 1], 25833),
|
|
637
|
+
# nxt2=to_gdf(coords[i + n_points_with_same_anchor + 2], 25833),
|
|
638
|
+
# nxt3=to_gdf(coords[i + n_points_with_same_anchor + 3], 25833),
|
|
639
|
+
# )
|
|
640
|
+
# print(coords[i : i + n_points_with_same_anchor + 1])
|
|
641
|
+
for (
|
|
642
|
+
x
|
|
643
|
+
) in indices_with_same_anchor: # range(n_points_with_same_anchor):
|
|
644
|
+
# print(range_index, i, index, j, j2, j3, x)
|
|
645
|
+
coords[x] = anchor # s[j]
|
|
646
|
+
is_snapped[x] = True
|
|
647
|
+
# coords[i + x] = anchors[j]
|
|
648
|
+
# is_snapped[i + x] = True
|
|
649
|
+
# print(coords[i : i + n_points_with_same_anchor + 1])
|
|
650
|
+
|
|
651
|
+
is_snapped_now = True
|
|
652
|
+
break
|
|
653
|
+
# else:
|
|
654
|
+
|
|
655
|
+
if not is_snapped_now:
|
|
656
|
+
coords[range_index] = anchors[np.argmin(distances)]
|
|
657
|
+
# is_snapped_to[np.argmin(distances)] = True
|
|
658
|
+
|
|
659
|
+
if 0 and index == 0: # i > 30 and i < 40:
|
|
660
|
+
print(i)
|
|
661
|
+
explore(
|
|
662
|
+
out_coords=to_gdf(
|
|
663
|
+
shapely.linestrings(coords, indices=indices), 25833
|
|
664
|
+
),
|
|
665
|
+
llll=to_gdf(LineString(ring), 25833),
|
|
666
|
+
pppp=to_gdf(shapely.points(ring), 25833).assign(
|
|
667
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
668
|
+
),
|
|
669
|
+
# this=to_gdf(this),
|
|
670
|
+
# next_=to_gdf(next_),
|
|
671
|
+
# line=to_gdf(LineString(np.array([this, next_])), 25833),
|
|
672
|
+
anc=to_gdf(anchors[j]).assign(
|
|
673
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
674
|
+
),
|
|
675
|
+
geom=to_gdf(these_coords[i], 25833).assign(
|
|
676
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
677
|
+
),
|
|
678
|
+
# these=to_gdf(
|
|
679
|
+
# these_coords[i : i + n_points_with_same_anchor], 25833
|
|
680
|
+
# ).assign(wkt=lambda x: [g.wkt for g in x.geometry]),
|
|
681
|
+
prev=to_gdf(these_coords[i - 1], 25833).assign(
|
|
682
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
683
|
+
),
|
|
684
|
+
prev2=to_gdf(these_coords[i - 2], 25833).assign(
|
|
685
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
686
|
+
),
|
|
687
|
+
nxt=to_gdf(these_coords[i + 1], 25833).assign(
|
|
688
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
689
|
+
),
|
|
690
|
+
nxt2=to_gdf(these_coords[i + 2], 25833).assign(
|
|
691
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
692
|
+
),
|
|
693
|
+
nxt3=to_gdf(these_coords[i + 3], 25833).assign(
|
|
694
|
+
wkt=lambda x: [g.wkt for g in x.geometry]
|
|
695
|
+
),
|
|
696
|
+
# browser=True,
|
|
697
|
+
# nxt_n=to_gdf(
|
|
698
|
+
# coords[i + n_points_with_same_anchor + 1], 25833
|
|
699
|
+
# ).assign(wkt=lambda x: [g.wkt for g in x.geometry]),
|
|
700
|
+
# nxt_n2=to_gdf(
|
|
701
|
+
# coords[i + n_points_with_same_anchor + 2], 25833
|
|
702
|
+
# ).assign(wkt=lambda x: [g.wkt for g in x.geometry]),
|
|
703
|
+
# nxt_n3=to_gdf(
|
|
704
|
+
# coords[i + n_points_with_same_anchor + 3], 25833
|
|
705
|
+
# ).assign(wkt=lambda x: [g.wkt for g in x.geometry]),
|
|
340
706
|
)
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
707
|
+
# if (
|
|
708
|
+
# indices[i] == 48
|
|
709
|
+
# ): # and int(out_coords[i][0]) == 375502 and int(out_coords[i][1]) == 7490104:
|
|
710
|
+
# print(geom, out_coords[i], out_coords[-3:])
|
|
711
|
+
# xxx += 1
|
|
712
|
+
# if xxx > 100 and i >= 2106:
|
|
713
|
+
# print(locals())
|
|
714
|
+
# explore(
|
|
715
|
+
# geom=to_gdf(geom, 25833),
|
|
716
|
+
# out=to_gdf(out_coords[i], 25833),
|
|
717
|
+
# anc=to_gdf(shapely.points(anchors), 25833),
|
|
718
|
+
# llll=to_gdf(
|
|
719
|
+
# shapely.geometry.LineString(
|
|
720
|
+
# np.array(out_coords)[indices[: len(out_coords)] == 48]
|
|
721
|
+
# ),
|
|
722
|
+
# 25833,
|
|
723
|
+
# ),
|
|
724
|
+
# )
|
|
725
|
+
|
|
726
|
+
return coords, indices
|
|
727
|
+
|
|
728
|
+
|
|
729
|
+
@numba.njit
|
|
730
|
+
def _snap_to_anchors_inner(
|
|
731
|
+
geoms,
|
|
732
|
+
indices: NDArray[np.int32],
|
|
733
|
+
anchors,
|
|
734
|
+
anchor_indices,
|
|
735
|
+
mask,
|
|
736
|
+
mask_indices,
|
|
737
|
+
was_midpoint,
|
|
738
|
+
was_midpoint_mask,
|
|
739
|
+
tolerance: int | float,
|
|
740
|
+
) -> tuple[NDArray, NDArray, NDArray]:
|
|
741
|
+
# def orientation(p, q, r):
|
|
742
|
+
# # Calculate orientation of the triplet (p, q, r).
|
|
743
|
+
# # 0 -> collinear, 1 -> clockwise, 2 -> counterclockwise
|
|
744
|
+
# val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1])
|
|
745
|
+
# if val == 0:
|
|
746
|
+
# return 0
|
|
747
|
+
# return 1 if val > 0 else 2
|
|
748
|
+
|
|
749
|
+
# def on_segment(p, q, r):
|
|
750
|
+
# # Check if point q lies on line segment pr
|
|
751
|
+
# if min(p[0], r[0]) <= q[0] <= max(p[0], r[0]) and min(p[1], r[1]) <= q[
|
|
752
|
+
# 1
|
|
753
|
+
# ] <= max(p[1], r[1]):
|
|
754
|
+
# return True
|
|
755
|
+
# return False
|
|
756
|
+
|
|
757
|
+
# def check_intersection(line1, line2):
|
|
758
|
+
# """
|
|
759
|
+
# Check if two line segments intersect.
|
|
760
|
+
|
|
761
|
+
# Parameters:
|
|
762
|
+
# line1 : np.array : 2x2 array with endpoints of the first line segment [[x1, y1], [x2, y2]]
|
|
763
|
+
# line2 : np.array : 2x2 array with endpoints of the second line segment [[x3, y3], [x4, y4]]
|
|
764
|
+
|
|
765
|
+
# Returns:
|
|
766
|
+
# bool : True if the lines intersect, False otherwise.
|
|
767
|
+
# """
|
|
768
|
+
|
|
769
|
+
# p1, q1 = line1
|
|
770
|
+
# p2, q2 = line2
|
|
771
|
+
|
|
772
|
+
# # Find the four orientations needed for the general and special cases
|
|
773
|
+
# o1 = orientation(p1, q1, p2)
|
|
774
|
+
# o2 = orientation(p1, q1, q2)
|
|
775
|
+
# o3 = orientation(p2, q2, p1)
|
|
776
|
+
# o4 = orientation(p2, q2, q1)
|
|
777
|
+
|
|
778
|
+
# # General case
|
|
779
|
+
# if o1 != o2 and o3 != o4:
|
|
780
|
+
# return True
|
|
781
|
+
|
|
782
|
+
# # Special cases
|
|
783
|
+
# # p1, q1, p2 are collinear and p2 lies on segment p1q1
|
|
784
|
+
# if o1 == 0 and on_segment(p1, p2, q1):
|
|
785
|
+
# return True
|
|
786
|
+
|
|
787
|
+
# # p1, q1, q2 are collinear and q2 lies on segment p1q1
|
|
788
|
+
# if o2 == 0 and on_segment(p1, q2, q1):
|
|
789
|
+
# return True
|
|
790
|
+
|
|
791
|
+
# # p2, q2, p1 are collinear and p1 lies on segment p2q2
|
|
792
|
+
# if o3 == 0 and on_segment(p2, p1, q2):
|
|
793
|
+
# return True
|
|
794
|
+
|
|
795
|
+
# # p2, q2, q1 are collinear and q1 lies on segment p2q2
|
|
796
|
+
# if o4 == 0 and on_segment(p2, q1, q2):
|
|
797
|
+
# return True
|
|
798
|
+
|
|
799
|
+
# return False
|
|
800
|
+
|
|
801
|
+
out_coords = geoms.copy()
|
|
802
|
+
# is_snapped = np.full(len(geoms), False)
|
|
803
|
+
|
|
804
|
+
n_anchors = len(anchors)
|
|
805
|
+
mask_n_minus_1 = len(mask) - 1
|
|
806
|
+
is_snapped_to = np.full(len(anchors), False)
|
|
807
|
+
out_distances = np.full((len(geoms), n_anchors), tolerance * 3)
|
|
808
|
+
|
|
809
|
+
for i in range(len(geoms)):
|
|
810
|
+
# if is_snapped[i]:
|
|
811
|
+
# continue
|
|
812
|
+
geom = geoms[i]
|
|
813
|
+
index = indices[i]
|
|
814
|
+
# if i == 0 or index != indices[i - 1]:
|
|
815
|
+
# i_for_this_index = 0
|
|
816
|
+
# else:
|
|
817
|
+
# i_for_this_index += 1
|
|
818
|
+
|
|
819
|
+
is_snapped = False
|
|
820
|
+
for j in range(len(mask)):
|
|
821
|
+
mask_index = mask_indices[j]
|
|
822
|
+
|
|
823
|
+
is_last = j == mask_n_minus_1 or mask_index != mask_indices[j + 1]
|
|
824
|
+
if is_last:
|
|
825
|
+
continue
|
|
826
|
+
|
|
827
|
+
mask_point0 = mask[j]
|
|
828
|
+
|
|
829
|
+
# if (
|
|
830
|
+
# not mask_is_snapped_to[j]
|
|
831
|
+
# and np.sqrt(
|
|
832
|
+
# (geom[0] - mask_point0[0]) ** 2 + (geom[1] - mask_point0[1]) ** 2
|
|
833
|
+
# )
|
|
834
|
+
# <= tolerance
|
|
835
|
+
# ):
|
|
836
|
+
# out_coords[i] = mask_point0
|
|
837
|
+
# mask_is_snapped_to[j] = True
|
|
838
|
+
# is_snapped = True
|
|
839
|
+
# break
|
|
840
|
+
|
|
841
|
+
mask_point1 = mask[j + 1]
|
|
842
|
+
|
|
843
|
+
segment_vector = mask_point1 - mask_point0
|
|
844
|
+
point_vector = geom - mask_point0
|
|
845
|
+
segment_length_squared = np.dot(segment_vector, segment_vector)
|
|
846
|
+
if segment_length_squared == 0:
|
|
847
|
+
closest_point = mask_point0
|
|
848
|
+
else:
|
|
849
|
+
factor = np.dot(point_vector, segment_vector) / segment_length_squared
|
|
850
|
+
factor = max(0, min(1, factor))
|
|
851
|
+
closest_point = mask_point0 + factor * segment_vector
|
|
852
|
+
|
|
853
|
+
if np.linalg.norm(geom - closest_point) == 0 and was_midpoint[i]:
|
|
854
|
+
out_coords[i] = np.array([np.inf, np.inf])
|
|
855
|
+
is_snapped = True
|
|
856
|
+
break
|
|
349
857
|
|
|
350
|
-
|
|
858
|
+
if is_snapped:
|
|
859
|
+
continue
|
|
351
860
|
|
|
861
|
+
distances = np.full(n_anchors, tolerance * 3)
|
|
862
|
+
for j2 in range(n_anchors):
|
|
863
|
+
anchor = anchors[j2]
|
|
352
864
|
|
|
353
|
-
|
|
354
|
-
|
|
865
|
+
# if anchor_indices[j] == index:
|
|
866
|
+
# continue
|
|
355
867
|
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
shapely.simplify(copied.geometry.values, tolerance=tolerance)
|
|
362
|
-
)
|
|
363
|
-
filt = (copied.area > length_then * 1.01) | (copied.geometry.is_empty)
|
|
364
|
-
copied.loc[filt, copied._geometry_column_name] = gdf.loc[
|
|
365
|
-
filt, copied._geometry_column_name
|
|
366
|
-
]
|
|
868
|
+
dist = np.sqrt((geom[0] - anchor[0]) ** 2 + (geom[1] - anchor[1]) ** 2)
|
|
869
|
+
distances[j2] = dist
|
|
870
|
+
out_distances[i, j2] = dist
|
|
871
|
+
if dist == 0 and not was_midpoint_mask[j2]:
|
|
872
|
+
break
|
|
367
873
|
|
|
368
|
-
return
|
|
874
|
+
return out_coords, out_distances
|
|
369
875
|
|
|
370
876
|
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
)
|
|
385
|
-
|
|
877
|
+
@numba.njit
|
|
878
|
+
def _build_anchors(
|
|
879
|
+
geoms: NDArray[np.float64],
|
|
880
|
+
indices: NDArray[np.int32],
|
|
881
|
+
mask_coords: NDArray[np.float64],
|
|
882
|
+
mask_indices: NDArray[np.int32],
|
|
883
|
+
was_midpoint_mask: NDArray[bool],
|
|
884
|
+
tolerance: int | float,
|
|
885
|
+
):
|
|
886
|
+
anchors = list(mask_coords)
|
|
887
|
+
anchor_indices = list(mask_indices)
|
|
888
|
+
is_anchor_arr = np.full(len(geoms), False)
|
|
889
|
+
was_midpoint_mask = list(was_midpoint_mask)
|
|
890
|
+
for i in np.arange(len(geoms)):
|
|
891
|
+
geom = geoms[i]
|
|
892
|
+
index = indices[i]
|
|
893
|
+
# distances = []
|
|
894
|
+
# for j, anchor in zip(anchor_indices, anchors):
|
|
895
|
+
|
|
896
|
+
is_anchor = True
|
|
897
|
+
for j in range(len(anchors)):
|
|
898
|
+
# if indices[i] != indices[j]:
|
|
899
|
+
# if i != j and indices[i] != indices[j]:
|
|
900
|
+
anchor = anchors[j]
|
|
901
|
+
dist = np.sqrt((geom[0] - anchor[0]) ** 2 + (geom[1] - anchor[1]) ** 2)
|
|
902
|
+
if dist <= tolerance:
|
|
903
|
+
is_anchor = False
|
|
904
|
+
break
|
|
905
|
+
# distances.append(dist)
|
|
906
|
+
# distances = np.array(distances)
|
|
907
|
+
is_anchor_arr[i] = is_anchor
|
|
908
|
+
if is_anchor: # not len(distances) or np.min(distances) > tolerance:
|
|
909
|
+
anchors.append(geom)
|
|
910
|
+
anchor_indices.append(index)
|
|
911
|
+
was_midpoint_mask.append(True)
|
|
912
|
+
return anchors, anchor_indices, is_anchor_arr, was_midpoint_mask
|
|
913
|
+
|
|
914
|
+
|
|
915
|
+
@numba.njit
|
|
916
|
+
def _add_last_points_to_end(
|
|
917
|
+
coords: NDArray[np.float64],
|
|
918
|
+
indices: NDArray[np.int32],
|
|
919
|
+
) -> tuple[
|
|
920
|
+
NDArray[np.float64],
|
|
921
|
+
NDArray[np.int32],
|
|
922
|
+
]:
|
|
923
|
+
out_coords, out_indices = [coords[0]], [indices[0]]
|
|
924
|
+
last_coords = []
|
|
925
|
+
prev = coords[0]
|
|
926
|
+
first_coords = prev
|
|
927
|
+
n_minus_1 = len(coords) - 1
|
|
928
|
+
for i in np.arange(1, len(coords)):
|
|
929
|
+
idx = indices[i]
|
|
930
|
+
xy = coords[i]
|
|
931
|
+
distance_to_prev: float = np.sqrt(
|
|
932
|
+
(xy[0] - prev[0]) ** 2 + (xy[1] - prev[1]) ** 2
|
|
933
|
+
)
|
|
934
|
+
if idx != indices[i - 1]:
|
|
935
|
+
first_coords = xy
|
|
936
|
+
out_coords.append(xy)
|
|
937
|
+
out_indices.append(idx)
|
|
938
|
+
elif not distance_to_prev:
|
|
939
|
+
if i == n_minus_1 or idx != indices[i + 1]:
|
|
940
|
+
last_coords.append(xy)
|
|
941
|
+
prev = xy
|
|
942
|
+
continue
|
|
943
|
+
elif i == n_minus_1 or idx != indices[i + 1]:
|
|
944
|
+
out_coords.append(xy)
|
|
945
|
+
out_coords.append(first_coords)
|
|
946
|
+
out_indices.append(idx)
|
|
947
|
+
out_indices.append(idx)
|
|
948
|
+
last_coords.append(xy)
|
|
949
|
+
else:
|
|
950
|
+
out_coords.append(xy)
|
|
951
|
+
out_indices.append(idx)
|
|
952
|
+
|
|
953
|
+
prev = xy
|
|
954
|
+
|
|
955
|
+
return (out_coords, out_indices)
|
|
956
|
+
|
|
957
|
+
|
|
958
|
+
@numba.njit
|
|
959
|
+
def _add_last_points_to_end_with_third_arr(
|
|
960
|
+
coords: NDArray[np.float64],
|
|
961
|
+
indices: NDArray[np.int32],
|
|
962
|
+
third_arr: NDArray[Any],
|
|
963
|
+
) -> tuple[
|
|
964
|
+
NDArray[np.float64],
|
|
965
|
+
NDArray[np.int32],
|
|
966
|
+
NDArray[Any],
|
|
967
|
+
]:
|
|
968
|
+
out_coords, out_indices, out_third_arr = [coords[0]], [indices[0]], [third_arr[0]]
|
|
969
|
+
last_coords = []
|
|
970
|
+
prev = coords[0]
|
|
971
|
+
first_coords = prev
|
|
972
|
+
n_minus_1 = len(coords) - 1
|
|
973
|
+
for i in np.arange(1, len(coords)):
|
|
974
|
+
idx = indices[i]
|
|
975
|
+
xy = coords[i]
|
|
976
|
+
distance_to_prev: float = np.sqrt(
|
|
977
|
+
(xy[0] - prev[0]) ** 2 + (xy[1] - prev[1]) ** 2
|
|
978
|
+
)
|
|
979
|
+
if idx != indices[i - 1]:
|
|
980
|
+
first_coords = xy
|
|
981
|
+
out_coords.append(xy)
|
|
982
|
+
out_indices.append(idx)
|
|
983
|
+
out_third_arr.append(third_arr[i])
|
|
984
|
+
elif not distance_to_prev:
|
|
985
|
+
if i == n_minus_1 or idx != indices[i + 1]:
|
|
986
|
+
last_coords.append(xy)
|
|
987
|
+
prev = xy
|
|
988
|
+
continue
|
|
989
|
+
elif i == n_minus_1 or idx != indices[i + 1]:
|
|
990
|
+
out_coords.append(xy)
|
|
991
|
+
out_coords.append(first_coords)
|
|
992
|
+
out_indices.append(idx)
|
|
993
|
+
out_indices.append(idx)
|
|
994
|
+
last_coords.append(xy)
|
|
995
|
+
out_third_arr.append(third_arr[i])
|
|
996
|
+
out_third_arr.append(third_arr[i])
|
|
997
|
+
else:
|
|
998
|
+
out_coords.append(xy)
|
|
999
|
+
out_indices.append(idx)
|
|
1000
|
+
out_third_arr.append(third_arr[i])
|
|
1001
|
+
|
|
1002
|
+
prev = xy
|
|
1003
|
+
|
|
1004
|
+
return (out_coords, out_indices, out_third_arr)
|
|
1005
|
+
|
|
1006
|
+
|
|
1007
|
+
@numba.njit
|
|
1008
|
+
def _remove_duplicate_points(
|
|
1009
|
+
coords: NDArray[np.float64],
|
|
1010
|
+
indices: NDArray[np.int32],
|
|
1011
|
+
third_arr: NDArray[Any],
|
|
1012
|
+
):
|
|
1013
|
+
out_coords, out_indices, out_third_arr = [coords[0]], [indices[0]], [third_arr[0]]
|
|
1014
|
+
prev = coords[0]
|
|
1015
|
+
for i in np.arange(1, len(coords)):
|
|
1016
|
+
idx = indices[i]
|
|
1017
|
+
xy = coords[i]
|
|
1018
|
+
distance_to_prev: float = np.sqrt(
|
|
1019
|
+
(xy[0] - prev[0]) ** 2 + (xy[1] - prev[1]) ** 2
|
|
1020
|
+
)
|
|
1021
|
+
if not distance_to_prev and idx == indices[i - 1]:
|
|
1022
|
+
prev = xy
|
|
1023
|
+
continue
|
|
386
1024
|
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
)
|
|
390
|
-
|
|
1025
|
+
if idx != indices[i - 1]:
|
|
1026
|
+
out_coords.append(xy)
|
|
1027
|
+
out_indices.append(idx)
|
|
1028
|
+
out_third_arr.append(third_arr[i])
|
|
1029
|
+
prev = xy
|
|
1030
|
+
continue
|
|
391
1031
|
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
1032
|
+
out_coords.append(xy)
|
|
1033
|
+
out_indices.append(idx)
|
|
1034
|
+
out_third_arr.append(third_arr[i])
|
|
1035
|
+
prev = xy
|
|
396
1036
|
|
|
397
|
-
|
|
398
|
-
A GeoDataFrame.
|
|
399
|
-
"""
|
|
400
|
-
return clean_overlay(
|
|
401
|
-
gdf, gdf[["geometry"]], how="intersection", grid_size=tolerance, n_jobs=n_jobs
|
|
402
|
-
)
|
|
1037
|
+
return out_coords, out_indices, out_third_arr
|
|
403
1038
|
|
|
404
1039
|
|
|
405
|
-
def
|
|
406
|
-
|
|
407
|
-
double: GeoDataFrame,
|
|
408
|
-
slivers: GeoDataFrame,
|
|
409
|
-
thin_gaps_and_double: GeoDataFrame,
|
|
1040
|
+
def _snap_linearrings(
|
|
1041
|
+
geoms: NDArray[LinearRing],
|
|
410
1042
|
tolerance: int | float,
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
gaps = get_gaps(gdf, include_interiors=True)
|
|
417
|
-
gaps["_was_gap"] = 1
|
|
418
|
-
assert "_double_idx" not in gaps
|
|
419
|
-
double = get_intersections(gdf)
|
|
420
|
-
double["_double_idx"] = range(len(double))
|
|
421
|
-
thin_gaps_and_double = pd.concat([gaps, double], ignore_index=True).loc[
|
|
422
|
-
lambda x: x.buffer(-tolerance / 2).is_empty
|
|
423
|
-
]
|
|
424
|
-
|
|
425
|
-
return gdf, thin_gaps_and_double, slivers
|
|
1043
|
+
mask: GeoDataFrame | None,
|
|
1044
|
+
snap_to_anchors: bool = True,
|
|
1045
|
+
):
|
|
1046
|
+
if not len(geoms):
|
|
1047
|
+
return geoms
|
|
426
1048
|
|
|
1049
|
+
points = GeoDataFrame(
|
|
1050
|
+
{
|
|
1051
|
+
"geometry": extract_unique_points(geoms),
|
|
1052
|
+
"_geom_idx": np.arange(len(geoms)),
|
|
1053
|
+
}
|
|
1054
|
+
).explode(ignore_index=True)
|
|
1055
|
+
coords = get_coordinates(points.geometry.values)
|
|
1056
|
+
indices = points["_geom_idx"].values
|
|
1057
|
+
|
|
1058
|
+
if mask is not None:
|
|
1059
|
+
mask_coords, mask_indices = get_coordinates(
|
|
1060
|
+
mask.geometry.values, return_index=True
|
|
1061
|
+
)
|
|
1062
|
+
is_anchor = np.full(len(mask_coords), False)
|
|
427
1063
|
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
) -> GeoDataFrame:
|
|
431
|
-
large = (
|
|
432
|
-
double.loc[~double["_double_idx"].isin(thin_double["_double_idx"])].drop(
|
|
433
|
-
columns="_double_idx"
|
|
1064
|
+
mask_coords, mask_indices, is_anchor = _remove_duplicate_points(
|
|
1065
|
+
mask_coords, mask_indices, is_anchor
|
|
434
1066
|
)
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
)
|
|
439
|
-
return (
|
|
440
|
-
clean_overlay(gdf, large, how="update", geom_type="polygon", n_jobs=n_jobs)
|
|
441
|
-
# .pipe(sort_large_first)
|
|
442
|
-
# .sort_values("_poly_idx")
|
|
443
|
-
.pipe(update_geometries, geom_type="polygon", n_jobs=n_jobs)
|
|
444
|
-
)
|
|
1067
|
+
mask_coords, mask_indices = _add_last_points_to_end(mask_coords, mask_indices)
|
|
1068
|
+
mask_coords = np.array(mask_coords)
|
|
1069
|
+
mask_indices = np.array(mask_indices)
|
|
445
1070
|
|
|
1071
|
+
is_anchor = np.full(len(mask_coords), False)
|
|
1072
|
+
mask_coords, mask_indices, is_anchor = _remove_duplicate_points(
|
|
1073
|
+
mask_coords, mask_indices, is_anchor
|
|
1074
|
+
)
|
|
1075
|
+
mask_coords = np.array(mask_coords)
|
|
1076
|
+
mask_indices = np.array(mask_indices)
|
|
446
1077
|
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
1078
|
+
original_mask_buffered = shapely.buffer(
|
|
1079
|
+
shapely.linearrings(mask_coords, indices=mask_indices),
|
|
1080
|
+
tolerance * 1.1,
|
|
1081
|
+
)
|
|
1082
|
+
mask_coords, mask_indices, was_midpoint_mask, _ = (
|
|
1083
|
+
_add_midpoints_to_segments_numba(
|
|
1084
|
+
mask_coords,
|
|
1085
|
+
mask_indices,
|
|
1086
|
+
get_coordinates(
|
|
1087
|
+
sfilter(
|
|
1088
|
+
points.geometry.drop_duplicates(),
|
|
1089
|
+
original_mask_buffered,
|
|
1090
|
+
)
|
|
1091
|
+
),
|
|
1092
|
+
tolerance * 1.1,
|
|
1093
|
+
)
|
|
456
1094
|
)
|
|
457
|
-
if duplicate_action not in ["fix", "error", "ignore"]:
|
|
458
|
-
raise ValueError("duplicate_action must be 'fix', 'error' or 'ignore'")
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
def split_out_slivers(
|
|
462
|
-
gdf: GeoDataFrame | GeoSeries, tolerance: float | int
|
|
463
|
-
) -> tuple[GeoDataFrame, GeoDataFrame] | tuple[GeoSeries, GeoSeries]:
|
|
464
|
-
is_sliver = gdf.buffer(-tolerance / 2).is_empty
|
|
465
|
-
slivers = gdf.loc[is_sliver]
|
|
466
|
-
gdf = gdf.loc[~is_sliver]
|
|
467
|
-
slivers, isolated = sfilter_split(slivers, gdf.buffer(PRECISION))
|
|
468
|
-
gdf = pd.concat([gdf, isolated])
|
|
469
|
-
return gdf, slivers
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
def try_for_grid_size(
|
|
473
|
-
func: Callable,
|
|
474
|
-
grid_sizes: tuple[None, float | int],
|
|
475
|
-
args: tuple | None = None,
|
|
476
|
-
kwargs: dict | None = None,
|
|
477
|
-
) -> Any:
|
|
478
|
-
args = args or ()
|
|
479
|
-
kwargs = kwargs or {}
|
|
480
|
-
for i, grid_size in enumerate(grid_sizes):
|
|
481
|
-
try:
|
|
482
|
-
return func(*args, grid_size=grid_size, **kwargs)
|
|
483
|
-
except GEOSException as e:
|
|
484
|
-
if i == len(grid_sizes) - 1:
|
|
485
|
-
raise e
|
|
486
1095
|
|
|
1096
|
+
mask_coords = np.array(mask_coords)
|
|
1097
|
+
mask_indices = np.array(mask_indices)
|
|
1098
|
+
mask_indices = (mask_indices + 1) * -1
|
|
1099
|
+
|
|
1100
|
+
is_anchor = np.full(len(coords), False)
|
|
1101
|
+
coords, indices, is_anchor = _remove_duplicate_points(coords, indices, is_anchor)
|
|
1102
|
+
|
|
1103
|
+
coords, indices = _add_last_points_to_end(coords, indices)
|
|
1104
|
+
coords = np.array(coords)
|
|
1105
|
+
indices = np.array(indices)
|
|
1106
|
+
|
|
1107
|
+
is_anchor = np.full(len(coords), False)
|
|
1108
|
+
coords, indices, is_anchor = _remove_duplicate_points(coords, indices, is_anchor)
|
|
1109
|
+
coords = np.array(coords)
|
|
1110
|
+
indices = np.array(indices)
|
|
1111
|
+
|
|
1112
|
+
# if 0:
|
|
1113
|
+
# coords, indices, was_midpoint, _ = _add_midpoints_to_segments_numba(
|
|
1114
|
+
# coords,
|
|
1115
|
+
# indices,
|
|
1116
|
+
# mask_coords,
|
|
1117
|
+
# tolerance * 1.1, # + PRECISION * 100,
|
|
1118
|
+
# )
|
|
1119
|
+
|
|
1120
|
+
# was_midpoint = np.array(was_midpoint)
|
|
1121
|
+
|
|
1122
|
+
# coords, is_snapped_to = _snap_to_anchors(
|
|
1123
|
+
# coords,
|
|
1124
|
+
# indices,
|
|
1125
|
+
# mask_coords,
|
|
1126
|
+
# mask_indices,
|
|
1127
|
+
# mask_coords,
|
|
1128
|
+
# mask_indices,
|
|
1129
|
+
# was_midpoint,
|
|
1130
|
+
# was_midpoint_mask,
|
|
1131
|
+
# tolerance + PRECISION * 20,
|
|
1132
|
+
# )
|
|
1133
|
+
# indices = np.array(indices)
|
|
1134
|
+
# coords = np.array(coords)
|
|
1135
|
+
|
|
1136
|
+
# indices = indices[coords[:, 0] != np.inf]
|
|
1137
|
+
# coords = coords[coords[:, 0] != np.inf]
|
|
1138
|
+
|
|
1139
|
+
if snap_to_anchors:
|
|
1140
|
+
if mask is None:
|
|
1141
|
+
mask_coords = [coords[0]]
|
|
1142
|
+
mask_indices = [indices[0]]
|
|
1143
|
+
was_midpoint_mask = [False]
|
|
1144
|
+
anchors, anchor_indices, is_anchor, was_midpoint_anchors = _build_anchors(
|
|
1145
|
+
coords,
|
|
1146
|
+
indices,
|
|
1147
|
+
mask_coords,
|
|
1148
|
+
mask_indices,
|
|
1149
|
+
was_midpoint_mask,
|
|
1150
|
+
tolerance + PRECISION, # * 100
|
|
1151
|
+
)
|
|
1152
|
+
anchors = np.array(anchors)
|
|
1153
|
+
anchor_indices = np.array(anchor_indices)
|
|
487
1154
|
|
|
488
|
-
|
|
489
|
-
gdf: GeoDataFrame | list[GeoDataFrame],
|
|
490
|
-
to_eliminate: GeoDataFrame,
|
|
491
|
-
tolerance: int | float,
|
|
492
|
-
grid_sizes: tuple[None | float | int] = (None,),
|
|
493
|
-
n_jobs: int = 1,
|
|
494
|
-
**kwargs,
|
|
495
|
-
) -> GeoDataFrame | tuple[GeoDataFrame]:
|
|
496
|
-
if not len(to_eliminate):
|
|
497
|
-
return gdf
|
|
1155
|
+
# anchors = np.round(anchors, 3)
|
|
498
1156
|
|
|
499
|
-
if not isinstance(gdf, (GeoDataFrame, GeoSeries)):
|
|
500
|
-
as_gdf = pd.concat(gdf, ignore_index=True)
|
|
501
1157
|
else:
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
args=(to_eliminate, as_gdf, tolerance),
|
|
508
|
-
).pipe(sort_small_first)
|
|
509
|
-
|
|
510
|
-
splitted = try_for_grid_size(
|
|
511
|
-
update_geometries,
|
|
512
|
-
grid_sizes=grid_sizes,
|
|
513
|
-
args=(splitted,),
|
|
514
|
-
kwargs=dict(geom_type="polygon", n_jobs=n_jobs),
|
|
515
|
-
)
|
|
1158
|
+
anchors, anchor_indices, was_midpoint_anchors = (
|
|
1159
|
+
mask_coords,
|
|
1160
|
+
mask_indices,
|
|
1161
|
+
was_midpoint_mask,
|
|
1162
|
+
)
|
|
516
1163
|
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
splitted,
|
|
523
|
-
),
|
|
524
|
-
kwargs=kwargs | {"n_jobs": n_jobs},
|
|
1164
|
+
coords, indices, was_midpoint, _ = _add_midpoints_to_segments_numba(
|
|
1165
|
+
coords,
|
|
1166
|
+
indices,
|
|
1167
|
+
anchors,
|
|
1168
|
+
tolerance * 1.1,
|
|
525
1169
|
)
|
|
526
1170
|
|
|
527
|
-
|
|
528
|
-
as_gdf = pd.concat(gdf, ignore_index=True)
|
|
529
|
-
else:
|
|
530
|
-
as_gdf = gdf
|
|
531
|
-
|
|
532
|
-
missing = try_for_grid_size(
|
|
533
|
-
clean_overlay,
|
|
534
|
-
grid_sizes=grid_sizes,
|
|
535
|
-
args=(
|
|
536
|
-
to_eliminate,
|
|
537
|
-
as_gdf,
|
|
538
|
-
),
|
|
539
|
-
kwargs=dict(
|
|
540
|
-
how="difference",
|
|
541
|
-
geom_type="polygon",
|
|
542
|
-
n_jobs=n_jobs,
|
|
543
|
-
),
|
|
544
|
-
).pipe(lambda x: dissexp(x, n_jobs=n_jobs))
|
|
1171
|
+
was_midpoint = np.array(was_midpoint)
|
|
545
1172
|
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
kwargs=kwargs | {"n_jobs": n_jobs},
|
|
1173
|
+
coords_up_here000 = (
|
|
1174
|
+
pd.Series(_coords_to_rings(np.array(coords), np.array(indices), geoms))
|
|
1175
|
+
.loc[lambda x: x.notna()]
|
|
1176
|
+
.values
|
|
551
1177
|
)
|
|
1178
|
+
coords_up_here000 = to_gdf(polygons(coords_up_here000), 25833)
|
|
552
1179
|
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
df: GeoDataFrame,
|
|
556
|
-
split_by: GeoDataFrame,
|
|
557
|
-
tolerance: int | float,
|
|
558
|
-
grid_size: float | int | None = None,
|
|
559
|
-
) -> GeoDataFrame:
|
|
560
|
-
if not len(df):
|
|
561
|
-
return df
|
|
562
|
-
|
|
563
|
-
split_by = split_by.copy()
|
|
564
|
-
split_by.geometry = shapely.simplify(split_by.geometry, tolerance)
|
|
565
|
-
|
|
566
|
-
intersecting_lines = (
|
|
567
|
-
clean_overlay(
|
|
568
|
-
to_lines(split_by),
|
|
569
|
-
buff(df, tolerance),
|
|
570
|
-
how="intersection",
|
|
571
|
-
grid_size=grid_size,
|
|
572
|
-
)
|
|
573
|
-
.pipe(get_line_segments)
|
|
574
|
-
.reset_index(drop=True)
|
|
1180
|
+
coords, indices, was_midpoint = _add_last_points_to_end_with_third_arr(
|
|
1181
|
+
coords, indices, was_midpoint
|
|
575
1182
|
)
|
|
576
1183
|
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
extended_lines = GeoDataFrame(
|
|
580
|
-
{
|
|
581
|
-
"geometry": extend_lines(
|
|
582
|
-
endpoints.loc[lambda x: ~x.index.duplicated(keep="first")].values,
|
|
583
|
-
endpoints.loc[lambda x: ~x.index.duplicated(keep="last")].values,
|
|
584
|
-
distance=tolerance * 3,
|
|
585
|
-
)
|
|
586
|
-
},
|
|
587
|
-
crs=df.crs,
|
|
1184
|
+
coords, indices, was_midpoint = _remove_duplicate_points(
|
|
1185
|
+
coords, indices, was_midpoint
|
|
588
1186
|
)
|
|
589
1187
|
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
1188
|
+
coords = np.array(coords)
|
|
1189
|
+
indices = np.array(indices)
|
|
1190
|
+
was_midpoint = np.array(was_midpoint)
|
|
594
1191
|
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
arr1, arr2 = arr2, arr1 # TODO fix
|
|
602
|
-
|
|
603
|
-
coords1 = coordinate_array(arr1)
|
|
604
|
-
coords2 = coordinate_array(arr2)
|
|
605
|
-
|
|
606
|
-
dx = coords2[:, 0] - coords1[:, 0]
|
|
607
|
-
dy = coords2[:, 1] - coords1[:, 1]
|
|
608
|
-
len_xy = np.sqrt((dx**2.0) + (dy**2.0))
|
|
609
|
-
x = coords1[:, 0] + (coords1[:, 0] - coords2[:, 0]) / len_xy * distance
|
|
610
|
-
y = coords1[:, 1] + (coords1[:, 1] - coords2[:, 1]) / len_xy * distance
|
|
1192
|
+
coords_up_here = (
|
|
1193
|
+
pd.Series(_coords_to_rings(coords, indices, geoms))
|
|
1194
|
+
.loc[lambda x: x.notna()]
|
|
1195
|
+
.values
|
|
1196
|
+
)
|
|
1197
|
+
coords_up_here = to_gdf(polygons(coords_up_here), 25833)
|
|
611
1198
|
|
|
612
|
-
|
|
613
|
-
|
|
1199
|
+
explore(
|
|
1200
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1201
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1202
|
+
),
|
|
1203
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1204
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1205
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1206
|
+
coords_up_here000=coords_up_here000,
|
|
1207
|
+
coords_up_here=coords_up_here,
|
|
1208
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1209
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1210
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1211
|
+
),
|
|
1212
|
+
# center=_DEBUG_CONFIG["center"],
|
|
1213
|
+
)
|
|
614
1214
|
|
|
615
|
-
|
|
616
|
-
|
|
1215
|
+
coords, indices = _snap_to_anchors(
|
|
1216
|
+
coords,
|
|
1217
|
+
indices,
|
|
1218
|
+
anchors,
|
|
1219
|
+
anchor_indices,
|
|
1220
|
+
mask_coords,
|
|
1221
|
+
mask_indices,
|
|
1222
|
+
was_midpoint,
|
|
1223
|
+
was_midpoint_anchors,
|
|
1224
|
+
tolerance + PRECISION * 100,
|
|
617
1225
|
)
|
|
618
|
-
|
|
1226
|
+
indices = np.array(indices)
|
|
1227
|
+
coords = np.array(coords)
|
|
1228
|
+
indices = indices[coords[:, 0] != np.inf]
|
|
1229
|
+
coords = coords[coords[:, 0] != np.inf]
|
|
1230
|
+
|
|
1231
|
+
# coords_up_here111 = (
|
|
1232
|
+
# pd.Series(_coords_to_rings(coords, indices, geoms))
|
|
1233
|
+
# .loc[lambda x: x.notna()]
|
|
1234
|
+
# .values
|
|
1235
|
+
# )
|
|
1236
|
+
# coords_up_here111 = to_gdf(polygons(coords_up_here111), 25833)
|
|
1237
|
+
|
|
1238
|
+
# if 0:
|
|
1239
|
+
# # coords = get_coordinates(points.geometry.values)
|
|
1240
|
+
# # indices = points["_geom_idx"].values
|
|
1241
|
+
|
|
1242
|
+
# is_anchor = np.full(len(coords), False)
|
|
1243
|
+
# coords, indices, is_anchor = _remove_duplicate_points(
|
|
1244
|
+
# coords, indices, is_anchor
|
|
1245
|
+
# )
|
|
1246
|
+
# coords, indices = _add_last_points_to_end(coords, indices)
|
|
1247
|
+
# coords = np.array(coords)
|
|
1248
|
+
# indices = np.array(indices)
|
|
1249
|
+
# is_anchor = np.full(len(coords), False)
|
|
1250
|
+
# coords, indices, is_anchor = _remove_duplicate_points(
|
|
1251
|
+
# coords, indices, is_anchor
|
|
1252
|
+
# )
|
|
1253
|
+
# coords = np.array(coords)
|
|
1254
|
+
# indices = np.array(indices)
|
|
1255
|
+
|
|
1256
|
+
# display(pd.DataFrame(coords, index=indices, columns=[*"xy"]))
|
|
1257
|
+
|
|
1258
|
+
# if 0:
|
|
1259
|
+
# mask_coords, mask_indices, , dist_to_closest_geom = (
|
|
1260
|
+
# _add_midpoints_to_segments_numba(
|
|
1261
|
+
# mask_coords,
|
|
1262
|
+
# mask_indices,
|
|
1263
|
+
# # coords,
|
|
1264
|
+
# get_coordinates(
|
|
1265
|
+
# sfilter(
|
|
1266
|
+
# GeoSeries(shapely.points(coords)).drop_duplicates(),
|
|
1267
|
+
# original_mask_buffered,
|
|
1268
|
+
# )
|
|
1269
|
+
# ),
|
|
1270
|
+
# tolerance * 1.1,
|
|
1271
|
+
# )
|
|
1272
|
+
# )
|
|
1273
|
+
|
|
1274
|
+
# mask_coords = np.array(mask_coords)
|
|
1275
|
+
# mask_indices = np.array(mask_indices)
|
|
1276
|
+
|
|
1277
|
+
# anchors, anchor_indices, is_anchor = _build_anchors(
|
|
1278
|
+
# coords,
|
|
1279
|
+
# indices,
|
|
1280
|
+
# mask_coords,
|
|
1281
|
+
# mask_indices,
|
|
1282
|
+
# # is_anchor,
|
|
1283
|
+
# tolerance + PRECISION, # * 100
|
|
1284
|
+
# )
|
|
1285
|
+
# anchors = np.array(anchors)
|
|
1286
|
+
# anchor_indices = np.array(anchor_indices)
|
|
1287
|
+
|
|
1288
|
+
# coords, indices, was_midpoint, _ = _add_midpoints_to_segments_numba(
|
|
1289
|
+
# coords,
|
|
1290
|
+
# indices,
|
|
1291
|
+
# anchors,
|
|
1292
|
+
# tolerance * 1.1, # + PRECISION * 100,
|
|
1293
|
+
# # GeoDataFrame({"geometry": shapely.points(coords), "_geom_idx": indices}),
|
|
1294
|
+
# # GeoDataFrame({"geometry": shapely.points(anchors)}),
|
|
1295
|
+
# # tolerance, # + PRECISION * 100,
|
|
1296
|
+
# # None,
|
|
1297
|
+
# )
|
|
1298
|
+
# print(len(coords), len(anchors), len(was_midpoint))
|
|
1299
|
+
|
|
1300
|
+
# indices = np.array(indices)
|
|
1301
|
+
# coords = np.array(coords)
|
|
1302
|
+
|
|
1303
|
+
# was_midpoint = np.array(was_midpoint)
|
|
1304
|
+
|
|
1305
|
+
# coords, is_snapped_to = _snap_to_anchors(
|
|
1306
|
+
# coords,
|
|
1307
|
+
# indices,
|
|
1308
|
+
# anchors,
|
|
1309
|
+
# anchor_indices,
|
|
1310
|
+
# mask_coords,
|
|
1311
|
+
# mask_indices,
|
|
1312
|
+
# was_midpoint,
|
|
1313
|
+
# was_midpoint_anchors,
|
|
1314
|
+
# tolerance + PRECISION * 20,
|
|
1315
|
+
# )
|
|
1316
|
+
# indices = np.array(indices)
|
|
1317
|
+
# coords = np.array(coords)
|
|
1318
|
+
# indices = indices[coords[:, 0] != np.inf]
|
|
1319
|
+
# coords = coords[coords[:, 0] != np.inf]
|
|
1320
|
+
|
|
1321
|
+
# coords = np.array(coords)
|
|
1322
|
+
|
|
1323
|
+
# indices = np.array(indices)
|
|
1324
|
+
|
|
1325
|
+
coords_down_here = (
|
|
1326
|
+
pd.Series(_coords_to_rings(coords, indices, geoms))
|
|
1327
|
+
.loc[lambda x: x.notna()]
|
|
1328
|
+
.values
|
|
1329
|
+
)
|
|
1330
|
+
lines_down_here = to_gdf(shapely.buffer(coords_down_here, 0.1), 25833)
|
|
1331
|
+
coords_down_here = to_gdf(polygons(coords_down_here), 25833)
|
|
619
1332
|
|
|
1333
|
+
try:
|
|
1334
|
+
explore(
|
|
1335
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1336
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1337
|
+
),
|
|
1338
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1339
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1340
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1341
|
+
coords_up_here000=coords_up_here000,
|
|
1342
|
+
coords_up_here=coords_up_here,
|
|
1343
|
+
coords_down_here=coords_down_here,
|
|
1344
|
+
lines_down_here=lines_down_here,
|
|
1345
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1346
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1347
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1348
|
+
),
|
|
1349
|
+
)
|
|
620
1350
|
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
|
|
626
|
-
|
|
1351
|
+
explore(
|
|
1352
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1353
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1354
|
+
),
|
|
1355
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1356
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1357
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1358
|
+
coords_up_here000=coords_up_here000,
|
|
1359
|
+
coords_up_here=coords_up_here,
|
|
1360
|
+
coords_down_here=coords_down_here,
|
|
1361
|
+
lines_down_here=lines_down_here,
|
|
1362
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1363
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1364
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1365
|
+
),
|
|
1366
|
+
center=(5.37707159, 59.01065276, 1),
|
|
627
1367
|
)
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
1368
|
+
explore(
|
|
1369
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1370
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1371
|
+
),
|
|
1372
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1373
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1374
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1375
|
+
coords_up_here000=coords_up_here000,
|
|
1376
|
+
coords_up_here=coords_up_here,
|
|
1377
|
+
coords_down_here=coords_down_here,
|
|
1378
|
+
lines_down_here=lines_down_here,
|
|
1379
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1380
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1381
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1382
|
+
),
|
|
1383
|
+
center=(5.37419946, 59.01138812, 15),
|
|
644
1384
|
)
|
|
645
|
-
segments = multipoints_to_line_segments(multipoints.geometry)
|
|
646
|
-
return segments.join(lines.drop(columns=geom_col))
|
|
647
1385
|
|
|
648
|
-
|
|
1386
|
+
explore(
|
|
1387
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1388
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1389
|
+
),
|
|
1390
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1391
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1392
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1393
|
+
coords_up_here000=coords_up_here000,
|
|
1394
|
+
coords_up_here=coords_up_here,
|
|
1395
|
+
lines_down_here=lines_down_here,
|
|
1396
|
+
coords_down_here=coords_down_here,
|
|
1397
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1398
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1399
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1400
|
+
),
|
|
1401
|
+
center=(5.38389153, 59.00548223, 1),
|
|
1402
|
+
)
|
|
1403
|
+
explore(
|
|
1404
|
+
coords=to_gdf(shapely.points(coords), 25833).assign(
|
|
1405
|
+
idx=indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1406
|
+
),
|
|
1407
|
+
anchors=to_gdf(shapely.points(anchors), 25833).assign(
|
|
1408
|
+
idx=anchor_indices, wkt=lambda x: [g.wkt for g in x.geometry]
|
|
1409
|
+
), # , straight_distances=straight_distances, distances_to_lines=distances_to_lines),
|
|
1410
|
+
coords_up_here000=coords_up_here000,
|
|
1411
|
+
coords_up_here=coords_up_here,
|
|
1412
|
+
coords_down_here=coords_down_here,
|
|
1413
|
+
lines_down_here=lines_down_here,
|
|
1414
|
+
geoms=to_gdf(polygons(geoms), 25833),
|
|
1415
|
+
msk=to_gdf(shapely.points(mask_coords), 25833).assign(
|
|
1416
|
+
was_midpoint_mask=was_midpoint_mask
|
|
1417
|
+
),
|
|
1418
|
+
center=_DEBUG_CONFIG["center"],
|
|
1419
|
+
)
|
|
649
1420
|
|
|
650
|
-
|
|
1421
|
+
except GEOSException as e:
|
|
1422
|
+
print(e)
|
|
651
1423
|
|
|
1424
|
+
return _coords_to_rings(coords, indices, geoms)
|
|
652
1425
|
|
|
653
|
-
def multipoints_to_line_segments(multipoints: GeoSeries) -> GeoDataFrame:
|
|
654
|
-
if not len(multipoints):
|
|
655
|
-
return GeoDataFrame({"geometry": multipoints}, index=multipoints.index)
|
|
656
1426
|
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
|
|
660
|
-
|
|
1427
|
+
def _coords_to_rings(
|
|
1428
|
+
coords: NDArray[np.float64],
|
|
1429
|
+
indices: NDArray[np.int32],
|
|
1430
|
+
original_geoms: NDArray[LinearRing],
|
|
1431
|
+
) -> NDArray[LinearRing]:
|
|
1432
|
+
df = pd.DataFrame({"x": coords[:, 0], "y": coords[:, 1]}, index=indices).loc[
|
|
1433
|
+
lambda x: x.groupby(level=0).size() > 2
|
|
1434
|
+
]
|
|
1435
|
+
to_int_idx = {idx: i for i, idx in enumerate(df.index.unique())}
|
|
1436
|
+
rings = pd.Series(
|
|
1437
|
+
linearrings(df.values, indices=df.index.map(to_int_idx)),
|
|
1438
|
+
index=df.index.unique(),
|
|
1439
|
+
)
|
|
661
1440
|
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
665
|
-
points, indices = get_parts(multipoints, return_index=True)
|
|
666
|
-
if isinstance(multipoints.index, pd.MultiIndex):
|
|
667
|
-
indices = pd.MultiIndex.from_arrays(indices, names=multipoints.index.names)
|
|
1441
|
+
missing = pd.Series(
|
|
1442
|
+
index=pd.Index(range(len(original_geoms))).difference(rings.index)
|
|
1443
|
+
)
|
|
668
1444
|
|
|
669
|
-
|
|
1445
|
+
return pd.concat([rings, missing]).sort_index().values
|
|
670
1446
|
|
|
671
|
-
try:
|
|
672
|
-
point_df = point_df.to_frame("geometry")
|
|
673
|
-
except AttributeError:
|
|
674
|
-
pass
|
|
675
1447
|
|
|
676
|
-
|
|
1448
|
+
@numba.njit
|
|
1449
|
+
def _add_midpoints_to_segments_numba(
|
|
1450
|
+
geoms: NDArray[np.float64],
|
|
1451
|
+
indices: NDArray[np.int32],
|
|
1452
|
+
anchors: NDArray[np.float64],
|
|
1453
|
+
tolerance: int | float,
|
|
1454
|
+
):
|
|
1455
|
+
n_minus_1 = len(geoms) - 1
|
|
1456
|
+
out_coords = []
|
|
1457
|
+
out_indices = []
|
|
1458
|
+
was_midpoint = []
|
|
1459
|
+
out_distances = []
|
|
1460
|
+
for i in range(len(geoms)):
|
|
1461
|
+
index = indices[i]
|
|
1462
|
+
|
|
1463
|
+
is_last = i == n_minus_1 or index != indices[i + 1]
|
|
1464
|
+
if is_last:
|
|
1465
|
+
continue
|
|
1466
|
+
|
|
1467
|
+
geom0 = geoms[i]
|
|
1468
|
+
geom1 = geoms[i + 1]
|
|
1469
|
+
|
|
1470
|
+
closest_points = np.full((len(anchors) + 2, 2), np.inf)
|
|
1471
|
+
these_out_distances = np.full(len(anchors) + 2, np.inf)
|
|
1472
|
+
closest_points[-1] = geom1
|
|
1473
|
+
closest_points[-2] = geom0
|
|
1474
|
+
these_out_distances[-1] = 0
|
|
1475
|
+
these_out_distances[-2] = 0
|
|
1476
|
+
|
|
1477
|
+
segment_vector = geom1 - geom0
|
|
1478
|
+
segment_length_squared = np.dot(segment_vector, segment_vector)
|
|
1479
|
+
for j in range(len(anchors)):
|
|
1480
|
+
anchor = anchors[j]
|
|
1481
|
+
|
|
1482
|
+
if segment_length_squared == 0:
|
|
1483
|
+
closest_point = geom0
|
|
1484
|
+
else:
|
|
1485
|
+
point_vector = anchor - geom0
|
|
1486
|
+
factor = np.dot(point_vector, segment_vector) / segment_length_squared
|
|
1487
|
+
factor = max(0, min(1, factor))
|
|
1488
|
+
if factor < 1e-6:
|
|
1489
|
+
closest_point = geom0
|
|
1490
|
+
elif factor > 1 - 1e-6:
|
|
1491
|
+
closest_point = geom1
|
|
1492
|
+
else:
|
|
1493
|
+
closest_point = geom0 + factor * segment_vector
|
|
1494
|
+
|
|
1495
|
+
dist = np.linalg.norm(anchor - closest_point)
|
|
1496
|
+
if dist <= tolerance and dist > PRECISION:
|
|
1497
|
+
closest_points[j] = closest_point
|
|
1498
|
+
these_out_distances[j] = dist
|
|
1499
|
+
|
|
1500
|
+
# if (
|
|
1501
|
+
# closest_point[0] == 905049.3317999999
|
|
1502
|
+
# ): # and int(closest_point[1]) == 7877676:
|
|
1503
|
+
# print()
|
|
1504
|
+
# for xxx in closest_point:
|
|
1505
|
+
# print(xxx)
|
|
1506
|
+
# for xxx in geom0:
|
|
1507
|
+
# print(xxx)
|
|
1508
|
+
# for xxx in geom1:
|
|
1509
|
+
# print(xxx)
|
|
1510
|
+
# for xxx, yyy in locals().items():
|
|
1511
|
+
# print(xxx, yyy)
|
|
1512
|
+
# ssss
|
|
1513
|
+
|
|
1514
|
+
not_inf = closest_points[:, 0] != np.inf
|
|
1515
|
+
arr = closest_points[not_inf]
|
|
1516
|
+
these_out_distances = these_out_distances[not_inf]
|
|
1517
|
+
|
|
1518
|
+
# sort by first and second column
|
|
1519
|
+
# could have used np.lexsort, but it's not numba compatible
|
|
1520
|
+
arr = arr[np.argsort(arr[:, 0])]
|
|
1521
|
+
any_unsorted = True
|
|
1522
|
+
while any_unsorted:
|
|
1523
|
+
any_unsorted = False
|
|
1524
|
+
for i in range(len(arr) - 1):
|
|
1525
|
+
if arr[i, 0] < arr[i + 1, 0]:
|
|
1526
|
+
continue
|
|
1527
|
+
if arr[i, 1] > arr[i + 1, 1]:
|
|
1528
|
+
copied = arr[i].copy()
|
|
1529
|
+
arr[i] = arr[i + 1]
|
|
1530
|
+
arr[i + 1] = copied
|
|
1531
|
+
|
|
1532
|
+
copied = these_out_distances[i]
|
|
1533
|
+
these_out_distances[i] = these_out_distances[i + 1]
|
|
1534
|
+
these_out_distances[i + 1] = copied
|
|
1535
|
+
|
|
1536
|
+
any_unsorted = True
|
|
1537
|
+
|
|
1538
|
+
with_midpoints = []
|
|
1539
|
+
these_out_distances2 = []
|
|
1540
|
+
first_is_added = False
|
|
1541
|
+
last_is_added = False
|
|
1542
|
+
is_reverse = False
|
|
1543
|
+
for y in range(len(arr)):
|
|
1544
|
+
point = arr[y]
|
|
1545
|
+
if (
|
|
1546
|
+
not first_is_added
|
|
1547
|
+
and np.sqrt((geom0[0] - point[0]) ** 2 + (geom0[1] - point[1]) ** 2)
|
|
1548
|
+
== 0
|
|
1549
|
+
):
|
|
1550
|
+
first_is_added = True
|
|
1551
|
+
with_midpoints.append(point)
|
|
1552
|
+
these_out_distances2.append(these_out_distances[y])
|
|
1553
|
+
if last_is_added:
|
|
1554
|
+
is_reverse = True
|
|
1555
|
+
break
|
|
1556
|
+
else:
|
|
1557
|
+
continue
|
|
1558
|
+
elif (
|
|
1559
|
+
not last_is_added
|
|
1560
|
+
and np.sqrt((geom1[0] - point[0]) ** 2 + (geom1[1] - point[1]) ** 2)
|
|
1561
|
+
== 0
|
|
1562
|
+
):
|
|
1563
|
+
last_is_added = True
|
|
1564
|
+
with_midpoints.append(point)
|
|
1565
|
+
these_out_distances2.append(these_out_distances[y])
|
|
1566
|
+
if not first_is_added:
|
|
1567
|
+
is_reverse = True
|
|
1568
|
+
continue
|
|
1569
|
+
else:
|
|
1570
|
+
with_midpoints.append(point)
|
|
1571
|
+
break
|
|
1572
|
+
if first_is_added or last_is_added:
|
|
1573
|
+
with_midpoints.append(point)
|
|
1574
|
+
these_out_distances2.append(these_out_distances[y])
|
|
1575
|
+
|
|
1576
|
+
# these_out_distances2.append(these_out_distances[y])
|
|
1577
|
+
# these_anchors2.append(these_anchors[y])
|
|
1578
|
+
|
|
1579
|
+
# with_midpoints = np.array(with_midpoints)
|
|
1580
|
+
|
|
1581
|
+
if is_reverse:
|
|
1582
|
+
with_midpoints = with_midpoints[::-1]
|
|
1583
|
+
these_out_distances2 = these_out_distances2[::-1]
|
|
1584
|
+
# these_anchors2 = these_anchors2[::-1]
|
|
1585
|
+
|
|
1586
|
+
# print(index, is_reverse, arr)
|
|
1587
|
+
# print(with_midpoints)
|
|
1588
|
+
# print(to_gdf(LineString([geom0, geom1]), 25833))
|
|
1589
|
+
# print(to_gdf(shapely.points(closest_points)))
|
|
1590
|
+
# explore(
|
|
1591
|
+
# to_gdf(shapely.points(with_midpoints)).assign(
|
|
1592
|
+
# idx=lambda x: range(len(x))
|
|
1593
|
+
# ),
|
|
1594
|
+
# "idx",
|
|
1595
|
+
# )
|
|
1596
|
+
# explore(
|
|
1597
|
+
# l=to_gdf(LineString([geom0, geom1]), 25833),
|
|
1598
|
+
# # anchors=to_gdf(shapely.points(anchors)),
|
|
1599
|
+
# # anchors_in_dist=to_gdf(shapely.points(these_anchors)),
|
|
1600
|
+
# # closest_points=to_gdf(shapely.points(closest_points)),
|
|
1601
|
+
# with_midpoints=to_gdf(shapely.points(with_midpoints)),
|
|
1602
|
+
# anchors=to_gdf(shapely.points(anchors)),
|
|
1603
|
+
# arr=to_gdf(shapely.points(arr)),
|
|
1604
|
+
# # center=(-0.07034028, 1.80337784, 0.4),
|
|
1605
|
+
# )
|
|
1606
|
+
|
|
1607
|
+
with_midpoints_no_dups = []
|
|
1608
|
+
these_out_distances_no_dups = []
|
|
1609
|
+
|
|
1610
|
+
for y2 in range(len(with_midpoints)):
|
|
1611
|
+
point = with_midpoints[y2]
|
|
1612
|
+
should_be_added = True
|
|
1613
|
+
for z in range(len(with_midpoints_no_dups)):
|
|
1614
|
+
out_point = with_midpoints_no_dups[z]
|
|
1615
|
+
if (
|
|
1616
|
+
np.sqrt(
|
|
1617
|
+
(point[0] - out_point[0]) ** 2 + (out_point[1] - point[1]) ** 2
|
|
1618
|
+
)
|
|
1619
|
+
== 0
|
|
1620
|
+
):
|
|
1621
|
+
should_be_added = False
|
|
1622
|
+
break
|
|
1623
|
+
if should_be_added:
|
|
1624
|
+
with_midpoints_no_dups.append(point)
|
|
1625
|
+
these_out_distances_no_dups.append(these_out_distances2[y2])
|
|
1626
|
+
|
|
1627
|
+
n_minus_1_midpoints = len(with_midpoints_no_dups) - 1
|
|
1628
|
+
for y3 in range(len(with_midpoints_no_dups)):
|
|
1629
|
+
point = with_midpoints_no_dups[y3]
|
|
1630
|
+
should_be_added = True
|
|
1631
|
+
|
|
1632
|
+
for z2 in np.arange(len(out_coords))[::-1]:
|
|
1633
|
+
if out_indices[z2] != index:
|
|
1634
|
+
continue
|
|
1635
|
+
out_point = out_coords[z2]
|
|
1636
|
+
|
|
1637
|
+
if (
|
|
1638
|
+
np.sqrt(
|
|
1639
|
+
(point[0] - out_point[0]) ** 2 + (out_point[1] - point[1]) ** 2
|
|
1640
|
+
)
|
|
1641
|
+
== 0
|
|
1642
|
+
):
|
|
1643
|
+
should_be_added = False
|
|
1644
|
+
break
|
|
1645
|
+
|
|
1646
|
+
if not should_be_added:
|
|
1647
|
+
continue
|
|
1648
|
+
|
|
1649
|
+
out_coords.append(point)
|
|
1650
|
+
out_indices.append(index)
|
|
1651
|
+
out_distances.append(these_out_distances_no_dups[y3])
|
|
1652
|
+
if y3 == 0 or y3 == n_minus_1_midpoints:
|
|
1653
|
+
was_midpoint.append(False)
|
|
1654
|
+
else:
|
|
1655
|
+
was_midpoint.append(True)
|
|
677
1656
|
|
|
678
|
-
|
|
679
|
-
|
|
1657
|
+
return (
|
|
1658
|
+
out_coords,
|
|
1659
|
+
out_indices,
|
|
1660
|
+
was_midpoint,
|
|
1661
|
+
out_distances,
|
|
1662
|
+
)
|
|
680
1663
|
|
|
681
|
-
point_df.loc[is_last_point, "next"] = first_points
|
|
682
|
-
assert point_df["next"].notna().all()
|
|
683
1664
|
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
|
|
688
|
-
return GeoDataFrame(point_df.drop(columns=["next"]), geometry="geometry", crs=crs)
|
|
1665
|
+
def _separate_single_neighbored_from_multi_neighoured_geometries(
|
|
1666
|
+
gdf: GeoDataFrame, neighbors: GeoDataFrame
|
|
1667
|
+
) -> tuple[GeoDataFrame, GeoDataFrame]:
|
|
1668
|
+
"""Split GeoDataFrame in two: those with 0 or 1 neighbors and those with 2 or more.
|
|
689
1669
|
|
|
1670
|
+
Because single-neighbored polygons does not need splitting.
|
|
1671
|
+
"""
|
|
1672
|
+
tree = STRtree(neighbors.geometry.values)
|
|
1673
|
+
left, right = tree.query(gdf.geometry.values, predicate="intersects")
|
|
1674
|
+
pairs = pd.Series(right, index=left)
|
|
1675
|
+
has_more_than_one_neighbor = (
|
|
1676
|
+
pairs.groupby(level=0).size().loc[lambda x: x > 1].index
|
|
1677
|
+
)
|
|
690
1678
|
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
1679
|
+
more_than_one_neighbor = gdf.iloc[has_more_than_one_neighbor]
|
|
1680
|
+
one_or_zero_neighbors = gdf.iloc[
|
|
1681
|
+
pd.Index(range(len(gdf))).difference(has_more_than_one_neighbor)
|
|
1682
|
+
]
|
|
694
1683
|
|
|
695
|
-
|
|
696
|
-
is_last_point = points["next"].isna()
|
|
1684
|
+
return one_or_zero_neighbors, more_than_one_neighbor
|
|
697
1685
|
|
|
698
|
-
points.loc[is_last_point, "next"] = first_points
|
|
699
|
-
assert points["next"].notna().all()
|
|
700
1686
|
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
1687
|
+
def split_and_eliminate_by_longest(
|
|
1688
|
+
gdf: GeoDataFrame | tuple[GeoDataFrame],
|
|
1689
|
+
to_eliminate: GeoDataFrame,
|
|
1690
|
+
tolerance: float | int,
|
|
1691
|
+
ignore_index: bool = False,
|
|
1692
|
+
**kwargs,
|
|
1693
|
+
) -> tuple[GeoDataFrame]:
|
|
1694
|
+
if isinstance(gdf, (list, tuple)):
|
|
1695
|
+
# concat, then break up the dataframes in the end
|
|
1696
|
+
was_multiple_gdfs = True
|
|
1697
|
+
original_cols = [df.columns for df in gdf]
|
|
1698
|
+
gdf = pd.concat(df.assign(**{"_df_idx": i}) for i, df in enumerate(gdf))
|
|
1699
|
+
else:
|
|
1700
|
+
was_multiple_gdfs = False
|
|
1701
|
+
|
|
1702
|
+
if 0:
|
|
1703
|
+
to_eliminate.geometry = to_eliminate.buffer(
|
|
1704
|
+
-PRECISION,
|
|
1705
|
+
resolution=1,
|
|
1706
|
+
join_style=2,
|
|
1707
|
+
).buffer(
|
|
1708
|
+
PRECISION,
|
|
1709
|
+
resolution=1,
|
|
1710
|
+
join_style=2,
|
|
1711
|
+
)
|
|
1712
|
+
to_eliminate = to_eliminate.loc[lambda x: ~x.is_empty]
|
|
708
1713
|
|
|
1714
|
+
# now to split polygons to be eliminated to avoid weird shapes
|
|
1715
|
+
# split only the polygons with multiple neighbors
|
|
1716
|
+
single_neighbored, multi_neighbored = (
|
|
1717
|
+
_separate_single_neighbored_from_multi_neighoured_geometries(to_eliminate, gdf)
|
|
1718
|
+
)
|
|
1719
|
+
multi_neighbored = split_by_neighbors(multi_neighbored, gdf, tolerance=tolerance)
|
|
1720
|
+
to_eliminate = pd.concat([multi_neighbored, single_neighbored])
|
|
1721
|
+
gdf, isolated = eliminate_by_longest(
|
|
1722
|
+
gdf, to_eliminate, ignore_index=ignore_index, **kwargs
|
|
1723
|
+
)
|
|
709
1724
|
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
) -> None:
|
|
713
|
-
"""Extract the coordinates of a GEOSException and show in map.
|
|
1725
|
+
if not was_multiple_gdfs:
|
|
1726
|
+
return gdf, isolated
|
|
714
1727
|
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
1728
|
+
gdfs = ()
|
|
1729
|
+
for i, cols in enumerate(original_cols):
|
|
1730
|
+
df = gdf.loc[gdf["_df_idx"] == i, cols]
|
|
1731
|
+
gdfs += (df,)
|
|
1732
|
+
gdfs += (isolated,)
|
|
719
1733
|
|
|
720
|
-
|
|
721
|
-
from ..maps.maps import Explore
|
|
722
|
-
from ..maps.maps import explore
|
|
723
|
-
|
|
724
|
-
pattern = r"(\d+\.\d+)\s+(\d+\.\d+)"
|
|
725
|
-
|
|
726
|
-
matches = re.findall(pattern, str(e))
|
|
727
|
-
coords_in_error_message = [(float(match[0]), float(match[1])) for match in matches]
|
|
728
|
-
exception_point = to_gdf(coords_in_error_message, crs=gdfs[0].crs)
|
|
729
|
-
if len(exception_point):
|
|
730
|
-
exception_point["wkt"] = exception_point.to_wkt()
|
|
731
|
-
if logger:
|
|
732
|
-
logger.error(
|
|
733
|
-
e, Explore(exception_point, *gdfs, mask=exception_point.buffer(100))
|
|
734
|
-
)
|
|
735
|
-
else:
|
|
736
|
-
explore(exception_point, *gdfs, mask=exception_point.buffer(100))
|
|
737
|
-
else:
|
|
738
|
-
if logger:
|
|
739
|
-
logger.error(e, Explore(*gdfs))
|
|
740
|
-
else:
|
|
741
|
-
explore(*gdfs)
|
|
1734
|
+
return gdfs
|