spikezoo 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- spikezoo/__init__.py +23 -7
- spikezoo/archs/bsf/models/bsf/bsf.py +37 -25
- spikezoo/archs/bsf/models/bsf/rep.py +2 -2
- spikezoo/archs/spk2imgnet/nets.py +1 -1
- spikezoo/archs/ssir/models/networks.py +1 -1
- spikezoo/archs/ssml/model.py +9 -5
- spikezoo/archs/stir/metrics/losses.py +1 -1
- spikezoo/archs/stir/models/networks_STIR.py +16 -9
- spikezoo/archs/tfi/nets.py +1 -1
- spikezoo/archs/tfp/nets.py +1 -1
- spikezoo/archs/wgse/dwtnets.py +6 -6
- spikezoo/datasets/__init__.py +11 -9
- spikezoo/datasets/base_dataset.py +10 -3
- spikezoo/datasets/realworld_dataset.py +1 -3
- spikezoo/datasets/{reds_small_dataset.py → reds_base_dataset.py} +9 -8
- spikezoo/datasets/reds_ssir_dataset.py +181 -0
- spikezoo/datasets/szdata_dataset.py +5 -15
- spikezoo/datasets/uhsr_dataset.py +4 -3
- spikezoo/models/__init__.py +8 -6
- spikezoo/models/base_model.py +120 -64
- spikezoo/models/bsf_model.py +11 -3
- spikezoo/models/spcsnet_model.py +19 -0
- spikezoo/models/spikeclip_model.py +4 -3
- spikezoo/models/spk2imgnet_model.py +9 -15
- spikezoo/models/ssir_model.py +4 -6
- spikezoo/models/ssml_model.py +44 -2
- spikezoo/models/stir_model.py +26 -5
- spikezoo/models/tfi_model.py +3 -1
- spikezoo/models/tfp_model.py +4 -2
- spikezoo/models/wgse_model.py +8 -14
- spikezoo/pipeline/base_pipeline.py +79 -55
- spikezoo/pipeline/ensemble_pipeline.py +10 -9
- spikezoo/pipeline/train_cfgs.py +89 -0
- spikezoo/pipeline/train_pipeline.py +129 -30
- spikezoo/utils/optimizer_utils.py +22 -0
- spikezoo/utils/other_utils.py +31 -6
- spikezoo/utils/scheduler_utils.py +25 -0
- spikezoo/utils/spike_utils.py +61 -29
- spikezoo-0.2.3.dist-info/METADATA +263 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/RECORD +43 -80
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/CheckPoints/readme +0 -1
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +0 -60
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py +0 -115
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +0 -39
- spikezoo/archs/spikeformer/EvalResults/readme +0 -1
- spikezoo/archs/spikeformer/LICENSE +0 -21
- spikezoo/archs/spikeformer/Metrics/Metrics.py +0 -50
- spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/Loss.py +0 -89
- spikezoo/archs/spikeformer/Model/SpikeFormer.py +0 -230
- spikezoo/archs/spikeformer/Model/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/README.md +0 -30
- spikezoo/archs/spikeformer/evaluate.py +0 -87
- spikezoo/archs/spikeformer/recon_real_data.py +0 -97
- spikezoo/archs/spikeformer/requirements.yml +0 -95
- spikezoo/archs/spikeformer/train.py +0 -173
- spikezoo/archs/spikeformer/utils.py +0 -22
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/models/spikeformer_model.py +0 -50
- spikezoo-0.2.2.dist-info/METADATA +0 -196
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/LICENSE.txt +0 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/WHEEL +0 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,22 @@
|
|
1
|
+
# code borrow from https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/engine/optimizers.py
|
2
|
+
from dataclasses import dataclass
|
3
|
+
import torch
|
4
|
+
from typing import Any, Dict, List, Optional, Type,Tuple
|
5
|
+
|
6
|
+
@dataclass
|
7
|
+
class OptimizerConfig:
|
8
|
+
def setup(self, model_params) -> torch.optim.Optimizer:
|
9
|
+
"""Returns the instantiated object using the config."""
|
10
|
+
kwargs = vars(self).copy()
|
11
|
+
kwargs.pop("_target")
|
12
|
+
return self._target(model_params, **kwargs)
|
13
|
+
|
14
|
+
@dataclass
|
15
|
+
class AdamOptimizerConfig(OptimizerConfig):
|
16
|
+
"""Basic optimizer config with Adam"""
|
17
|
+
lr: float = 1e-4
|
18
|
+
betas: Tuple[float, float] = (0.9, 0.999)
|
19
|
+
eps: float = 1e-8
|
20
|
+
weight_decay: float = 0
|
21
|
+
_target: Type = torch.optim.Adam
|
22
|
+
|
spikezoo/utils/other_utils.py
CHANGED
@@ -3,7 +3,9 @@ from dataclasses import dataclass, field, asdict
|
|
3
3
|
import requests
|
4
4
|
from tqdm import tqdm
|
5
5
|
import os
|
6
|
-
|
6
|
+
import torch
|
7
|
+
import numpy as np
|
8
|
+
import random
|
7
9
|
|
8
10
|
# log info
|
9
11
|
def setup_logging(log_file):
|
@@ -36,9 +38,9 @@ def save_config(cfg, filename, mode="w"):
|
|
36
38
|
def download_file(url, output_path):
|
37
39
|
headers = {
|
38
40
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36",
|
39
|
-
"Accept": "*/*",
|
40
|
-
"Accept-Encoding": "gzip, deflate, br",
|
41
|
-
"Connection": "keep-alive"
|
41
|
+
"Accept": "*/*",
|
42
|
+
"Accept-Encoding": "gzip, deflate, br",
|
43
|
+
"Connection": "keep-alive"
|
42
44
|
}
|
43
45
|
|
44
46
|
try:
|
@@ -62,8 +64,31 @@ def download_file(url, output_path):
|
|
62
64
|
raise RuntimeError(f"Files fail to download 😔😔😔. Try downloading it from {url} and move it to {output_path}.")
|
63
65
|
|
64
66
|
except requests.exceptions.RequestException as e:
|
65
|
-
# If an error occurs, remove the partially downloaded file
|
66
67
|
if os.path.exists(output_path):
|
67
68
|
os.remove(output_path)
|
68
69
|
print(f"Partial download failed. The incomplete file has been removed. 😔😔😔")
|
69
|
-
raise RuntimeError(f"Files fail to download 😔😔😔. Try downloading it from {url} and move it to {output_path}.")
|
70
|
+
raise RuntimeError(f"Files fail to download 😔😔😔. Try downloading it from {url} and move it to {output_path}.")
|
71
|
+
|
72
|
+
def check_file_exists(url):
|
73
|
+
response = requests.head(url)
|
74
|
+
if response.status_code == 200:
|
75
|
+
return True
|
76
|
+
else:
|
77
|
+
return False
|
78
|
+
|
79
|
+
def getattr_case_insensitive(obj, name):
|
80
|
+
name = name.lower()
|
81
|
+
for attr in dir(obj):
|
82
|
+
if attr.lower() == name:
|
83
|
+
return getattr(obj, attr)
|
84
|
+
raise RuntimeError("No attr found!!")
|
85
|
+
|
86
|
+
|
87
|
+
def set_random_seed(seed):
|
88
|
+
"""Set random seeds."""
|
89
|
+
torch.manual_seed(seed)
|
90
|
+
torch.cuda.manual_seed_all(seed)
|
91
|
+
np.random.seed(seed)
|
92
|
+
random.seed(seed)
|
93
|
+
torch.backends.cudnn.deterministic = True
|
94
|
+
torch.cuda.manual_seed(seed)
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# code borrow from https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/engine/optimizers.py
|
2
|
+
from dataclasses import dataclass
|
3
|
+
import torch
|
4
|
+
from typing import Any, Dict, List, Optional, Type,Tuple
|
5
|
+
|
6
|
+
@dataclass
|
7
|
+
class SchedulerConfig:
|
8
|
+
def setup(self, optimizer) -> torch.optim.lr_scheduler.LRScheduler:
|
9
|
+
"""Returns the instantiated object using the config."""
|
10
|
+
kwargs = vars(self).copy()
|
11
|
+
kwargs.pop("_target")
|
12
|
+
return self._target(optimizer, **kwargs)
|
13
|
+
|
14
|
+
@dataclass
|
15
|
+
class CosineAnnealingLRConfig(SchedulerConfig):
|
16
|
+
T_max: int
|
17
|
+
eta_min: float = 0
|
18
|
+
_target: Type = torch.optim.lr_scheduler.CosineAnnealingLR
|
19
|
+
|
20
|
+
|
21
|
+
@dataclass
|
22
|
+
class MultiStepSchedulerConfig(SchedulerConfig):
|
23
|
+
milestones: List[int]
|
24
|
+
gamma: float = 0.1
|
25
|
+
_target: Type = torch.optim.lr_scheduler.MultiStepLR
|
spikezoo/utils/spike_utils.py
CHANGED
@@ -2,23 +2,28 @@ import numpy as np
|
|
2
2
|
import torch
|
3
3
|
import torch.nn as nn
|
4
4
|
import os
|
5
|
-
from .vidar_loader import load_vidar_dat_cpp
|
6
5
|
from typing import Literal
|
6
|
+
import platform
|
7
|
+
import cv2
|
8
|
+
import imageio
|
7
9
|
|
8
|
-
|
10
|
+
_platform_check_done = False
|
11
|
+
|
12
|
+
|
13
|
+
def load_vidar_dat(filename, height, width, remove_head=False, version: Literal["python", "cpp"] = "cpp", out_format: Literal["array", "tensor"] = "array"):
|
9
14
|
"""Load the spike stream from the .dat file."""
|
15
|
+
global _platform_check_done
|
10
16
|
# Spike decode
|
11
|
-
if version == "
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
raise NotImplementedError
|
17
|
+
if version == "cpp" and platform.system().lower() == "linux":
|
18
|
+
from .vidar_loader import load_vidar_dat_cpp
|
19
|
+
|
20
|
+
spikes = load_vidar_dat_cpp(filename, height, width)
|
21
|
+
else:
|
22
|
+
# todo double check
|
23
|
+
if version == "cpp" and platform.system().lower() != "linux" and _platform_check_done == False:
|
24
|
+
_platform_check_done = True
|
25
|
+
print("Cpp load version is only supported on the linux now. Auto transfer to the python version.")
|
26
|
+
array = np.fromfile(filename, dtype=np.uint8)
|
22
27
|
len_per_frame = height * width // 8
|
23
28
|
framecnt = len(array) // len_per_frame
|
24
29
|
spikes = []
|
@@ -33,10 +38,6 @@ def load_vidar_dat(filename, height, width,remove_head=False, version:Literal['p
|
|
33
38
|
spk = spk[:, :, :-16] if remove_head == True else spk
|
34
39
|
spikes.append(spk)
|
35
40
|
spikes = np.concatenate(spikes).astype(np.float32)
|
36
|
-
elif version == "cpp":
|
37
|
-
spikes = load_vidar_dat_cpp(filename, height, width)
|
38
|
-
else:
|
39
|
-
raise RuntimeError("Not recognized version.")
|
40
41
|
|
41
42
|
# # Output format conversion
|
42
43
|
format_dict = {"array": lambda x: x, "tensor": torch.from_numpy}
|
@@ -44,15 +45,14 @@ def load_vidar_dat(filename, height, width,remove_head=False, version:Literal['p
|
|
44
45
|
return spikes
|
45
46
|
|
46
47
|
|
47
|
-
def
|
48
|
+
def save_vidar_dat(save_path, SpikeSeq, filpud=True):
|
48
49
|
"""Save the spike sequence to the .dat file."""
|
49
|
-
if
|
50
|
-
|
51
|
-
os.remove(save_path)
|
50
|
+
if os.path.exists(save_path):
|
51
|
+
os.remove(save_path)
|
52
52
|
sfn, h, w = SpikeSeq.shape
|
53
53
|
remainder = int((h * w) % 8)
|
54
54
|
base = np.power(2, np.linspace(0, 7, 8))
|
55
|
-
fid = open(save_path,
|
55
|
+
fid = open(save_path, "ab")
|
56
56
|
for img_id in range(sfn):
|
57
57
|
if filpud:
|
58
58
|
spike = np.flipud(SpikeSeq[img_id, :, :])
|
@@ -61,20 +61,54 @@ def SpikeToRaw(save_path, SpikeSeq, filpud=True, delete_if_exists=True):
|
|
61
61
|
if remainder == 0:
|
62
62
|
spike = spike.flatten()
|
63
63
|
else:
|
64
|
-
spike = np.concatenate([spike.flatten(), np.array([0]*(8-remainder))])
|
65
|
-
spike = spike.reshape([int(h*w/8), 8])
|
64
|
+
spike = np.concatenate([spike.flatten(), np.array([0] * (8 - remainder))])
|
65
|
+
spike = spike.reshape([int(h * w / 8), 8])
|
66
66
|
data = spike * base
|
67
67
|
data = np.sum(data, axis=1).astype(np.uint8)
|
68
68
|
fid.write(data.tobytes())
|
69
69
|
fid.close()
|
70
|
-
|
70
|
+
|
71
|
+
|
72
|
+
def merge_vidar_dat(filename, dat_files, height, width, remove_head=False):
|
73
|
+
"""Merge selected spike dat files."""
|
74
|
+
spikes = []
|
75
|
+
for dat_file in dat_files:
|
76
|
+
spike = load_vidar_dat(dat_file,height, width, remove_head)
|
77
|
+
spikes.append(spike)
|
78
|
+
spikes = np.concatenate(spikes, axis=0)
|
79
|
+
save_vidar_dat(filename, spikes)
|
80
|
+
return spikes
|
81
|
+
|
82
|
+
def visual_vidar_dat(filename, spike, out_format: Literal["mp4", "gif"] = "gif", fps=15):
|
83
|
+
"""Convert the spike stream to the video."""
|
84
|
+
_, height, width = spike.shape
|
85
|
+
if out_format == "mp4":
|
86
|
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # 或 'avc1'
|
87
|
+
mp4_video = cv2.VideoWriter(filename, fourcc, fps, (width, height))
|
88
|
+
elif out_format == "gif":
|
89
|
+
frames = []
|
90
|
+
|
91
|
+
for idx in range(len(spike)):
|
92
|
+
spk = spike[idx]
|
93
|
+
spk = (255 * spk).astype(np.uint8)
|
94
|
+
spk = spk[..., None].repeat(3, axis=-1)
|
95
|
+
if out_format == "mp4":
|
96
|
+
mp4_video.write(spk)
|
97
|
+
elif out_format == "gif":
|
98
|
+
frames.append(spk)
|
99
|
+
|
100
|
+
if out_format == "mp4":
|
101
|
+
mp4_video.release()
|
102
|
+
elif out_format == "gif":
|
103
|
+
imageio.mimsave(filename, frames, "GIF", fps=fps, loop=0)
|
104
|
+
|
71
105
|
|
72
106
|
def video2spike_simulation(imgs, threshold=2.0):
|
73
107
|
"""Convert the images input to the spike stream."""
|
74
108
|
imgs = np.array(imgs)
|
75
|
-
T,H, W = imgs.shape
|
109
|
+
T, H, W = imgs.shape
|
76
110
|
spike = np.zeros([T, H, W], np.uint8)
|
77
|
-
integral = np.random.random(size=([H,W])) * threshold
|
111
|
+
integral = np.random.random(size=([H, W])) * threshold
|
78
112
|
for t in range(0, T):
|
79
113
|
integral += imgs[t]
|
80
114
|
fire = (integral - threshold) >= 0
|
@@ -82,5 +116,3 @@ def video2spike_simulation(imgs, threshold=2.0):
|
|
82
116
|
integral[fire_pos] -= threshold
|
83
117
|
spike[t][fire_pos] = 1
|
84
118
|
return spike
|
85
|
-
|
86
|
-
|
@@ -0,0 +1,263 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: spikezoo
|
3
|
+
Version: 0.2.3
|
4
|
+
Summary: A deep learning toolbox for spike-to-image models.
|
5
|
+
Home-page: https://github.com/chenkang455/Spike-Zoo
|
6
|
+
Author: Kang Chen
|
7
|
+
Author-email: mrchenkang@stu.pku.edu.cn
|
8
|
+
Requires-Python: >=3.7
|
9
|
+
Description-Content-Type: text/markdown
|
10
|
+
License-File: LICENSE.txt
|
11
|
+
Requires-Dist: torch
|
12
|
+
Requires-Dist: requests
|
13
|
+
Requires-Dist: numpy
|
14
|
+
Requires-Dist: tqdm
|
15
|
+
Requires-Dist: scikit-image
|
16
|
+
Requires-Dist: lpips
|
17
|
+
Requires-Dist: pyiqa
|
18
|
+
Requires-Dist: opencv-python
|
19
|
+
Requires-Dist: thop
|
20
|
+
Requires-Dist: pytorch-wavelets
|
21
|
+
Requires-Dist: pytz
|
22
|
+
Requires-Dist: PyWavelets
|
23
|
+
Requires-Dist: pandas
|
24
|
+
Requires-Dist: pillow
|
25
|
+
Requires-Dist: scikit-learn
|
26
|
+
Requires-Dist: scipy
|
27
|
+
Requires-Dist: spikingjelly
|
28
|
+
Requires-Dist: setuptools
|
29
|
+
Dynamic: author
|
30
|
+
Dynamic: author-email
|
31
|
+
Dynamic: description
|
32
|
+
Dynamic: description-content-type
|
33
|
+
Dynamic: home-page
|
34
|
+
Dynamic: requires-dist
|
35
|
+
Dynamic: requires-python
|
36
|
+
Dynamic: summary
|
37
|
+
|
38
|
+
<p align="center">
|
39
|
+
<br>
|
40
|
+
<img src="imgs/spike-zoo.png" width="500"/>
|
41
|
+
<br>
|
42
|
+
<p>
|
43
|
+
|
44
|
+
<h5 align="center">
|
45
|
+
|
46
|
+
[](https://github.com/chenkang455/Spike-Zoo/stargazers) [](https://github.com/chenkang455/Spike-Zoo/issues) <a href="https://badge.fury.io/py/spikezoo"><img src="https://badge.fury.io/py/spikezoo.svg" alt="PyPI version"></a> [](https://github.com/chenkang455/Spike-Zoo)
|
47
|
+
|
48
|
+
<p>
|
49
|
+
|
50
|
+
<!-- <h2 align="center">
|
51
|
+
<a href="">⚡Spike-Zoo: A Toolbox for Spike-to-Image Reconstruction
|
52
|
+
</a>
|
53
|
+
</h2> -->
|
54
|
+
|
55
|
+
## 📖 About
|
56
|
+
⚡Spike-Zoo is the go-to library for state-of-the-art pretrained **spike-to-image** models designed to reconstruct images from spike streams. Whether you're looking for a simple inference solution or aiming to train your own spike-to-image models, ⚡Spike-Zoo is a modular toolbox that supports both, with key features including:
|
57
|
+
|
58
|
+
- Fast inference with pre-trained models.
|
59
|
+
- Training support for custom-designed spike-to-image models.
|
60
|
+
- Specialized functions for processing spike data.
|
61
|
+
|
62
|
+
|
63
|
+
|
64
|
+
## 🚩 Updates/Changelog
|
65
|
+
* **25-02-02:** Release the `Spike-Zoo v0.2` code, which supports more methods, provide more usages like training your method from scratch.
|
66
|
+
* **24-07-19:** Release the `Spike-Zoo v0.1` code for base evaluation of SOTA methods.
|
67
|
+
|
68
|
+
## 🍾 Quick Start
|
69
|
+
### 1. Installation
|
70
|
+
For users focused on **utilizing pretrained models for spike-to-image conversion**, we recommend installing SpikeZoo using one of the following methods:
|
71
|
+
|
72
|
+
* Install the last stable version `0.2.3` from PyPI:
|
73
|
+
```
|
74
|
+
pip install spikezoo
|
75
|
+
```
|
76
|
+
* Install the latest developing version `0.2.3` from the source code :
|
77
|
+
```
|
78
|
+
git clone https://github.com/chenkang455/Spike-Zoo
|
79
|
+
cd Spike-Zoo
|
80
|
+
python setup.py install
|
81
|
+
```
|
82
|
+
|
83
|
+
For users interested in **training their own spike-to-image model based on our framework**, we recommend cloning the repository and modifying the related code directly.
|
84
|
+
```
|
85
|
+
git clone https://github.com/chenkang455/Spike-Zoo
|
86
|
+
cd Spike-Zoo
|
87
|
+
python setup.py develop
|
88
|
+
```
|
89
|
+
|
90
|
+
### 2. Inference
|
91
|
+
Reconstructing images from the spike is super easy with Spike-Zoo. Try the following code of the single model:
|
92
|
+
``` python
|
93
|
+
from spikezoo.pipeline import Pipeline, PipelineConfig
|
94
|
+
import spikezoo as sz
|
95
|
+
pipeline = Pipeline(
|
96
|
+
cfg=PipelineConfig(save_folder="results",version="v023"),
|
97
|
+
model_cfg=sz.METHOD.BASE,
|
98
|
+
dataset_cfg=sz.DATASET.BASE
|
99
|
+
)
|
100
|
+
```
|
101
|
+
You can also run multiple models at once by changing the pipeline (version parameter corresponds to our released different versions in [Releases](https://github.com/chenkang455/Spike-Zoo/releases)):
|
102
|
+
``` python
|
103
|
+
import spikezoo as sz
|
104
|
+
from spikezoo.pipeline import EnsemblePipeline, EnsemblePipelineConfig
|
105
|
+
pipeline = EnsemblePipeline(
|
106
|
+
cfg=EnsemblePipelineConfig(save_folder="results",version="v023"),
|
107
|
+
model_cfg_list=[
|
108
|
+
sz.METHOD.BASE,sz.METHOD.TFP,sz.METHOD.TFI,sz.METHOD.SPK2IMGNET,sz.METHOD.WGSE,
|
109
|
+
sz.METHOD.SSML,sz.METHOD.BSF,sz.METHOD.STIR,sz.METHOD.SPIKECLIP,sz.METHOD.SSIR],
|
110
|
+
dataset_cfg=sz.DATASET.BASE,
|
111
|
+
)
|
112
|
+
```
|
113
|
+
Having established our pipelines, we provide following functions to enjoy these spike-to-image models.
|
114
|
+
|
115
|
+
* I. Obtain the restoration metric and save the recovered image from the given spike:
|
116
|
+
``` python
|
117
|
+
# 1. spike-to-image from the given dataset
|
118
|
+
pipeline.infer_from_dataset(idx = 0)
|
119
|
+
|
120
|
+
# 2. spike-to-image from the given .dat file
|
121
|
+
pipeline.infer_from_file(file_path = 'data/scissor.dat',width = 400,height=250)
|
122
|
+
|
123
|
+
# 3. spike-to-image from the given spike
|
124
|
+
import spikezoo as sz
|
125
|
+
spike = sz.load_vidar_dat("data/scissor.dat",width = 400,height = 250)
|
126
|
+
pipeline.infer_from_spk(spike)
|
127
|
+
```
|
128
|
+
|
129
|
+
|
130
|
+
* II. Save all images from the given dataset.
|
131
|
+
``` python
|
132
|
+
pipeline.save_imgs_from_dataset()
|
133
|
+
```
|
134
|
+
|
135
|
+
* III. Calculate the metrics for the specified dataset.
|
136
|
+
``` python
|
137
|
+
pipeline.cal_metrics()
|
138
|
+
```
|
139
|
+
|
140
|
+
* IV. Calculate the parameters (params,flops,latency) based on the established pipeline.
|
141
|
+
``` python
|
142
|
+
pipeline.cal_params()
|
143
|
+
```
|
144
|
+
|
145
|
+
For detailed usage, welcome check [test_single.ipynb](examples/test/test_single.ipynb) and [test_ensemble.ipynb](examples/test/test_ensemble.ipynb).
|
146
|
+
|
147
|
+
### 3. Training
|
148
|
+
We provide a user-friendly code for training our provided `base` model (modified from the `SpikeCLIP`) for the classic `REDS` dataset introduced in `Spk2ImgNet`:
|
149
|
+
``` python
|
150
|
+
from spikezoo.pipeline import TrainPipelineConfig, TrainPipeline
|
151
|
+
from spikezoo.datasets.reds_base_dataset import REDS_BASEConfig
|
152
|
+
from spikezoo.models.base_model import BaseModelConfig
|
153
|
+
pipeline = TrainPipeline(
|
154
|
+
cfg=TrainPipelineConfig(save_folder="results", epochs = 10),
|
155
|
+
dataset_cfg=REDS_BASEConfig(root_dir = "spikezoo/data/REDS_BASE"),
|
156
|
+
model_cfg=BaseModelConfig(),
|
157
|
+
)
|
158
|
+
pipeline.train()
|
159
|
+
```
|
160
|
+
We finish the training with one 4090 GPU in `2 minutes`, achieving `32.8dB` in PSNR and `0.92` in SSIM.
|
161
|
+
|
162
|
+
> 🌟 We encourage users to develop their models with simple modifications to our framework, and the tutorial will be released soon.
|
163
|
+
|
164
|
+
We retrain all supported methods except `SPIKECLIP` on this REDS dataset (training scripts are placed on [examples/train_reds_base](examples/train_reds_base) and evaluation script is placed on [test_REDS_base.py](examples/test/test_REDS_base.py)), with our reported metrics as follows:
|
165
|
+
|
166
|
+
| Method | PSNR | SSIM | LPIPS | NIQE | BRISQUE | PIQE | Params (M) | FLOPs (G) | Latency (ms) |
|
167
|
+
|----------------------|:-------:|:--------:|:---------:|:---------:|:----------:|:-------:|:------------:|:-----------:|:--------------:|
|
168
|
+
| `TFI` | 16.503 | 0.454 | 0.382 | 7.289 | 43.17 | 49.12 | 0.00 | 0.00 | 3.60 |
|
169
|
+
| `TFP` | 24.287 | 0.644 | 0.274 | 8.197 | 48.48 | 38.38 | 0.00 | 0.00 | 0.03 |
|
170
|
+
| `SPIKECLIP` | 21.873 | 0.578 | 0.333 | 7.802 | 42.08 | 54.01 | 0.19 | 23.69 | 1.27 |
|
171
|
+
| `SSIR` | 26.544 | 0.718 | 0.325 | 4.769 | 28.45 | 21.59 | 0.38 | 25.92 | 4.52 |
|
172
|
+
| `SSML` | 33.697 | 0.943 | 0.088 | 4.669 | 32.48 | 37.30 | 2.38 | 386.02 | 244.18 |
|
173
|
+
| `BASE` | 36.589 | 0.965 | 0.034 | 4.393 | 26.16 | 38.43 | 0.18 | 18.04 | 0.40 |
|
174
|
+
| `STIR` | 37.914 | 0.973 | 0.027 | 4.236 | 25.10 | 39.18 | 5.08 | 43.31 | 21.07 |
|
175
|
+
| `WGSE` | 39.036 | 0.978 | 0.023 | 4.231 | 25.76 | 44.11 | 3.81 | 415.26 | 73.62 |
|
176
|
+
| `SPK2IMGNET` | 39.154 | 0.978 | 0.022 | 4.243 | 25.20 | 43.09 | 3.90 | 1000.50 | 123.38 |
|
177
|
+
| `BSF` | 39.576 | 0.979 | 0.019 | 4.139 | 24.93 | 43.03 | 2.47 | 705.23 | 401.50 |
|
178
|
+
|
179
|
+
### 4. Model Usage
|
180
|
+
We also provide a direct interface for users interested in taking the spike-to-image model as a part of their work:
|
181
|
+
|
182
|
+
```python
|
183
|
+
import spikezoo as sz
|
184
|
+
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
185
|
+
# input data
|
186
|
+
spike = sz.load_vidar_dat("data/data.dat", width=400, height=250, out_format="tensor")
|
187
|
+
spike = spike[None].cuda()
|
188
|
+
print(f"Input spike shape: {spike.shape}")
|
189
|
+
# net
|
190
|
+
net = BaseModel(BaseModelConfig(model_params={"inDim": 41}))
|
191
|
+
net.build_network(mode = "debug")
|
192
|
+
# process
|
193
|
+
recon_img = net(spike)
|
194
|
+
print(recon_img.shape,recon_img.max(),recon_img.min())
|
195
|
+
```
|
196
|
+
For detailed usage, welcome check [test_model.ipynb](examples/test/test_model.ipynb).
|
197
|
+
|
198
|
+
### 5. Spike Utility
|
199
|
+
#### I. Faster spike loading interface
|
200
|
+
We provide a faster `load_vidar_dat` function implemented with `cpp` (by [@zeal-ye](https://github.com/zeal-ye)):
|
201
|
+
``` python
|
202
|
+
import spikezoo as sz
|
203
|
+
spike = sz.load_vidar_dat("data/scissor.dat",width = 400,height = 250,version='cpp')
|
204
|
+
```
|
205
|
+
🚀 Results on [test_load_dat.py](examples/test_load_dat.py) show that the `cpp` version is more than 10 times faster than the `python` version.
|
206
|
+
|
207
|
+
#### II. Spike simulation pipeline.
|
208
|
+
We provide our overall spike simulation pipeline in [scripts](scripts/), try to modify the config in `run.sh` and run the command to start the simulation process:
|
209
|
+
``` bash
|
210
|
+
bash run.sh
|
211
|
+
```
|
212
|
+
|
213
|
+
#### III. Spike-related functions.
|
214
|
+
For other spike-related functions, welcome check [spike_utils.py](spikezoo/utils/spike_utils.py)
|
215
|
+
|
216
|
+
## 📅 TODO
|
217
|
+
- [x] Support the overall pipeline for spike simulation.
|
218
|
+
- [ ] Provide the tutorials.
|
219
|
+
- [ ] Support more training settings.
|
220
|
+
- [ ] Support more spike-based image reconstruction methods and datasets.
|
221
|
+
|
222
|
+
## 🤗 Supports
|
223
|
+
Run the following code to find our supported models, datasets and metrics:
|
224
|
+
``` python
|
225
|
+
import spikezoo as sz
|
226
|
+
print(sz.METHODS)
|
227
|
+
print(sz.DATASETS)
|
228
|
+
print(sz.METRICS)
|
229
|
+
```
|
230
|
+
**Supported Models:**
|
231
|
+
| Models | Source
|
232
|
+
| ---- | ---- |
|
233
|
+
| `tfp`,`tfi` | Spike camera and its coding methods |
|
234
|
+
| `spk2imgnet` | Spk2ImgNet: Learning to Reconstruct Dynamic Scene from Continuous Spike Stream |
|
235
|
+
| `wgse` | Learning Temporal-Ordered Representation for Spike Streams Based on Discrete Wavelet Transforms |
|
236
|
+
| `ssml` | Self-Supervised Mutual Learning for Dynamic Scene Reconstruction of Spiking Camera |
|
237
|
+
| `ssir` | Spike Camera Image Reconstruction Using Deep Spiking Neural Networks |
|
238
|
+
| `bsf` | Boosting Spike Camera Image Reconstruction from a Perspective of Dealing with Spike Fluctuations |
|
239
|
+
| `stir` | Spatio-Temporal Interactive Learning for Efficient Image Reconstruction of Spiking Cameras |
|
240
|
+
| `base`,`spikeclip` | Rethinking High-speed Image Reconstruction Framework with Spike Camera |
|
241
|
+
|
242
|
+
**Supported Datasets:**
|
243
|
+
| Datasets | Source
|
244
|
+
| ---- | ---- |
|
245
|
+
| `reds_base` | Spk2ImgNet: Learning to Reconstruct Dynamic Scene from Continuous Spike Stream |
|
246
|
+
| `uhsr` | Recognizing Ultra-High-Speed Moving Objects with Bio-Inspired Spike Camera |
|
247
|
+
| `realworld` | `recVidarReal2019`,`momVidarReal2021` in [SpikeCV](https://github.com/Zyj061/SpikeCV) |
|
248
|
+
| `szdata` | SpikeReveal: Unlocking Temporal Sequences from Real Blurry Inputs with Spike Streams |
|
249
|
+
|
250
|
+
|
251
|
+
## ✨ Acknowledgment
|
252
|
+
Our code is built on the open-source projects of [SpikeCV](https://spikecv.github.io/), [IQA-Pytorch](https://github.com/chaofengc/IQA-PyTorch), [BasicSR](https://github.com/XPixelGroup/BasicSR) and [NeRFStudio](https://github.com/nerfstudio-project/nerfstudio).We appreciate the effort of the contributors to these repositories. Thanks for [@ruizhao26](https://github.com/ruizhao26), [@shiyan_chen](https://github.com/hnmizuho) and [@Leozhangjiyuan](https://github.com/Leozhangjiyuan) for their help in building this project.
|
253
|
+
|
254
|
+
## 📑 Citation
|
255
|
+
If you find our codes helpful to your research, please consider to use the following citation:
|
256
|
+
```
|
257
|
+
@misc{spikezoo,
|
258
|
+
title={{Spike-Zoo}: Spike-Zoo: A Toolbox for Spike-to-Image Reconstruction},
|
259
|
+
author={Kang Chen and Zhiyuan Ye},
|
260
|
+
year={2025},
|
261
|
+
howpublished = "[Online]. Available: \url{https://github.com/chenkang455/Spike-Zoo}"
|
262
|
+
}
|
263
|
+
```
|