spikezoo 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- spikezoo/__init__.py +23 -7
- spikezoo/archs/bsf/models/bsf/bsf.py +37 -25
- spikezoo/archs/bsf/models/bsf/rep.py +2 -2
- spikezoo/archs/spk2imgnet/nets.py +1 -1
- spikezoo/archs/ssir/models/networks.py +1 -1
- spikezoo/archs/ssml/model.py +9 -5
- spikezoo/archs/stir/metrics/losses.py +1 -1
- spikezoo/archs/stir/models/networks_STIR.py +16 -9
- spikezoo/archs/tfi/nets.py +1 -1
- spikezoo/archs/tfp/nets.py +1 -1
- spikezoo/archs/wgse/dwtnets.py +6 -6
- spikezoo/datasets/__init__.py +11 -9
- spikezoo/datasets/base_dataset.py +10 -3
- spikezoo/datasets/realworld_dataset.py +1 -3
- spikezoo/datasets/{reds_small_dataset.py → reds_base_dataset.py} +9 -8
- spikezoo/datasets/reds_ssir_dataset.py +181 -0
- spikezoo/datasets/szdata_dataset.py +5 -15
- spikezoo/datasets/uhsr_dataset.py +4 -3
- spikezoo/models/__init__.py +8 -6
- spikezoo/models/base_model.py +120 -64
- spikezoo/models/bsf_model.py +11 -3
- spikezoo/models/spcsnet_model.py +19 -0
- spikezoo/models/spikeclip_model.py +4 -3
- spikezoo/models/spk2imgnet_model.py +9 -15
- spikezoo/models/ssir_model.py +4 -6
- spikezoo/models/ssml_model.py +44 -2
- spikezoo/models/stir_model.py +26 -5
- spikezoo/models/tfi_model.py +3 -1
- spikezoo/models/tfp_model.py +4 -2
- spikezoo/models/wgse_model.py +8 -14
- spikezoo/pipeline/base_pipeline.py +79 -55
- spikezoo/pipeline/ensemble_pipeline.py +10 -9
- spikezoo/pipeline/train_cfgs.py +89 -0
- spikezoo/pipeline/train_pipeline.py +129 -30
- spikezoo/utils/optimizer_utils.py +22 -0
- spikezoo/utils/other_utils.py +31 -6
- spikezoo/utils/scheduler_utils.py +25 -0
- spikezoo/utils/spike_utils.py +61 -29
- spikezoo-0.2.3.dist-info/METADATA +263 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/RECORD +43 -80
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/CheckPoints/readme +0 -1
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +0 -60
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py +0 -115
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +0 -39
- spikezoo/archs/spikeformer/EvalResults/readme +0 -1
- spikezoo/archs/spikeformer/LICENSE +0 -21
- spikezoo/archs/spikeformer/Metrics/Metrics.py +0 -50
- spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/Loss.py +0 -89
- spikezoo/archs/spikeformer/Model/SpikeFormer.py +0 -230
- spikezoo/archs/spikeformer/Model/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/README.md +0 -30
- spikezoo/archs/spikeformer/evaluate.py +0 -87
- spikezoo/archs/spikeformer/recon_real_data.py +0 -97
- spikezoo/archs/spikeformer/requirements.yml +0 -95
- spikezoo/archs/spikeformer/train.py +0 -173
- spikezoo/archs/spikeformer/utils.py +0 -22
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/models/spikeformer_model.py +0 -50
- spikezoo-0.2.2.dist-info/METADATA +0 -196
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/LICENSE.txt +0 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/WHEEL +0 -0
- {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.dist-info}/top_level.txt +0 -0
@@ -5,8 +5,9 @@ import cv2
|
|
5
5
|
import torch
|
6
6
|
import numpy as np
|
7
7
|
|
8
|
+
# todo tobe evaluated
|
8
9
|
@dataclass
|
9
|
-
class
|
10
|
+
class SZDataConfig(BaseDatasetConfig):
|
10
11
|
dataset_name: str = "szdata"
|
11
12
|
root_dir: Path = Path(__file__).parent.parent / Path("data/dataset")
|
12
13
|
width: int = 400
|
@@ -21,17 +22,6 @@ class SZData(BaseDataset):
|
|
21
22
|
def __init__(self, cfg: BaseDatasetConfig):
|
22
23
|
super(SZData, self).__init__(cfg)
|
23
24
|
|
24
|
-
def
|
25
|
-
|
26
|
-
|
27
|
-
img_name = str(spike_name).replace(self.cfg.spike_dir_name,self.cfg.img_dir_name).replace(".dat",".png")
|
28
|
-
img = cv2.imread(img_name)
|
29
|
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
30
|
-
img = (img / 255).astype(np.float32)
|
31
|
-
img = img[None]
|
32
|
-
img = torch.from_numpy(img)
|
33
|
-
else:
|
34
|
-
spike = self.get_spike(idx)
|
35
|
-
img = torch.mean(spike, dim=0, keepdim=True)
|
36
|
-
return img
|
37
|
-
|
25
|
+
def prepare_data(self):
|
26
|
+
super().prepare_data()
|
27
|
+
self.img_list = [self.img_dir / Path(str(s.name).replace('.dat','.png')) for s in self.spike_list]
|
@@ -4,8 +4,9 @@ from dataclasses import dataclass
|
|
4
4
|
import numpy as np
|
5
5
|
import torch
|
6
6
|
|
7
|
+
|
7
8
|
@dataclass
|
8
|
-
class
|
9
|
+
class UHSRConfig(BaseDatasetConfig):
|
9
10
|
dataset_name: str = "uhsr"
|
10
11
|
root_dir: Path = Path(__file__).parent.parent / Path("data/U-CALTECH")
|
11
12
|
width: int = 224
|
@@ -29,10 +30,10 @@ class UHSR(BaseDataset):
|
|
29
30
|
files = path.glob("**/*.npz")
|
30
31
|
return sorted(files)
|
31
32
|
|
32
|
-
def load_spike(self,idx):
|
33
|
+
def load_spike(self, idx):
|
33
34
|
spike_name = str(self.spike_list[idx])
|
34
35
|
data = np.load(spike_name)
|
35
36
|
spike = data["spk"].astype(np.float32)
|
36
37
|
spike = torch.from_numpy(spike)
|
37
38
|
spike = spike[:, 13:237, 13:237]
|
38
|
-
return spike
|
39
|
+
return spike
|
spikezoo/models/__init__.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
import importlib
|
2
2
|
import inspect
|
3
3
|
from spikezoo.models.base_model import BaseModel,BaseModelConfig
|
4
|
+
from spikezoo.utils.other_utils import getattr_case_insensitive
|
4
5
|
import os
|
5
6
|
from pathlib import Path
|
6
7
|
|
@@ -17,8 +18,9 @@ def build_model_cfg(cfg: BaseModelConfig):
|
|
17
18
|
module_name = "spikezoo.models." + module_name
|
18
19
|
module = importlib.import_module(module_name)
|
19
20
|
# model,model_config
|
20
|
-
|
21
|
-
|
21
|
+
model_name = cfg.model_name
|
22
|
+
model_name = model_name + 'Model' if model_name == "base" else model_name
|
23
|
+
model_cls: BaseModel = getattr_case_insensitive(module,model_name)
|
22
24
|
model = model_cls(cfg)
|
23
25
|
return model
|
24
26
|
|
@@ -30,8 +32,8 @@ def build_model_name(model_name: str):
|
|
30
32
|
module_name = "spikezoo.models." + module_name
|
31
33
|
module = importlib.import_module(module_name)
|
32
34
|
# model,model_config
|
33
|
-
|
34
|
-
model_cls: BaseModel =
|
35
|
-
model_cfg: BaseModelConfig =
|
35
|
+
model_name = model_name + 'Model' if model_name == "base" else model_name
|
36
|
+
model_cls: BaseModel = getattr_case_insensitive(module,model_name)
|
37
|
+
model_cfg: BaseModelConfig = getattr_case_insensitive(module, model_name + 'config')()
|
36
38
|
model = model_cls(model_cfg)
|
37
|
-
return model
|
39
|
+
return model
|
spikezoo/models/base_model.py
CHANGED
@@ -6,36 +6,44 @@ from dataclasses import dataclass, field
|
|
6
6
|
from spikezoo.utils import load_network, download_file
|
7
7
|
import os
|
8
8
|
import time
|
9
|
-
from typing import Dict
|
9
|
+
from typing import Dict, Literal
|
10
10
|
from torch.optim import Adam
|
11
11
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
12
12
|
import functools
|
13
|
+
import torch.nn as nn
|
14
|
+
from typing import Optional, Union, List
|
15
|
+
from spikezoo.archs.base.nets import BaseNet
|
13
16
|
|
14
17
|
|
15
18
|
# todo private design
|
16
19
|
@dataclass
|
17
20
|
class BaseModelConfig:
|
18
|
-
#
|
21
|
+
# ------------- Not Recommended to Change -------------
|
19
22
|
"Registerd model name."
|
20
23
|
model_name: str = "base"
|
21
24
|
"File name of the specified model."
|
22
25
|
model_file_name: str = "nets"
|
23
26
|
"Class name of the specified model in spikezoo/archs/base/{model_file_name}.py."
|
24
27
|
model_cls_name: str = "BaseNet"
|
25
|
-
"Spike input length
|
26
|
-
|
28
|
+
"Spike input length. (local mode)"
|
29
|
+
model_length: int = 41
|
30
|
+
"Spike input length for different versions."
|
31
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
27
32
|
"Model require model parameters or not."
|
28
|
-
require_params: bool =
|
29
|
-
"Model
|
33
|
+
require_params: bool = True
|
34
|
+
"Model parameters. (local mode)"
|
35
|
+
model_params: dict = field(default_factory=lambda: {})
|
36
|
+
"Model parameters for different versions."
|
37
|
+
model_params_dict: dict = field(default_factory=lambda: {"v010": {}, "v023": {}})
|
38
|
+
# ------------- Config -------------
|
39
|
+
"Load ckpt path. Used on the local mode."
|
30
40
|
ckpt_path: str = ""
|
31
|
-
"Load pretrained weights or not."
|
32
|
-
load_state: bool =
|
33
|
-
"Base url for storing pretrained models."
|
34
|
-
base_url: str = "https://github.com/chenkang455/Spike-Zoo/releases/download/v0.1/"
|
41
|
+
"Load pretrained weights or not. (default false, set to true during the evaluation mode.)"
|
42
|
+
load_state: bool = False
|
35
43
|
"Multi-GPU setting."
|
36
44
|
multi_gpu: bool = False
|
37
|
-
"
|
38
|
-
|
45
|
+
"Base url."
|
46
|
+
base_url: str = "https://github.com/chenkang455/Spike-Zoo/releases/download"
|
39
47
|
|
40
48
|
|
41
49
|
class BaseModel(nn.Module):
|
@@ -43,33 +51,69 @@ class BaseModel(nn.Module):
|
|
43
51
|
super(BaseModel, self).__init__()
|
44
52
|
self.cfg = cfg
|
45
53
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
46
|
-
self.
|
47
|
-
self.net = nn.DataParallel(self.net) if cfg.multi_gpu == True else self.net
|
48
|
-
self.model_half_win_length: int = cfg.model_win_length // 2
|
54
|
+
self.loss_func_cache = {}
|
49
55
|
|
50
|
-
# ! Might lead to low speed training on the BSF.
|
51
56
|
def forward(self, spike):
|
52
|
-
|
57
|
+
return self.spk2img(spike)
|
58
|
+
|
59
|
+
# ! Might lead to low speed training on the BSF.
|
60
|
+
def spk2img(self, spike):
|
61
|
+
"""A simple implementation for the spike-to-image conversion (**tailored for the evaluation mode**), given the spike input and output the reconstructed image."""
|
53
62
|
spike = self.preprocess_spike(spike)
|
54
63
|
img = self.net(spike)
|
55
64
|
img = self.postprocess_img(img)
|
56
65
|
return img
|
57
66
|
|
58
|
-
def build_network(
|
67
|
+
def build_network(
|
68
|
+
self,
|
69
|
+
mode: Literal["debug", "train", "eval"] = "debug",
|
70
|
+
version: Literal["local", "v010", "v023"] = "local",
|
71
|
+
):
|
59
72
|
"""Build the network and load the pretrained weight."""
|
60
73
|
# network
|
61
74
|
module = importlib.import_module(f"spikezoo.archs.{self.cfg.model_name}.{self.cfg.model_file_name}")
|
62
75
|
model_cls = getattr(module, self.cfg.model_cls_name)
|
63
|
-
model
|
76
|
+
# load model config parameters
|
77
|
+
if version == "local":
|
78
|
+
model = model_cls(**self.cfg.model_params)
|
79
|
+
self.model_length = self.cfg.model_length
|
80
|
+
self.model_half_length = self.model_length // 2
|
81
|
+
else:
|
82
|
+
model = model_cls(**self.cfg.model_params_dict[version])
|
83
|
+
self.model_length = self.cfg.model_length_dict[version]
|
84
|
+
self.model_half_length = self.model_length // 2
|
85
|
+
model.train() if mode == "train" else model.eval()
|
86
|
+
# auto set the load_state to True under the eval mode
|
87
|
+
if mode == "eval" and self.cfg.load_state == False:
|
88
|
+
print(f"Method {self.cfg.model_name} on the evaluation mode, load_state is set to True automatically.")
|
89
|
+
self.cfg.load_state = True
|
90
|
+
# load model
|
64
91
|
if self.cfg.load_state and self.cfg.require_params:
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
92
|
+
# load from the url version
|
93
|
+
if version != "local":
|
94
|
+
load_folder = os.path.dirname(os.path.abspath(__file__))
|
95
|
+
ckpt_name = f"{self.cfg.model_name}.{get_suffix(self.cfg.model_name,version)}"
|
96
|
+
ckpt_path = f"weights/{version}/{ckpt_name}"
|
97
|
+
ckpt_path = os.path.join(load_folder, ckpt_path)
|
98
|
+
ckpt_path_url = f"{self.cfg.base_url}/{get_url_version(version)}/{ckpt_name}"
|
99
|
+
elif version == "local":
|
100
|
+
ckpt_path = self.cfg.ckpt_path
|
101
|
+
|
102
|
+
# no ckpt found on the device, try to download from the url
|
103
|
+
if os.path.isfile(ckpt_path) == False and version != "local":
|
104
|
+
os.makedirs(os.path.dirname(ckpt_path), exist_ok=True)
|
105
|
+
download_file(ckpt_path_url, ckpt_path)
|
70
106
|
time.sleep(0.5)
|
71
|
-
|
72
|
-
|
107
|
+
elif os.path.isfile(ckpt_path) == False and version == "local":
|
108
|
+
raise RuntimeError(
|
109
|
+
f"For the method {self.cfg.model_name}, no ckpt can be found on the {ckpt_path} !!! Try set the version to get the model from the url."
|
110
|
+
)
|
111
|
+
model = load_network(ckpt_path, model)
|
112
|
+
# to device
|
113
|
+
model = model.to(self.device)
|
114
|
+
model = nn.DataParallel(model) if self.cfg.multi_gpu == True else model
|
115
|
+
self.net = model
|
116
|
+
return self
|
73
117
|
|
74
118
|
def save_network(self, save_path):
|
75
119
|
"""Save the network."""
|
@@ -81,27 +125,22 @@ class BaseModel(nn.Module):
|
|
81
125
|
state_dict[key] = param.cpu()
|
82
126
|
torch.save(state_dict, save_path)
|
83
127
|
|
84
|
-
def download_weight(self, weight_path):
|
85
|
-
"""Download the pretrained weight from the given url."""
|
86
|
-
url = self.cfg.base_url + os.path.basename(self.cfg.ckpt_path)
|
87
|
-
download_file(url, weight_path)
|
88
|
-
|
89
128
|
def crop_spike_length(self, spike):
|
90
129
|
"""Crop the spike length."""
|
91
130
|
spike_length = spike.shape[1]
|
92
131
|
spike_mid = spike_length // 2
|
93
|
-
assert spike_length >= self.
|
132
|
+
assert spike_length >= self.model_length, f"Spike input is not long enough, given {spike_length} frames < {self.cfg.model_length}."
|
94
133
|
# even length
|
95
|
-
if self.
|
134
|
+
if self.model_length == self.model_half_length * 2:
|
96
135
|
spike = spike[
|
97
136
|
:,
|
98
|
-
spike_mid - self.
|
137
|
+
spike_mid - self.model_half_length : spike_mid + self.model_half_length,
|
99
138
|
]
|
100
139
|
# odd length
|
101
140
|
else:
|
102
141
|
spike = spike[
|
103
142
|
:,
|
104
|
-
spike_mid - self.
|
143
|
+
spike_mid - self.model_half_length : spike_mid + self.model_half_length + 1,
|
105
144
|
]
|
106
145
|
self.spike_size = (spike.shape[2], spike.shape[3])
|
107
146
|
return spike
|
@@ -116,60 +155,77 @@ class BaseModel(nn.Module):
|
|
116
155
|
return image
|
117
156
|
|
118
157
|
# -------------------- Training Part --------------------
|
119
|
-
def setup_training(self, pipeline_cfg):
|
120
|
-
"""Setup training optimizer and loss."""
|
121
|
-
from spikezoo.pipeline import TrainPipelineConfig
|
122
|
-
|
123
|
-
cfg: TrainPipelineConfig = pipeline_cfg
|
124
|
-
self.optimizer = Adam(self.net.parameters(), lr=cfg.lr, betas=(0.9, 0.99), weight_decay=0)
|
125
|
-
self.scheduler = CosineAnnealingLR(self.optimizer, T_max=cfg.epochs, eta_min=0)
|
126
|
-
self.criterion = nn.L1Loss()
|
127
|
-
|
128
158
|
def get_outputs_dict(self, batch):
|
129
159
|
"""Get the output dict for the given input batch. (Designed for the training mode considering possible auxiliary output.)"""
|
130
160
|
# data process
|
131
161
|
spike = batch["spike"]
|
162
|
+
rate = batch["rate"].view(-1, 1, 1, 1).float()
|
132
163
|
# outputs
|
133
164
|
outputs = {}
|
134
|
-
recon_img = self(spike)
|
135
|
-
outputs["recon_img"] = recon_img
|
165
|
+
recon_img = self.spk2img(spike)
|
166
|
+
outputs["recon_img"] = recon_img / rate
|
136
167
|
return outputs
|
137
168
|
|
138
169
|
def get_visual_dict(self, batch, outputs):
|
139
170
|
"""Get the visual dict from the given input batch and outputs."""
|
140
171
|
visual_dict = {}
|
141
|
-
visual_dict["
|
142
|
-
visual_dict["
|
172
|
+
visual_dict["recon_img"] = outputs["recon_img"]
|
173
|
+
visual_dict["gt_img"] = batch["gt_img"]
|
143
174
|
return visual_dict
|
144
175
|
|
145
|
-
def get_loss_dict(self, outputs, batch):
|
176
|
+
def get_loss_dict(self, outputs, batch, loss_weight_dict):
|
146
177
|
"""Get the loss dict from the given input batch and outputs."""
|
147
178
|
# data process
|
148
|
-
gt_img = batch["
|
179
|
+
gt_img = batch["gt_img"]
|
149
180
|
# recon image
|
150
181
|
recon_img = outputs["recon_img"]
|
151
182
|
# loss dict
|
152
183
|
loss_dict = {}
|
153
|
-
|
184
|
+
for loss_name, weight in loss_weight_dict.items():
|
185
|
+
loss_dict[loss_name] = weight * self.get_loss_func(loss_name)(recon_img, gt_img)
|
186
|
+
|
187
|
+
# todo add your desired loss here by loss_dict["name"] = loss()
|
188
|
+
|
154
189
|
loss_values_dict = {k: v.item() for k, v in loss_dict.items()}
|
155
|
-
return loss_dict,loss_values_dict
|
190
|
+
return loss_dict, loss_values_dict
|
191
|
+
|
192
|
+
def get_loss_func(self, name: Literal["l1", "l2"]):
|
193
|
+
"""Get the loss function from the given loss name."""
|
194
|
+
if name not in self.loss_func_cache:
|
195
|
+
if name == "l1":
|
196
|
+
self.loss_func_cache[name] = nn.L1Loss()
|
197
|
+
elif name == "l2":
|
198
|
+
self.loss_func_cache[name] = nn.MSELoss()
|
199
|
+
else:
|
200
|
+
self.loss_func_cache[name] = lambda x, y: 0
|
201
|
+
loss_func = self.loss_func_cache[name]
|
202
|
+
return loss_func
|
156
203
|
|
157
204
|
def get_paired_imgs(self, batch, outputs):
|
205
|
+
"""Get paired images for the metric calculation."""
|
158
206
|
recon_img = outputs["recon_img"]
|
159
|
-
img = batch["
|
207
|
+
img = batch["gt_img"]
|
160
208
|
return recon_img, img
|
161
209
|
|
162
|
-
def optimize_parameters(self, loss_dict):
|
163
|
-
"""Optimize the parameters from the loss_dict."""
|
164
|
-
loss = functools.reduce(torch.add, loss_dict.values())
|
165
|
-
self.optimizer.zero_grad()
|
166
|
-
loss.backward()
|
167
|
-
self.optimizer.step()
|
168
|
-
|
169
|
-
def update_learning_rate(self):
|
170
|
-
"""Update the learning rate."""
|
171
|
-
self.scheduler.step()
|
172
|
-
|
173
210
|
def feed_to_device(self, batch):
|
211
|
+
"""Feed the batch data to the given device."""
|
174
212
|
batch = {k: v.to(self.device, non_blocking=True) if torch.is_tensor(v) else v for k, v in batch.items()}
|
175
213
|
return batch
|
214
|
+
|
215
|
+
|
216
|
+
# functions
|
217
|
+
def get_suffix(model_name, version):
|
218
|
+
if version == "v010":
|
219
|
+
if model_name in ["ssml", "wgse"]:
|
220
|
+
return "pt"
|
221
|
+
else:
|
222
|
+
return "pth"
|
223
|
+
else:
|
224
|
+
return "pth"
|
225
|
+
|
226
|
+
|
227
|
+
def get_url_version(version):
|
228
|
+
major = version[1]
|
229
|
+
minor = version[2]
|
230
|
+
patch = version[3]
|
231
|
+
return f"v{major}.{minor}.{patch}"
|
spikezoo/models/bsf_model.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1
1
|
import torch
|
2
|
-
from dataclasses import dataclass
|
2
|
+
from dataclasses import dataclass, field
|
3
3
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
4
|
+
from torch.optim import Adam
|
5
|
+
import torch.optim.lr_scheduler as lr_scheduler
|
6
|
+
import torch.nn as nn
|
7
|
+
from spikezoo.pipeline import TrainPipelineConfig
|
8
|
+
from typing import List
|
9
|
+
from spikezoo.archs.bsf.models.bsf.bsf import BSF
|
4
10
|
|
5
11
|
|
6
12
|
@dataclass
|
@@ -9,9 +15,11 @@ class BSFConfig(BaseModelConfig):
|
|
9
15
|
model_name: str = "bsf"
|
10
16
|
model_file_name: str = "models.bsf.bsf"
|
11
17
|
model_cls_name: str = "BSF"
|
12
|
-
|
18
|
+
model_length: int = 61
|
19
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 61, "v023": 41})
|
13
20
|
require_params: bool = True
|
14
|
-
|
21
|
+
model_params: dict = field(default_factory=lambda: {})
|
22
|
+
model_params_dict: dict = field(default_factory=lambda: {"v010": {"spike_dim": 61}, "v023": {"spike_dim": 41}})
|
15
23
|
|
16
24
|
|
17
25
|
class BSF(BaseModel):
|
@@ -0,0 +1,19 @@
|
|
1
|
+
from dataclasses import dataclass, field
|
2
|
+
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
|
+
from typing import List
|
4
|
+
|
5
|
+
|
6
|
+
@dataclass
|
7
|
+
class SPCSNetConfig(BaseModelConfig):
|
8
|
+
# default params for WGSE
|
9
|
+
model_name: str = "spcsnet"
|
10
|
+
model_file_name: str = "models"
|
11
|
+
model_cls_name: str = "SPCS_Net"
|
12
|
+
model_win_length: int = 41
|
13
|
+
require_params: bool = True
|
14
|
+
ckpt_path: str = 'weights/spcsnet.pth'
|
15
|
+
|
16
|
+
|
17
|
+
class SPCSNet(BaseModel):
|
18
|
+
def __init__(self, cfg: BaseModelConfig):
|
19
|
+
super(SPCSNet, self).__init__(cfg)
|
@@ -2,7 +2,8 @@ from dataclasses import dataclass
|
|
2
2
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
3
|
import torch
|
4
4
|
import torch.nn.functional as F
|
5
|
-
|
5
|
+
from dataclasses import field
|
6
|
+
from spikezoo.archs.spikeclip.nets import LRN
|
6
7
|
|
7
8
|
@dataclass
|
8
9
|
class SpikeCLIPConfig(BaseModelConfig):
|
@@ -10,9 +11,9 @@ class SpikeCLIPConfig(BaseModelConfig):
|
|
10
11
|
model_name: str = "spikeclip"
|
11
12
|
model_file_name: str = "nets"
|
12
13
|
model_cls_name: str = "LRN"
|
13
|
-
|
14
|
+
model_length: int = 200
|
15
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 200, "v023": 200})
|
14
16
|
require_params: bool = True
|
15
|
-
ckpt_path: str = "weights/spikeclip.pth"
|
16
17
|
|
17
18
|
|
18
19
|
class SpikeCLIP(BaseModel):
|
@@ -1,7 +1,12 @@
|
|
1
1
|
import torch
|
2
2
|
from dataclasses import dataclass, field
|
3
3
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
4
|
-
|
4
|
+
from spikezoo.pipeline import TrainPipelineConfig
|
5
|
+
import torch.nn as nn
|
6
|
+
import torch.optim as optim
|
7
|
+
import torch.optim.lr_scheduler as lr_scheduler
|
8
|
+
from typing import List
|
9
|
+
from spikezoo.archs.spk2imgnet.nets import SpikeNet
|
5
10
|
|
6
11
|
@dataclass
|
7
12
|
class Spk2ImgNetConfig(BaseModelConfig):
|
@@ -9,22 +14,11 @@ class Spk2ImgNetConfig(BaseModelConfig):
|
|
9
14
|
model_name: str = "spk2imgnet"
|
10
15
|
model_file_name: str = "nets"
|
11
16
|
model_cls_name: str = "SpikeNet"
|
12
|
-
|
17
|
+
model_length: int = 41
|
18
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
13
19
|
require_params: bool = True
|
14
|
-
ckpt_path: str = "weights/spk2imgnet.pth"
|
15
20
|
light_correction: bool = False
|
16
21
|
|
17
|
-
# model params
|
18
|
-
model_params: dict = field(
|
19
|
-
default_factory=lambda: {
|
20
|
-
"in_channels": 13,
|
21
|
-
"features": 64,
|
22
|
-
"out_channels": 1,
|
23
|
-
"win_r": 6,
|
24
|
-
"win_step": 7,
|
25
|
-
}
|
26
|
-
)
|
27
|
-
|
28
22
|
|
29
23
|
class Spk2ImgNet(BaseModel):
|
30
24
|
def __init__(self, cfg: BaseModelConfig):
|
@@ -45,7 +39,7 @@ class Spk2ImgNet(BaseModel):
|
|
45
39
|
image = image[:, :, :250, :]
|
46
40
|
elif self.spike_size == (480, 854):
|
47
41
|
image = image[:, :, :, :854]
|
48
|
-
# used on the
|
42
|
+
# used on the REDS_BASE dataset.
|
49
43
|
if self.cfg.light_correction == True:
|
50
44
|
image = torch.clamp(image / 0.6, 0, 1)
|
51
45
|
return image
|
spikezoo/models/ssir_model.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1
1
|
from dataclasses import dataclass
|
2
2
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
|
+
from dataclasses import field
|
4
|
+
from spikezoo.archs.ssir.models.networks import SSIR
|
3
5
|
|
4
6
|
|
5
7
|
@dataclass
|
@@ -8,15 +10,11 @@ class SSIRConfig(BaseModelConfig):
|
|
8
10
|
model_name: str = "ssir"
|
9
11
|
model_file_name: str = "models.networks"
|
10
12
|
model_cls_name: str = "SSIR"
|
11
|
-
|
13
|
+
model_length: int = 41
|
14
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
12
15
|
require_params: bool = True
|
13
|
-
ckpt_path: str = "weights/ssir.pth"
|
14
16
|
|
15
17
|
|
16
18
|
class SSIR(BaseModel):
|
17
19
|
def __init__(self, cfg: BaseModelConfig):
|
18
20
|
super(SSIR, self).__init__(cfg)
|
19
|
-
|
20
|
-
def postprocess_img(self, image):
|
21
|
-
# image = image[0]
|
22
|
-
return image
|
spikezoo/models/ssml_model.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1
1
|
from dataclasses import dataclass
|
2
2
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
|
+
import torch
|
4
|
+
from dataclasses import field
|
5
|
+
from spikezoo.archs.ssml.model import DoubleNet
|
3
6
|
|
4
7
|
|
5
8
|
@dataclass
|
@@ -8,11 +11,50 @@ class SSMLConfig(BaseModelConfig):
|
|
8
11
|
model_name: str = "ssml"
|
9
12
|
model_file_name: str = "model"
|
10
13
|
model_cls_name: str = "DoubleNet"
|
11
|
-
|
14
|
+
model_length: int = 41
|
15
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
16
|
+
tfp_label_length: int = 11
|
12
17
|
require_params: bool = True
|
13
|
-
ckpt_path: str = 'weights/ssml.pt'
|
14
18
|
|
15
19
|
|
20
|
+
# ! A simple version of SSML rather than the full version
|
16
21
|
class SSML(BaseModel):
|
17
22
|
def __init__(self, cfg: BaseModelConfig):
|
18
23
|
super(SSML, self).__init__(cfg)
|
24
|
+
|
25
|
+
def get_outputs_dict(self, batch):
|
26
|
+
# data process
|
27
|
+
spike = batch["spike"]
|
28
|
+
spike = self.preprocess_spike(spike)
|
29
|
+
rate = batch["rate"].view(-1, 1, 1, 1).float()
|
30
|
+
# outputs
|
31
|
+
outputs = {}
|
32
|
+
bsn_pred, nbsn_pred = self.net(spike)
|
33
|
+
bsn_pred = self.postprocess_img(bsn_pred)
|
34
|
+
nbsn_pred = self.postprocess_img(nbsn_pred)
|
35
|
+
outputs["recon_img"] = nbsn_pred / rate
|
36
|
+
outputs["bsn_pred"] = bsn_pred / rate
|
37
|
+
# tfp-label
|
38
|
+
mid = spike.shape[1] // 2
|
39
|
+
tfp_label = torch.mean(spike[:, mid - self.cfg.tfp_label_length // 2 : mid + self.cfg.tfp_label_length // 2 + 1], dim=1, keepdim=True)
|
40
|
+
outputs["tfp_label"] = self.postprocess_img(tfp_label) / rate
|
41
|
+
return outputs
|
42
|
+
|
43
|
+
def get_visual_dict(self, batch, outputs):
|
44
|
+
visual_dict = super().get_visual_dict(batch, outputs)
|
45
|
+
visual_dict["bsn_pred"] = outputs["bsn_pred"]
|
46
|
+
visual_dict["tfp_label"] = outputs["tfp_label"]
|
47
|
+
return visual_dict
|
48
|
+
|
49
|
+
def get_loss_dict(self, outputs, batch, loss_weight_dict):
|
50
|
+
# recon image
|
51
|
+
recon_img = outputs["recon_img"]
|
52
|
+
bsn_pred = outputs["bsn_pred"]
|
53
|
+
tfp_label = outputs["tfp_label"]
|
54
|
+
# loss dict
|
55
|
+
loss_dict = {}
|
56
|
+
for loss_name, weight in loss_weight_dict.items():
|
57
|
+
loss_dict["bsn_loss_" + loss_name] = weight * self.get_loss_func(loss_name)(bsn_pred, tfp_label)
|
58
|
+
loss_dict["mutual_loss_" + loss_name] = 0.01 * weight * self.get_loss_func(loss_name)(recon_img, bsn_pred)
|
59
|
+
loss_values_dict = {k: v.item() for k, v in loss_dict.items()}
|
60
|
+
return loss_dict, loss_values_dict
|
spikezoo/models/stir_model.py
CHANGED
@@ -1,7 +1,14 @@
|
|
1
1
|
import torch
|
2
|
-
from dataclasses import dataclass
|
2
|
+
from dataclasses import dataclass, field
|
3
3
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
4
|
-
|
4
|
+
from torch.optim import Adam
|
5
|
+
import torch.optim.lr_scheduler as lr_scheduler
|
6
|
+
import torch.nn as nn
|
7
|
+
from spikezoo.pipeline import TrainPipelineConfig
|
8
|
+
from typing import List
|
9
|
+
from spikezoo.archs.stir.metrics.losses import compute_per_loss_single
|
10
|
+
from spikezoo.archs.stir.models.Vgg19 import Vgg19
|
11
|
+
from spikezoo.archs.stir.models.networks_STIR import STIR
|
5
12
|
|
6
13
|
@dataclass
|
7
14
|
class STIRConfig(BaseModelConfig):
|
@@ -9,9 +16,11 @@ class STIRConfig(BaseModelConfig):
|
|
9
16
|
model_name: str = "stir"
|
10
17
|
model_file_name: str = "models.networks_STIR"
|
11
18
|
model_cls_name: str = "STIR"
|
12
|
-
|
19
|
+
model_length: int = 61
|
20
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 61, "v023": 41})
|
13
21
|
require_params: bool = True
|
14
|
-
|
22
|
+
model_params: dict = field(default_factory=lambda: {})
|
23
|
+
model_params_dict: dict = field(default_factory=lambda: {"v010": {"spike_dim": 61}, "v023": {"spike_dim": 41}})
|
15
24
|
|
16
25
|
|
17
26
|
class STIR(BaseModel):
|
@@ -29,9 +38,21 @@ class STIR(BaseModel):
|
|
29
38
|
return spike
|
30
39
|
|
31
40
|
def postprocess_img(self, image):
|
32
|
-
# recon, Fs_lv_0, Fs_lv_1, Fs_lv_2, Fs_lv_3, Fs_lv_4, Est = image
|
33
41
|
if self.spike_size == (250, 400):
|
34
42
|
image = image[:, :, :250, :]
|
35
43
|
elif self.spike_size == (480, 854):
|
36
44
|
image = image[:, :, :, :854]
|
37
45
|
return image
|
46
|
+
|
47
|
+
def get_outputs_dict(self, batch):
|
48
|
+
# data process
|
49
|
+
spike = batch["spike"]
|
50
|
+
rate = batch["rate"].view(-1, 1, 1, 1).float()
|
51
|
+
# outputs
|
52
|
+
outputs = {}
|
53
|
+
spike = self.preprocess_spike(spike)
|
54
|
+
# pyramid loss is omitted owing to limited performance gain.
|
55
|
+
img_pred_0, Fs_lv_0, Fs_lv_1, Fs_lv_2, Fs_lv_3, Fs_lv_4, Est = self.net(spike)
|
56
|
+
img_pred_0 = self.postprocess_img(img_pred_0)
|
57
|
+
outputs["recon_img"] = img_pred_0 / rate
|
58
|
+
return outputs
|
spikezoo/models/tfi_model.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
from dataclasses import dataclass, field
|
2
2
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
|
+
from spikezoo.archs.tfi.nets import TFIModel
|
3
4
|
|
4
5
|
|
5
6
|
@dataclass
|
@@ -8,7 +9,8 @@ class TFIConfig(BaseModelConfig):
|
|
8
9
|
model_name: str = "tfi"
|
9
10
|
model_file_name: str = "nets"
|
10
11
|
model_cls_name: str = "TFIModel"
|
11
|
-
|
12
|
+
model_length: int = 41
|
13
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
12
14
|
require_params: bool = False
|
13
15
|
model_params: dict = field(default_factory=lambda: {"model_win_length": 41})
|
14
16
|
|
spikezoo/models/tfp_model.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
|
-
from dataclasses import dataclass,field
|
1
|
+
from dataclasses import dataclass, field
|
2
2
|
from spikezoo.models.base_model import BaseModel, BaseModelConfig
|
3
|
+
from spikezoo.archs.tfp.nets import TFPModel
|
3
4
|
|
4
5
|
|
5
6
|
@dataclass
|
@@ -8,7 +9,8 @@ class TFPConfig(BaseModelConfig):
|
|
8
9
|
model_name: str = "tfp"
|
9
10
|
model_file_name: str = "nets"
|
10
11
|
model_cls_name: str = "TFPModel"
|
11
|
-
|
12
|
+
model_length: int = 41
|
13
|
+
model_length_dict: dict = field(default_factory=lambda: {"v010": 41, "v023": 41})
|
12
14
|
require_params: bool = False
|
13
15
|
model_params: dict = field(default_factory=lambda: {"model_win_length": 41})
|
14
16
|
|