spikezoo 0.1.2__py3-none-any.whl → 0.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (192) hide show
  1. spikezoo/__init__.py +13 -0
  2. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  3. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  4. spikezoo/archs/base/nets.py +34 -0
  5. spikezoo/archs/bsf/README.md +92 -0
  6. spikezoo/archs/bsf/datasets/datasets.py +328 -0
  7. spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
  8. spikezoo/archs/bsf/main.py +398 -0
  9. spikezoo/archs/bsf/metrics/psnr.py +22 -0
  10. spikezoo/archs/bsf/metrics/ssim.py +54 -0
  11. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  12. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  13. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  14. spikezoo/archs/bsf/models/bsf/align.py +154 -0
  15. spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
  16. spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
  17. spikezoo/archs/bsf/models/bsf/rep.py +44 -0
  18. spikezoo/archs/bsf/models/get_model.py +7 -0
  19. spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
  20. spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
  21. spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
  22. spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
  23. spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
  24. spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
  25. spikezoo/archs/bsf/requirements.txt +9 -0
  26. spikezoo/archs/bsf/test.py +16 -0
  27. spikezoo/archs/bsf/utils.py +154 -0
  28. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  29. spikezoo/archs/spikeclip/nets.py +40 -0
  30. spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
  31. spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
  32. spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
  33. spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
  34. spikezoo/archs/spikeformer/EvalResults/readme +1 -0
  35. spikezoo/archs/spikeformer/LICENSE +21 -0
  36. spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
  37. spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
  38. spikezoo/archs/spikeformer/Model/Loss.py +89 -0
  39. spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
  40. spikezoo/archs/spikeformer/Model/__init__.py +0 -0
  41. spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
  42. spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
  43. spikezoo/archs/spikeformer/README.md +30 -0
  44. spikezoo/archs/spikeformer/evaluate.py +87 -0
  45. spikezoo/archs/spikeformer/recon_real_data.py +97 -0
  46. spikezoo/archs/spikeformer/requirements.yml +95 -0
  47. spikezoo/archs/spikeformer/train.py +173 -0
  48. spikezoo/archs/spikeformer/utils.py +22 -0
  49. spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
  50. spikezoo/archs/spk2imgnet/.gitignore +150 -0
  51. spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
  52. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  53. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  54. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  55. spikezoo/archs/spk2imgnet/align_arch.py +159 -0
  56. spikezoo/archs/spk2imgnet/dataset.py +144 -0
  57. spikezoo/archs/spk2imgnet/nets.py +230 -0
  58. spikezoo/archs/spk2imgnet/readme.md +86 -0
  59. spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
  60. spikezoo/archs/spk2imgnet/train.py +189 -0
  61. spikezoo/archs/spk2imgnet/utils.py +64 -0
  62. spikezoo/archs/ssir/README.md +87 -0
  63. spikezoo/archs/ssir/configs/SSIR.yml +37 -0
  64. spikezoo/archs/ssir/configs/yml_parser.py +78 -0
  65. spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
  66. spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
  67. spikezoo/archs/ssir/losses.py +21 -0
  68. spikezoo/archs/ssir/main.py +326 -0
  69. spikezoo/archs/ssir/metrics/psnr.py +22 -0
  70. spikezoo/archs/ssir/metrics/ssim.py +54 -0
  71. spikezoo/archs/ssir/models/Vgg19.py +42 -0
  72. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  73. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  74. spikezoo/archs/ssir/models/layers.py +110 -0
  75. spikezoo/archs/ssir/models/networks.py +61 -0
  76. spikezoo/archs/ssir/requirements.txt +8 -0
  77. spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
  78. spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
  79. spikezoo/archs/ssir/test.py +3 -0
  80. spikezoo/archs/ssir/utils.py +154 -0
  81. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  82. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  83. spikezoo/archs/ssml/cbam.py +224 -0
  84. spikezoo/archs/ssml/model.py +290 -0
  85. spikezoo/archs/ssml/res.png +0 -0
  86. spikezoo/archs/ssml/test.py +67 -0
  87. spikezoo/archs/stir/.git-credentials +0 -0
  88. spikezoo/archs/stir/README.md +65 -0
  89. spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
  90. spikezoo/archs/stir/configs/STIR.yml +37 -0
  91. spikezoo/archs/stir/configs/utils.py +155 -0
  92. spikezoo/archs/stir/configs/yml_parser.py +78 -0
  93. spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
  94. spikezoo/archs/stir/datasets/ds_utils.py +66 -0
  95. spikezoo/archs/stir/eval_SREDS.sh +5 -0
  96. spikezoo/archs/stir/main.py +397 -0
  97. spikezoo/archs/stir/metrics/losses.py +219 -0
  98. spikezoo/archs/stir/metrics/psnr.py +22 -0
  99. spikezoo/archs/stir/metrics/ssim.py +54 -0
  100. spikezoo/archs/stir/models/Vgg19.py +42 -0
  101. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  102. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  103. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  104. spikezoo/archs/stir/models/networks_STIR.py +361 -0
  105. spikezoo/archs/stir/models/submodules.py +86 -0
  106. spikezoo/archs/stir/models/transformer_new.py +151 -0
  107. spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
  108. spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
  109. spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
  110. spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
  111. spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
  112. spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
  113. spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
  114. spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
  115. spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
  116. spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
  117. spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
  118. spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
  119. spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
  120. spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
  121. spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
  122. spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
  123. spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
  124. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  125. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  126. spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
  127. spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
  128. spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
  129. spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
  130. spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
  131. spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
  132. spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
  133. spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
  134. spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
  135. spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
  136. spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
  137. spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
  138. spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
  139. spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
  140. spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
  141. spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
  142. spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
  143. spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
  144. spikezoo/archs/stir/package_core/setup.py +5 -0
  145. spikezoo/archs/stir/requirements.txt +12 -0
  146. spikezoo/archs/stir/train_STIR.sh +9 -0
  147. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  148. spikezoo/archs/tfi/nets.py +43 -0
  149. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  150. spikezoo/archs/tfp/nets.py +13 -0
  151. spikezoo/archs/wgse/README.md +64 -0
  152. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  153. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  154. spikezoo/archs/wgse/dataset.py +59 -0
  155. spikezoo/archs/wgse/demo.png +0 -0
  156. spikezoo/archs/wgse/demo.py +83 -0
  157. spikezoo/archs/wgse/dwtnets.py +145 -0
  158. spikezoo/archs/wgse/eval.py +133 -0
  159. spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
  160. spikezoo/archs/wgse/submodules.py +68 -0
  161. spikezoo/archs/wgse/train.py +261 -0
  162. spikezoo/archs/wgse/transform.py +139 -0
  163. spikezoo/archs/wgse/utils.py +128 -0
  164. spikezoo/archs/wgse/weights/demo.png +0 -0
  165. spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
  166. spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
  167. spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
  168. spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
  169. spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
  170. spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
  171. spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
  172. spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
  173. spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
  174. spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
  175. spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
  176. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  177. spikezoo/datasets/base_dataset.py +2 -3
  178. spikezoo/metrics/__init__.py +1 -1
  179. spikezoo/models/base_model.py +1 -3
  180. spikezoo/pipeline/base_pipeline.py +7 -5
  181. spikezoo/pipeline/train_pipeline.py +1 -1
  182. spikezoo/utils/other_utils.py +16 -6
  183. spikezoo/utils/spike_utils.py +33 -29
  184. spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
  185. spikezoo-0.2.dist-info/METADATA +163 -0
  186. spikezoo-0.2.dist-info/RECORD +211 -0
  187. spikezoo/models/spcsnet_model.py +0 -19
  188. spikezoo-0.1.2.dist-info/METADATA +0 -39
  189. spikezoo-0.1.2.dist-info/RECORD +0 -36
  190. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/LICENSE.txt +0 -0
  191. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/WHEEL +0 -0
  192. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,133 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.nn.init import xavier_uniform_, zeros_
5
+
6
+
7
+ def downsample_conv(in_planes, out_planes, kernel_size=3):
8
+ return nn.Sequential(
9
+ nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=2, padding=(kernel_size-1)//2),
10
+ nn.ReLU(inplace=True),
11
+ nn.Conv2d(out_planes, out_planes, kernel_size=kernel_size, padding=(kernel_size-1)//2),
12
+ nn.ReLU(inplace=True)
13
+ )
14
+
15
+
16
+ def predict_disp(in_planes):
17
+ return nn.Sequential(
18
+ nn.Conv2d(in_planes, 1, kernel_size=3, padding=1),
19
+ nn.Sigmoid()
20
+ )
21
+
22
+
23
+ def conv(in_planes, out_planes):
24
+ return nn.Sequential(
25
+ nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=1),
26
+ nn.ReLU(inplace=True)
27
+ )
28
+
29
+
30
+ def upconv(in_planes, out_planes):
31
+ return nn.Sequential(
32
+ nn.ConvTranspose2d(in_planes, out_planes, kernel_size=3, stride=2, padding=1, output_padding=1),
33
+ nn.ReLU(inplace=True)
34
+ )
35
+
36
+
37
+ def crop_like(input, ref):
38
+ assert(input.size(2) >= ref.size(2) and input.size(3) >= ref.size(3))
39
+ return input[:, :, :ref.size(2), :ref.size(3)]
40
+
41
+
42
+ class DispNetS(nn.Module):
43
+
44
+ def __init__(self, alpha=10, beta=0.01):
45
+ super(DispNetS, self).__init__()
46
+
47
+ self.alpha = alpha
48
+ self.beta = beta
49
+
50
+ conv_planes = [32, 64, 128, 256, 512, 512, 512]
51
+ self.conv1 = downsample_conv(3, conv_planes[0], kernel_size=7)
52
+ self.conv2 = downsample_conv(conv_planes[0], conv_planes[1], kernel_size=5)
53
+ self.conv3 = downsample_conv(conv_planes[1], conv_planes[2])
54
+ self.conv4 = downsample_conv(conv_planes[2], conv_planes[3])
55
+ self.conv5 = downsample_conv(conv_planes[3], conv_planes[4])
56
+ self.conv6 = downsample_conv(conv_planes[4], conv_planes[5])
57
+ self.conv7 = downsample_conv(conv_planes[5], conv_planes[6])
58
+
59
+ upconv_planes = [512, 512, 256, 128, 64, 32, 16]
60
+ self.upconv7 = upconv(conv_planes[6], upconv_planes[0])
61
+ self.upconv6 = upconv(upconv_planes[0], upconv_planes[1])
62
+ self.upconv5 = upconv(upconv_planes[1], upconv_planes[2])
63
+ self.upconv4 = upconv(upconv_planes[2], upconv_planes[3])
64
+ self.upconv3 = upconv(upconv_planes[3], upconv_planes[4])
65
+ self.upconv2 = upconv(upconv_planes[4], upconv_planes[5])
66
+ self.upconv1 = upconv(upconv_planes[5], upconv_planes[6])
67
+
68
+ self.iconv7 = conv(upconv_planes[0] + conv_planes[5], upconv_planes[0])
69
+ self.iconv6 = conv(upconv_planes[1] + conv_planes[4], upconv_planes[1])
70
+ self.iconv5 = conv(upconv_planes[2] + conv_planes[3], upconv_planes[2])
71
+ self.iconv4 = conv(upconv_planes[3] + conv_planes[2], upconv_planes[3])
72
+ self.iconv3 = conv(1 + upconv_planes[4] + conv_planes[1], upconv_planes[4])
73
+ self.iconv2 = conv(1 + upconv_planes[5] + conv_planes[0], upconv_planes[5])
74
+ self.iconv1 = conv(1 + upconv_planes[6], upconv_planes[6])
75
+
76
+ self.predict_disp4 = predict_disp(upconv_planes[3])
77
+ self.predict_disp3 = predict_disp(upconv_planes[4])
78
+ self.predict_disp2 = predict_disp(upconv_planes[5])
79
+ self.predict_disp1 = predict_disp(upconv_planes[6])
80
+
81
+ def init_weights(self):
82
+ for m in self.modules():
83
+ if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
84
+ xavier_uniform_(m.weight)
85
+ if m.bias is not None:
86
+ zeros_(m.bias)
87
+
88
+ def forward(self, x):
89
+ out_conv1 = self.conv1(x)
90
+ out_conv2 = self.conv2(out_conv1)
91
+ out_conv3 = self.conv3(out_conv2)
92
+ out_conv4 = self.conv4(out_conv3)
93
+ out_conv5 = self.conv5(out_conv4)
94
+ out_conv6 = self.conv6(out_conv5)
95
+ out_conv7 = self.conv7(out_conv6)
96
+
97
+ out_upconv7 = crop_like(self.upconv7(out_conv7), out_conv6)
98
+ concat7 = torch.cat((out_upconv7, out_conv6), 1)
99
+ out_iconv7 = self.iconv7(concat7)
100
+
101
+ out_upconv6 = crop_like(self.upconv6(out_iconv7), out_conv5)
102
+ concat6 = torch.cat((out_upconv6, out_conv5), 1)
103
+ out_iconv6 = self.iconv6(concat6)
104
+
105
+ out_upconv5 = crop_like(self.upconv5(out_iconv6), out_conv4)
106
+ concat5 = torch.cat((out_upconv5, out_conv4), 1)
107
+ out_iconv5 = self.iconv5(concat5)
108
+
109
+ out_upconv4 = crop_like(self.upconv4(out_iconv5), out_conv3)
110
+ concat4 = torch.cat((out_upconv4, out_conv3), 1)
111
+ out_iconv4 = self.iconv4(concat4)
112
+ disp4 = self.alpha * self.predict_disp4(out_iconv4) + self.beta
113
+
114
+ out_upconv3 = crop_like(self.upconv3(out_iconv4), out_conv2)
115
+ disp4_up = crop_like(F.interpolate(disp4, scale_factor=2, mode='bilinear', align_corners=False), out_conv2)
116
+ concat3 = torch.cat((out_upconv3, out_conv2, disp4_up), 1)
117
+ out_iconv3 = self.iconv3(concat3)
118
+ disp3 = self.alpha * self.predict_disp3(out_iconv3) + self.beta
119
+
120
+ out_upconv2 = crop_like(self.upconv2(out_iconv3), out_conv1)
121
+ disp3_up = crop_like(F.interpolate(disp3, scale_factor=2, mode='bilinear', align_corners=False), out_conv1)
122
+ concat2 = torch.cat((out_upconv2, out_conv1, disp3_up), 1)
123
+ out_iconv2 = self.iconv2(concat2)
124
+ disp2 = self.alpha * self.predict_disp2(out_iconv2) + self.beta
125
+
126
+ out_upconv1 = crop_like(self.upconv1(out_iconv2), x)
127
+ disp2_up = crop_like(F.interpolate(disp2, scale_factor=2, mode='bilinear', align_corners=False), x)
128
+ concat1 = torch.cat((out_upconv1, disp2_up), 1)
129
+ out_iconv1 = self.iconv1(concat1)
130
+ disp1 = self.alpha * self.predict_disp1(out_iconv1) + self.beta
131
+
132
+ return disp1, disp2, disp3, disp4
133
+
@@ -0,0 +1,167 @@
1
+ import cv2
2
+ import sys
3
+ import numpy as np
4
+ import argparse
5
+
6
+ def load_flow(path):
7
+ with open(path, 'rb') as f:
8
+ magic = float(np.fromfile(f, np.float32, count = 1)[0])
9
+ if magic == 202021.25:
10
+ w, h = np.fromfile(f, np.int32, count = 1)[0], np.fromfile(f, np.int32, count = 1)[0]
11
+ data = np.fromfile(f, np.float32, count = h*w*2)
12
+ data.resize((h, w, 2))
13
+ return data
14
+ return None
15
+
16
+ def save_flow(path, flow):
17
+ magic = np.array([202021.25], np.float32)
18
+ h, w = flow.shape[:2]
19
+ h, w = np.array([h], np.int32), np.array([w], np.int32)
20
+
21
+ with open(path, 'wb') as f:
22
+ magic.tofile(f); w.tofile(f); h.tofile(f); flow.tofile(f)
23
+
24
+ def makeColorwheel():
25
+
26
+ # color encoding scheme
27
+
28
+ # adapted from the color circle idea described at
29
+ # http://members.shaw.ca/quadibloc/other/colint.htm
30
+
31
+ RY = 15
32
+ YG = 6
33
+ GC = 4
34
+ CB = 11
35
+ BM = 13
36
+ MR = 6
37
+
38
+ ncols = RY + YG + GC + CB + BM + MR
39
+
40
+ colorwheel = np.zeros([ncols, 3]) # r g b
41
+
42
+ col = 0
43
+ #RY
44
+ colorwheel[0:RY, 0] = 255
45
+ colorwheel[0:RY, 1] = np.floor(255*np.arange(0, RY, 1)/RY)
46
+ col += RY
47
+
48
+ #YG
49
+ colorwheel[col:YG+col, 0]= 255 - np.floor(255*np.arange(0, YG, 1)/YG)
50
+ colorwheel[col:YG+col, 1] = 255;
51
+ col += YG;
52
+
53
+ #GC
54
+ colorwheel[col:GC+col, 1]= 255
55
+ colorwheel[col:GC+col, 2] = np.floor(255*np.arange(0, GC, 1)/GC)
56
+ col += GC;
57
+
58
+ #CB
59
+ colorwheel[col:CB+col, 1]= 255 - np.floor(255*np.arange(0, CB, 1)/CB)
60
+ colorwheel[col:CB+col, 2] = 255
61
+ col += CB;
62
+
63
+ #BM
64
+ colorwheel[col:BM+col, 2]= 255
65
+ colorwheel[col:BM+col, 0] = np.floor(255*np.arange(0, BM, 1)/BM)
66
+ col += BM;
67
+
68
+ #MR
69
+ colorwheel[col:MR+col, 2]= 255 - np.floor(255*np.arange(0, MR, 1)/MR)
70
+ colorwheel[col:MR+col, 0] = 255
71
+ return colorwheel
72
+
73
+ def computeColor(u, v):
74
+
75
+ colorwheel = makeColorwheel();
76
+ nan_u = np.isnan(u)
77
+ nan_v = np.isnan(v)
78
+ nan_u = np.where(nan_u)
79
+ nan_v = np.where(nan_v)
80
+
81
+ u[nan_u] = 0
82
+ u[nan_v] = 0
83
+ v[nan_u] = 0
84
+ v[nan_v] = 0
85
+
86
+ ncols = colorwheel.shape[0]
87
+ radius = np.sqrt(u**2 + v**2)
88
+ a = np.arctan2(-v, -u) / np.pi
89
+ fk = (a+1) /2 * (ncols-1) # -1~1 maped to 1~ncols
90
+ k0 = fk.astype(np.uint8) # 1, 2, ..., ncols
91
+ k1 = k0+1
92
+ k1[k1 == ncols] = 0
93
+ f = fk - k0
94
+
95
+ img = np.empty([k1.shape[0], k1.shape[1],3])
96
+ ncolors = colorwheel.shape[1]
97
+ for i in range(ncolors):
98
+ tmp = colorwheel[:,i]
99
+ col0 = tmp[k0]/255
100
+ col1 = tmp[k1]/255
101
+ col = (1-f)*col0 + f*col1
102
+ idx = radius <= 1
103
+ col[idx] = 1 - radius[idx]*(1-col[idx]) # increase saturation with radius
104
+ col[~idx] *= 0.75 # out of range
105
+ img[:,:,2-i] = np.floor(255*col).astype(np.uint8)
106
+
107
+ return img.astype(np.uint8)
108
+
109
+
110
+ def flow2rgb(flow):
111
+ # H, W, 2
112
+ eps = sys.float_info.epsilon
113
+ UNKNOWN_FLOW_THRESH = 1e9
114
+ UNKNOWN_FLOW = 1e10
115
+
116
+ u = flow[:,:,0]
117
+ v = flow[:,:,1]
118
+
119
+ maxu = -999
120
+ maxv = -999
121
+
122
+ minu = 999
123
+ minv = 999
124
+
125
+ maxrad = -1
126
+ #fix unknown flow
127
+ greater_u = np.where(u > UNKNOWN_FLOW_THRESH)
128
+ greater_v = np.where(v > UNKNOWN_FLOW_THRESH)
129
+ u[greater_u] = 0
130
+ u[greater_v] = 0
131
+ v[greater_u] = 0
132
+ v[greater_v] = 0
133
+
134
+ maxu = max([maxu, np.amax(u)])
135
+ minu = min([minu, np.amin(u)])
136
+
137
+ maxv = max([maxv, np.amax(v)])
138
+ minv = min([minv, np.amin(v)])
139
+ rad = np.sqrt(np.multiply(u,u)+np.multiply(v,v))
140
+ maxrad = max([maxrad, np.amax(rad)])
141
+ # print('max flow: %.4f flow range: u = %.3f .. %.3f; v = %.3f .. %.3f\n' % (maxrad, minu, maxu, minv, maxv))
142
+
143
+ u = u/(maxrad+eps)
144
+ v = v/(maxrad+eps)
145
+ img = computeColor(u, v)
146
+ return img[:,:,[2,1,0]]
147
+
148
+ def flow_to_numpy_rgb(flow):
149
+ flow_map_np = flow.detach().cpu().numpy().transpose((0, 2, 3, 1))
150
+ B, H, W, _ = flow_map_np.shape
151
+ colored_rgb = np.empty([B, H, W, 3])
152
+ for i in range(B):
153
+ colored_array= flow2rgb(flow_map_np[i])
154
+ colored_rgb[i] = colored_array
155
+ return colored_rgb.astype(np.uint8)
156
+
157
+ #if __name__ == '__main__':
158
+ # import matplotlib.pyplot as plt#
159
+ #
160
+ # flow = load_flow('/home/autovision/mycode/PWC-Net/PyTorch/tmp/frame_0010.flo')
161
+ # #flow = load_flow('datasets/Sintel/training/flow/alley_1/frame_0001.flo')
162
+ # img = vis_flow(flow)
163
+ # import imageio
164
+ # imageio.imsave('test.png', img)
165
+ # import cv2
166
+ # cv2.imshow('', img[:,:,:])
167
+ # cv2.waitKey()
@@ -0,0 +1,76 @@
1
+ import os
2
+ import time
3
+ from skimage import io
4
+
5
+ from .metrics import *
6
+ from .image_proc import *
7
+
8
+ class Generic_train_test():
9
+ def __init__(self, model, opts, dataloader, logger, dataloader_val=None):
10
+ self.model=model
11
+ self.opts=opts
12
+ self.dataloader=dataloader
13
+ self.logger=logger
14
+ self.dataloader_val = dataloader_val
15
+
16
+ def decode_input(self, data):
17
+ raise NotImplementedError()
18
+
19
+ def validation(self):
20
+ raise NotImplementedError()
21
+
22
+ def train_single_iterate(self, data, total_steps, epoch):
23
+ _input=self.decode_input(data)
24
+
25
+ self.model.set_input(_input)
26
+ self.model.optimize_parameters()
27
+
28
+ #=========== visualize results ============#
29
+ if total_steps % self.opts.log_freq==0:
30
+ info = self.model.get_current_scalars()
31
+ for tag, value in info.items():
32
+ self.logger.add_scalar(tag, value, total_steps)
33
+
34
+ results = self.model.get_current_visuals()
35
+ for tag, images in results.items():
36
+ self.logger.add_images(tag, images, total_steps)
37
+
38
+ print('epoch', epoch, 'steps', total_steps)
39
+ print('losses', info)
40
+
41
+ def train(self):
42
+ total_steps = 0
43
+ if self.dataloader is not None:
44
+ print('#training images ', len(self.dataloader)*self.opts.batch_sz)
45
+
46
+ for epoch in range(self.opts.start_epoch, self.opts.max_epochs):
47
+ if epoch > self.opts.lr_start_epoch_decay - self.opts.lr_step:
48
+ self.model.update_lr()
49
+
50
+ if epoch % self.opts.save_freq==0 or epoch <= self.opts.save_begin:
51
+ self.model.save_checkpoint(str(epoch))
52
+
53
+ if self.dataloader is not None:
54
+ for i, data in enumerate(self.dataloader):
55
+ total_steps+=1
56
+ self.train_single_iterate(data, total_steps, epoch)
57
+ else:
58
+ for i in range(10000):
59
+ total_steps+=1
60
+ self.train_single_iterate(None, total_steps, epoch)
61
+
62
+ # validation if dataloader provided
63
+ if self.dataloader_val is not None:
64
+ self.validation(epoch)
65
+
66
+ def train_single_instance(self):
67
+ total_steps = 0
68
+ data=iter(self.dataloader).next()
69
+
70
+ for epoch in range(10000):
71
+ for i in range(1000):
72
+ total_steps+=1
73
+ self.train_single_iterate(data, total_steps, epoch)
74
+
75
+
76
+