spikezoo 0.1.2__py3-none-any.whl → 0.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (192) hide show
  1. spikezoo/__init__.py +13 -0
  2. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  3. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  4. spikezoo/archs/base/nets.py +34 -0
  5. spikezoo/archs/bsf/README.md +92 -0
  6. spikezoo/archs/bsf/datasets/datasets.py +328 -0
  7. spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
  8. spikezoo/archs/bsf/main.py +398 -0
  9. spikezoo/archs/bsf/metrics/psnr.py +22 -0
  10. spikezoo/archs/bsf/metrics/ssim.py +54 -0
  11. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  12. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  13. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  14. spikezoo/archs/bsf/models/bsf/align.py +154 -0
  15. spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
  16. spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
  17. spikezoo/archs/bsf/models/bsf/rep.py +44 -0
  18. spikezoo/archs/bsf/models/get_model.py +7 -0
  19. spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
  20. spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
  21. spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
  22. spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
  23. spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
  24. spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
  25. spikezoo/archs/bsf/requirements.txt +9 -0
  26. spikezoo/archs/bsf/test.py +16 -0
  27. spikezoo/archs/bsf/utils.py +154 -0
  28. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  29. spikezoo/archs/spikeclip/nets.py +40 -0
  30. spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
  31. spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
  32. spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
  33. spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
  34. spikezoo/archs/spikeformer/EvalResults/readme +1 -0
  35. spikezoo/archs/spikeformer/LICENSE +21 -0
  36. spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
  37. spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
  38. spikezoo/archs/spikeformer/Model/Loss.py +89 -0
  39. spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
  40. spikezoo/archs/spikeformer/Model/__init__.py +0 -0
  41. spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
  42. spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
  43. spikezoo/archs/spikeformer/README.md +30 -0
  44. spikezoo/archs/spikeformer/evaluate.py +87 -0
  45. spikezoo/archs/spikeformer/recon_real_data.py +97 -0
  46. spikezoo/archs/spikeformer/requirements.yml +95 -0
  47. spikezoo/archs/spikeformer/train.py +173 -0
  48. spikezoo/archs/spikeformer/utils.py +22 -0
  49. spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
  50. spikezoo/archs/spk2imgnet/.gitignore +150 -0
  51. spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
  52. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  53. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  54. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  55. spikezoo/archs/spk2imgnet/align_arch.py +159 -0
  56. spikezoo/archs/spk2imgnet/dataset.py +144 -0
  57. spikezoo/archs/spk2imgnet/nets.py +230 -0
  58. spikezoo/archs/spk2imgnet/readme.md +86 -0
  59. spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
  60. spikezoo/archs/spk2imgnet/train.py +189 -0
  61. spikezoo/archs/spk2imgnet/utils.py +64 -0
  62. spikezoo/archs/ssir/README.md +87 -0
  63. spikezoo/archs/ssir/configs/SSIR.yml +37 -0
  64. spikezoo/archs/ssir/configs/yml_parser.py +78 -0
  65. spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
  66. spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
  67. spikezoo/archs/ssir/losses.py +21 -0
  68. spikezoo/archs/ssir/main.py +326 -0
  69. spikezoo/archs/ssir/metrics/psnr.py +22 -0
  70. spikezoo/archs/ssir/metrics/ssim.py +54 -0
  71. spikezoo/archs/ssir/models/Vgg19.py +42 -0
  72. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  73. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  74. spikezoo/archs/ssir/models/layers.py +110 -0
  75. spikezoo/archs/ssir/models/networks.py +61 -0
  76. spikezoo/archs/ssir/requirements.txt +8 -0
  77. spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
  78. spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
  79. spikezoo/archs/ssir/test.py +3 -0
  80. spikezoo/archs/ssir/utils.py +154 -0
  81. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  82. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  83. spikezoo/archs/ssml/cbam.py +224 -0
  84. spikezoo/archs/ssml/model.py +290 -0
  85. spikezoo/archs/ssml/res.png +0 -0
  86. spikezoo/archs/ssml/test.py +67 -0
  87. spikezoo/archs/stir/.git-credentials +0 -0
  88. spikezoo/archs/stir/README.md +65 -0
  89. spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
  90. spikezoo/archs/stir/configs/STIR.yml +37 -0
  91. spikezoo/archs/stir/configs/utils.py +155 -0
  92. spikezoo/archs/stir/configs/yml_parser.py +78 -0
  93. spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
  94. spikezoo/archs/stir/datasets/ds_utils.py +66 -0
  95. spikezoo/archs/stir/eval_SREDS.sh +5 -0
  96. spikezoo/archs/stir/main.py +397 -0
  97. spikezoo/archs/stir/metrics/losses.py +219 -0
  98. spikezoo/archs/stir/metrics/psnr.py +22 -0
  99. spikezoo/archs/stir/metrics/ssim.py +54 -0
  100. spikezoo/archs/stir/models/Vgg19.py +42 -0
  101. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  102. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  103. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  104. spikezoo/archs/stir/models/networks_STIR.py +361 -0
  105. spikezoo/archs/stir/models/submodules.py +86 -0
  106. spikezoo/archs/stir/models/transformer_new.py +151 -0
  107. spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
  108. spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
  109. spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
  110. spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
  111. spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
  112. spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
  113. spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
  114. spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
  115. spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
  116. spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
  117. spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
  118. spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
  119. spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
  120. spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
  121. spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
  122. spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
  123. spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
  124. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  125. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  126. spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
  127. spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
  128. spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
  129. spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
  130. spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
  131. spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
  132. spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
  133. spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
  134. spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
  135. spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
  136. spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
  137. spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
  138. spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
  139. spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
  140. spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
  141. spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
  142. spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
  143. spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
  144. spikezoo/archs/stir/package_core/setup.py +5 -0
  145. spikezoo/archs/stir/requirements.txt +12 -0
  146. spikezoo/archs/stir/train_STIR.sh +9 -0
  147. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  148. spikezoo/archs/tfi/nets.py +43 -0
  149. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  150. spikezoo/archs/tfp/nets.py +13 -0
  151. spikezoo/archs/wgse/README.md +64 -0
  152. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  153. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  154. spikezoo/archs/wgse/dataset.py +59 -0
  155. spikezoo/archs/wgse/demo.png +0 -0
  156. spikezoo/archs/wgse/demo.py +83 -0
  157. spikezoo/archs/wgse/dwtnets.py +145 -0
  158. spikezoo/archs/wgse/eval.py +133 -0
  159. spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
  160. spikezoo/archs/wgse/submodules.py +68 -0
  161. spikezoo/archs/wgse/train.py +261 -0
  162. spikezoo/archs/wgse/transform.py +139 -0
  163. spikezoo/archs/wgse/utils.py +128 -0
  164. spikezoo/archs/wgse/weights/demo.png +0 -0
  165. spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
  166. spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
  167. spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
  168. spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
  169. spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
  170. spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
  171. spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
  172. spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
  173. spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
  174. spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
  175. spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
  176. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  177. spikezoo/datasets/base_dataset.py +2 -3
  178. spikezoo/metrics/__init__.py +1 -1
  179. spikezoo/models/base_model.py +1 -3
  180. spikezoo/pipeline/base_pipeline.py +7 -5
  181. spikezoo/pipeline/train_pipeline.py +1 -1
  182. spikezoo/utils/other_utils.py +16 -6
  183. spikezoo/utils/spike_utils.py +33 -29
  184. spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
  185. spikezoo-0.2.dist-info/METADATA +163 -0
  186. spikezoo-0.2.dist-info/RECORD +211 -0
  187. spikezoo/models/spcsnet_model.py +0 -19
  188. spikezoo-0.1.2.dist-info/METADATA +0 -39
  189. spikezoo-0.1.2.dist-info/RECORD +0 -36
  190. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/LICENSE.txt +0 -0
  191. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/WHEEL +0 -0
  192. {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,397 @@
1
+ import argparse
2
+ import os
3
+ import os.path as osp
4
+ import shutil
5
+ import time
6
+ import numpy as np
7
+ import torch
8
+ import torch.optim
9
+ import torch.backends.cudnn as cudnn
10
+ from tensorboardX import SummaryWriter
11
+ from thop import profile
12
+ import pprint
13
+ import datetime
14
+ import lpips
15
+ # import pyiqa
16
+ # import cpbd
17
+ import imageio
18
+ from configs.yml_parser import *
19
+ from datasets.dataset_sreds import *
20
+ from configs.utils import *
21
+ from metrics.psnr import *
22
+ from metrics.ssim import *
23
+ from metrics.losses import *
24
+ from models.Vgg19 import *
25
+ from spikingjelly.clock_driven import functional
26
+
27
+ os.environ["KMP_BLOCKTIME"] = "0"
28
+ os.environ["OMP_NUM_THREADS"] = "1"
29
+ torch.set_num_threads(1)
30
+
31
+ from models.networks_STIR import *
32
+
33
+ parser = argparse.ArgumentParser()
34
+
35
+ parser.add_argument('--data_root', '-dr', type=str, default='/data/local_userdata/fanbin/REDS_dataset/REDS120fps')
36
+ parser.add_argument('--arch', '-a', type=str, default='STIR')
37
+ parser.add_argument('--batch_size', '-b', type=int, default=8)
38
+ parser.add_argument('--learning_rate', '-lr', type=float, default=1e-4)
39
+ parser.add_argument('--configs', '-cfg', type=str, default='./configs/STIR.yml')
40
+ parser.add_argument('--epochs', '-ep', type=int, default=100)
41
+ parser.add_argument('--epoch_size', '-es', type=int, default=1000)
42
+ parser.add_argument('--workers', '-j', type=int, default=8)
43
+ parser.add_argument('--pretrained', '-prt', type=str, default=None)
44
+ parser.add_argument('--start_epoch', '-sep', type=int, default=0)
45
+ parser.add_argument('--print_freq', '-pf', type=int, default=1)
46
+ parser.add_argument('--save_dir', '-sd', type=str, default='ckpt_outputs')
47
+ parser.add_argument('--save_name', '-sn', type=str, default='t1')
48
+ parser.add_argument('--vis_path', '-vp', type=str, default='vis_train')
49
+ parser.add_argument('--vis_name', '-vn', type=str, default='STIR_train')
50
+ parser.add_argument('--eval_path', '-evp', type=str, default='vis_eval')
51
+ parser.add_argument('--vis_freq', '-vf', type=int, default=200)
52
+ parser.add_argument('--eval', '-e', action='store_true')
53
+ parser.add_argument('--w_per', '-wper', type=float, default=0.2)
54
+ parser.add_argument('--print_details', '-pd', action='store_true')
55
+ parser.add_argument('--milestones', default=[20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70], metavar='N', nargs='*')
56
+ parser.add_argument('--lr_scale_factor', '-lrsf', type=float, default=0.7)
57
+ parser.add_argument('--eval_interval', '-ei', type=int, default=5)
58
+ parser.add_argument('--save_interval', '-si', type=int, default=5)
59
+ parser.add_argument('--no_imwrite', action='store_true', default=False)
60
+ args = parser.parse_args()
61
+
62
+ args.milestones = [int(m) for m in args.milestones]
63
+ print('milstones', args.milestones)
64
+
65
+ cfg_parser = YAMLParser(args.configs)
66
+ cfg = cfg_parser.config
67
+
68
+ cfg['data']['root'] = args.data_root
69
+ cfg = add_args_to_cfg(cfg, args, ['batch_size', 'arch', 'learning_rate', 'configs', 'epochs', 'epoch_size', 'workers', 'pretrained', 'start_epoch',
70
+ 'print_freq', 'save_dir', 'save_name', 'vis_path', 'vis_name', 'eval_path', 'vis_freq', 'w_per'])
71
+
72
+ n_iter = 0
73
+
74
+
75
+ def train(cfg, train_loader, model, optimizer, epoch, train_writer):
76
+ ######################################################################
77
+ ## Init
78
+ global n_iter
79
+ batch_time = AverageMeter()
80
+ data_time = AverageMeter()
81
+ losses_name = ['rec_loss', 'per_loss', 'mulscl_loss', 'all_loss']
82
+ losses = AverageMeter(precision=6, i=len(losses_name), names=losses_name)
83
+ model.train()
84
+ torch.cuda.synchronize()
85
+ end = time.time()
86
+
87
+ vgg19 = Vgg19(requires_grad=False).cuda()
88
+ if torch.cuda.device_count() > 1:
89
+ vgg19 = nn.DataParallel(vgg19, list(range(torch.cuda.device_count())))
90
+
91
+ loss_fn_tv2 = VariationLoss(nc=2).cuda()
92
+ downsampleX2 = nn.AvgPool2d(2, stride=2).cuda()
93
+ loss_fn_L1 = L1Loss()
94
+
95
+ ######################################################################
96
+ ## Training Loop
97
+
98
+ for ww, data in enumerate(train_loader, 0):
99
+
100
+ if ww >= args.epoch_size:
101
+ return
102
+
103
+ spikes = [spk.cuda() for spk in data['spikes']]
104
+ images = [img.cuda() for img in data['images']]
105
+ torch.cuda.synchronize()
106
+ data_time.update(time.time() - end)
107
+
108
+ cur_spks = torch.cat(spikes, dim=1)
109
+
110
+ rec_loss = 0.0
111
+ per_loss = 0.0
112
+ loss_L1_multiscale = 0.0
113
+ loss_rep_est = 0.0
114
+
115
+ seq_len = len(data['spikes']) - 3###corres 23th img GT
116
+
117
+ for jj in range(1, 1+seq_len):
118
+ x = cur_spks[:, jj*20-11 : jj*20+50]
119
+
120
+ img_gt = images[jj+1]
121
+
122
+ img_pred_0, Fs_lv_0, Fs_lv_1, Fs_lv_2, Fs_lv_3, Fs_lv_4, Est = model(x)
123
+ pred_F = [Fs_lv_0]
124
+ pred_F.append(Fs_lv_1)
125
+ pred_F.append(Fs_lv_2)
126
+ pred_F.append(Fs_lv_3)
127
+ pred_F.append(Fs_lv_4)
128
+
129
+ # if jj > 1+2:
130
+ if jj >= 2:
131
+ rec_loss += loss_fn_L1(img_pred_0, img_gt, mean=True) / (seq_len - 1)
132
+ if cfg['train']['w_per'] > 0:
133
+ per_loss += cfg['train']['w_per'] * compute_per_loss_single(img_pred_0, img_gt, vgg19) / (seq_len - 1)
134
+ else:
135
+ per_loss = torch.tensor([0.0]).cuda()
136
+
137
+ pyr_weights = [1.0, 0.5, 0.25, 0.25, 0.25]
138
+ num=5 #pyramid: 3, 4, 5
139
+ for l in range(1, num):
140
+ img_gt = downsampleX2(img_gt)
141
+ loss_L1_multiscale += pyr_weights[l] * loss_fn_L1(pred_F[l][0], img_gt, mean=True) / (num-1) / (seq_len - 1)
142
+ all_loss = rec_loss + per_loss + loss_L1_multiscale #+ loss_rep_est
143
+
144
+ # record loss
145
+ losses.update([rec_loss.item(), per_loss.item(), loss_L1_multiscale.item(), all_loss.item()])
146
+ train_writer.add_scalar('rec_loss', rec_loss.item(), n_iter)
147
+ train_writer.add_scalar('per_loss', per_loss.item(), n_iter)
148
+ train_writer.add_scalar('mulscl_loss', loss_L1_multiscale.item(), n_iter)
149
+ train_writer.add_scalar('total_loss', all_loss.item(), n_iter)
150
+
151
+ ## compute gradient and optimize
152
+ all_loss.backward()
153
+ optimizer.step()
154
+ optimizer.zero_grad()
155
+ functional.reset_net(model)
156
+
157
+ torch.cuda.synchronize()
158
+ batch_time.update(time.time() - end)
159
+ torch.cuda.synchronize()
160
+ end = time.time()
161
+ n_iter += 1
162
+
163
+ if n_iter % cfg['train']['vis_freq'] == 0:
164
+ vis_img(cfg['train']['vis_path'], img_pred_0, cfg['train']['vis_name'])
165
+
166
+ if ww % cfg['train']['print_freq'] == 0:
167
+ out_str = 'Epoch: [{:d}] [{:d}/{:d}], Iter: {:d} '.format(epoch, ww, len(train_loader), n_iter-1)
168
+ out_str += ' '.join(map('{:s} {:.4f} ({:.6f}) '.format, losses.names, losses.val, losses.avg))
169
+ out_str += 'lr {:.6f}'.format(optimizer.state_dict()['param_groups'][0]['lr'])
170
+ print(out_str)
171
+
172
+ torch.cuda.synchronize()
173
+ end = time.time()
174
+
175
+ return
176
+
177
+
178
+ def validation(cfg, test_loader, model, epoch, auto_save_path):
179
+ global n_iter
180
+ batch_time = AverageMeter()
181
+ data_time = AverageMeter()
182
+ metrics_name = ['PSNR', 'SSIM', 'LPIPS', 'AvgTime']
183
+ all_metrics = AverageMeter(i=len(metrics_name), precision=4, names=metrics_name)
184
+
185
+ timestamp1 = datetime.datetime.now().strftime('%m-%d')
186
+ timestamp2 = datetime.datetime.now().strftime('%H%M%S')
187
+
188
+ model.eval()
189
+
190
+ #lpips_loss = pyiqa.create_metric('lpips').cuda()
191
+ loss_fn_vgg = lpips.LPIPS(net='alex').cuda()
192
+
193
+ padder = InputPadder(dims=(720, 1280))
194
+
195
+ for ww, data in enumerate(test_loader, 0):
196
+ torch.cuda.synchronize()
197
+ st1 = time.time()
198
+ spikes = torch.cat([spk.cuda() for spk in data['spikes']], dim=1)
199
+ images = data['images']
200
+ torch.cuda.synchronize()
201
+ data_time.update(time.time() - st1)
202
+
203
+ seq_metrics = AverageMeter(i=len(metrics_name), precision=4, names=metrics_name)
204
+
205
+ seq_len = len(data['spikes']) - 3###corres 23th img GT
206
+
207
+ pred_gif=[]
208
+ gt_gif=[]
209
+
210
+ for jj in range(1, 1+seq_len):
211
+ x = spikes[:, jj*20-11 : jj*20+50]
212
+ x = padder.pad(x)[0]
213
+
214
+ gt = images[jj+1].cuda()
215
+
216
+ with torch.no_grad():
217
+ torch.cuda.synchronize()
218
+ st = time.time()
219
+
220
+ out = model(x)
221
+ torch.cuda.synchronize()
222
+ mtime = time.time() - st
223
+ rec = padder.unpad(out)
224
+
225
+ cur_rec = torch2numpy255(rec)
226
+ cur_gt = torch2numpy255(gt)
227
+
228
+ if not args.no_imwrite and args.eval:
229
+ save_path = osp.join(args.eval_path, timestamp1)
230
+ make_dir(save_path)
231
+ cur_vis_path = osp.join(save_path, '{:03d}_{:03d}.png'.format(ww, jj))
232
+ cv2.imwrite(cur_vis_path, cur_rec.astype(np.uint8))
233
+
234
+ pred_gif.append(cur_rec.astype(np.uint8))
235
+ gt_gif.append(cur_gt.astype(np.uint8))
236
+
237
+ cur_psnr = calculate_psnr(cur_rec, cur_gt)
238
+ cur_ssim = calculate_ssim(cur_rec, cur_gt)
239
+ with torch.no_grad():
240
+ cur_lpips = loss_fn_vgg(rec, gt)
241
+
242
+ cur_metrics_list = [cur_psnr, cur_ssim, cur_lpips.item(), mtime]
243
+ if args.eval:
244
+ print("[Seq%d, %d-th image]: PSNR:%.4f SSIM:%.4f LPIPS:%.4f Time:%.4f" % (ww, jj+2, cur_psnr, cur_ssim, cur_lpips.item(), mtime))
245
+
246
+ all_metrics.update(cur_metrics_list)
247
+ seq_metrics.update(cur_metrics_list)
248
+
249
+ functional.reset_net(model)
250
+
251
+ if args.print_details:
252
+ print('\n')
253
+ ostr = 'Data{:02d} '.format(ww) + ' '.join(map('{:s} {:.4f} '.format, seq_metrics.names, seq_metrics.avg))
254
+ print(ostr)
255
+ print()
256
+
257
+ ostr = 'All ' + ' '.join(map('{:s} {:.4f} '.format, all_metrics.names, all_metrics.avg))
258
+ print(ostr)
259
+
260
+ if args.eval:
261
+ print('\n')
262
+ else:
263
+ print('Test current epoch\n')
264
+ f_metric_avg=open(os.path.join(auto_save_path, 'ckpt_'+args.save_name+'_metric_avg.txt'), 'a+')#Save the files next to the last line
265
+ f_metric_avg.write('%s ' % (str(epoch).zfill(2)))
266
+ f_metric_avg.write(ostr)
267
+ f_metric_avg.write('\n')
268
+ f_metric_avg.close()
269
+
270
+ return
271
+
272
+
273
+ def main():
274
+ ##########################################################################################################
275
+ # Set random seeds
276
+ set_seeds(cfg['seed'])
277
+
278
+ # Create save path and logs
279
+ timestamp1 = datetime.datetime.now().strftime('%m-%d')
280
+ timestamp2 = datetime.datetime.now().strftime('%H%M%S')
281
+ if args.save_name == None:
282
+ save_folder_name = 'b{:d}_{:s}'.format(args.batch_size, timestamp2)
283
+ else:
284
+ save_folder_name = 'b{:d}_{:s}_{:s}'.format(args.batch_size, args.save_name, timestamp2)
285
+
286
+ save_path = osp.join(args.save_dir, timestamp1, save_folder_name)
287
+ print('save path: ', save_path)
288
+ if args.eval:
289
+ print('\n')
290
+ else:
291
+ make_dir(save_path)
292
+ #auto save test results during training
293
+ f_metric_avg=open(os.path.join(save_path, 'ckpt_'+args.save_name+'_metric_avg.txt'), 'w')
294
+ f_metric_avg.close()
295
+
296
+ make_dir(args.vis_path)
297
+ make_dir(args.eval_path)
298
+
299
+ train_writer = SummaryWriter(save_path)
300
+
301
+ if args.eval:
302
+ shutil.rmtree(save_path)
303
+ print('remove path: ', save_path)
304
+
305
+ cfg_str = pprint.pformat(cfg)
306
+ print('=> configurations: ')
307
+ print(cfg_str)
308
+
309
+ ##########################################################################################################
310
+ ## Create model
311
+ model = eval(args.arch)()
312
+
313
+ if args.pretrained:
314
+ network_data = torch.load(args.pretrained)
315
+ print('=> using pretrained model {:s}'.format(args.pretrained))
316
+ model = torch.nn.DataParallel(model).cuda()
317
+ model = model.cuda()
318
+ model.load_state_dict(network_data)
319
+ else:
320
+ network_data = None
321
+ print('=> train from scratch')
322
+ model.init_weights()
323
+ print('=> model params: {:.6f}M'.format(model.num_parameters()/1e6))
324
+ model = torch.nn.DataParallel(model).cuda()
325
+ model = model.cuda()
326
+
327
+ cudnn.benchmark = True
328
+
329
+ ##########################################################################################################
330
+ ## Create Optimizer
331
+ cfgopt = cfg['optimizer']
332
+ cfgmdl = cfg['model']
333
+ assert(cfgopt['solver'] in ['Adam', 'SGD'])
334
+ print('=> settings {:s} solver'.format(cfgopt['solver']))
335
+
336
+ param_groups = [{'params': model.parameters(), 'weight_decay': cfgmdl['flow_weight_decay']}]
337
+ if cfgopt['solver'] == 'Adam':
338
+ optimizer = torch.optim.Adam(param_groups, args.learning_rate, betas=(cfgopt['momentum'], cfgopt['beta']))
339
+ elif cfgopt['solver'] == 'SGD':
340
+ optimizer = torch.optim.SGD(param_groups, args.learning_rate, momentum=cfgopt['momentum'])
341
+
342
+ ##########################################################################################################
343
+ ## Dataset
344
+ train_set = sreds_train(cfg)
345
+ train_loader = torch.utils.data.DataLoader(
346
+ train_set,
347
+ drop_last=False,
348
+ batch_size=cfg['train']['batch_size'],
349
+ shuffle=True,
350
+ num_workers=cfg['train']['workers'],
351
+ # pin_memory=True
352
+ )
353
+
354
+ test_set = sreds_test(cfg)
355
+ test_loader = torch.utils.data.DataLoader(
356
+ test_set,
357
+ drop_last=False,
358
+ batch_size=1,
359
+ shuffle=False,
360
+ num_workers=cfg['train']['workers']
361
+ )
362
+
363
+ ##########################################################################################################
364
+ ## Train or Evaluate
365
+ if args.eval:
366
+ validation(cfg=cfg, test_loader=test_loader, model=model, epoch=0, auto_save_path=save_path)
367
+ else:
368
+ epoch = cfg['train']['start_epoch']
369
+ while(True):
370
+ train(
371
+ cfg=cfg,
372
+ train_loader=train_loader,
373
+ model=model,
374
+ optimizer=optimizer,
375
+ epoch=epoch,
376
+ train_writer=train_writer
377
+ )
378
+ epoch += 1
379
+
380
+ # scheduler can be added here
381
+ if epoch in args.milestones:
382
+ for param_group in optimizer.param_groups:
383
+ param_group['lr'] = param_group['lr'] * args.lr_scale_factor
384
+
385
+ # save model
386
+ if epoch % args.save_interval == 0:
387
+ model_save_name = '{:s}_epoch{:03d}.pth'.format(cfg['model']['arch'], epoch)
388
+ torch.save(model.state_dict(), osp.join(save_path, model_save_name))
389
+
390
+ if epoch % args.eval_interval == 0:
391
+ validation(cfg=cfg, test_loader=test_loader, model=model, epoch=epoch, auto_save_path=save_path)
392
+
393
+ if epoch >= cfg['train']['epochs']:
394
+ break
395
+
396
+ if __name__ == '__main__':
397
+ main()
@@ -0,0 +1,219 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torchvision.models as models
5
+ import torch.nn.functional as F
6
+
7
+ import math
8
+
9
+ from package_core.losses import *
10
+
11
+ def compute_l1_loss(img_list, gt):
12
+ l1_loss = 0.0
13
+ for img in img_list:
14
+ cur_size = img.shape[-2:]
15
+ #gt_resize = F.interpolate(gt, size=cur_size, mode="bilinear", align_corners=False)
16
+ l1_loss += (img - gt).abs().mean()
17
+
18
+ return l1_loss
19
+
20
+ def compute_per_loss_single(img, gt, vgg):
21
+ img_relu5_1 = vgg((img.repeat([1,3,1,1]) + 1.) / 2.)
22
+ with torch.no_grad():
23
+ gt_relu5_1 = vgg((gt.repeat([1,3,1,1]).detach() + 1.) / 2.)
24
+ percep_loss = F.mse_loss(img_relu5_1, gt_relu5_1)
25
+ return percep_loss
26
+
27
+ def charbonier_loss(pred_im, im_gt, epsilon=0.001, mean=True):
28
+ x = pred_im - im_gt
29
+ loss = torch.mean(torch.sqrt(x ** 2 + epsilon ** 2))
30
+ return loss
31
+
32
+ class L1Loss(nn.Module):
33
+ def __init__(self):
34
+ super(L1Loss, self).__init__()
35
+ def forward(self, output, target, weight=None, mean=False):
36
+ error = torch.abs(output - target)
37
+ if weight is not None:
38
+ error = error * weight.float()
39
+ if mean!=False:
40
+ return error.sum() / weight.float().sum()
41
+ if mean!=False:
42
+ return error.mean()
43
+ return error.sum()
44
+
45
+ class VariationLoss(nn.Module):
46
+ def __init__(self, nc, grad_fn=Grid_gradient_central_diff):
47
+ super(VariationLoss, self).__init__()
48
+ self.grad_fn = grad_fn(nc)
49
+
50
+ def forward(self, image, weight=None, mean=False):
51
+ dx, dy = self.grad_fn(image)
52
+ variation = dx**2 + dy**2
53
+
54
+ if weight is not None:
55
+ variation = variation * weight.float()
56
+ if mean!=False:
57
+ return variation.sum() / weight.sum()
58
+ if mean!=False:
59
+ return variation.mean()
60
+ return variation.sum()
61
+
62
+ class EdgeAwareVariationLoss(nn.Module):
63
+ def __init__(self, in1_nc, in2_nc, grad_fn=Grid_gradient_central_diff):
64
+ super(EdgeAwareVariationLoss, self).__init__()
65
+ self.in1_grad_fn = grad_fn(in1_nc)
66
+ self.in2_grad_fn = grad_fn(in2_nc)
67
+
68
+ def forward(self, in1, in2, mean=False):
69
+ in1_dx, in1_dy = self.in1_grad_fn(in1)
70
+ in2_dx, in2_dy = self.in2_grad_fn(in2)
71
+
72
+ abs_in1_dx, abs_in1_dy = in1_dx.abs().sum(dim=1,keepdim=True), in1_dy.abs().sum(dim=1,keepdim=True)
73
+ abs_in2_dx, abs_in2_dy = in2_dx.abs().sum(dim=1,keepdim=True), in2_dy.abs().sum(dim=1,keepdim=True)
74
+
75
+ weight_dx, weight_dy = torch.exp(-abs_in2_dx), torch.exp(-abs_in2_dy)
76
+
77
+ variation = weight_dx*abs_in1_dx + weight_dy*abs_in1_dy
78
+
79
+ if mean!=False:
80
+ return variation.mean()
81
+ return variation.sum()
82
+
83
+ class PerceptualLoss():
84
+ def contentFunc(self):
85
+ conv_3_3_layer = 14
86
+ cnn = models.vgg19(pretrained=True).features
87
+ cnn = cnn.cuda()
88
+ model = nn.Sequential()
89
+ model = model.cuda()
90
+ for i,layer in enumerate(list(cnn)):
91
+ model.add_module(str(i),layer)
92
+ if i == conv_3_3_layer:
93
+ break
94
+ return model
95
+
96
+ def __init__(self, loss):
97
+ self.criterion = loss
98
+ self.contentFunc = self.contentFunc()
99
+
100
+ def get_loss(self, fakeIm, realIm):
101
+ f_fake = self.contentFunc.forward(fakeIm)
102
+ f_real = self.contentFunc.forward(realIm)
103
+ f_real_no_grad = f_real.detach()
104
+ loss = self.criterion(f_fake, f_real_no_grad)
105
+ return loss
106
+
107
+ class SSIMLoss(nn.Module):
108
+ def __init__(self, nc=3):
109
+ super(SSIMLoss, self).__init__()
110
+ self.window_size=5
111
+ self.gaussian_img_kernel = self.create_gaussian_window(self.window_size, nc).float()
112
+
113
+ def create_gaussian_window(self, window_size, channel):
114
+ def _gaussian(window_size, sigma):
115
+ gauss = torch.Tensor(
116
+ [math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
117
+ return gauss/gauss.sum()
118
+
119
+ _1D_window = _gaussian(window_size, 1.5).unsqueeze(1)
120
+ _2D_window = _1D_window@(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
121
+ window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
122
+ return window
123
+
124
+ def forward(self, img1, img2, mask=None):
125
+ self.gaussian_img_kernel = self.gaussian_img_kernel.to(img1.device)
126
+
127
+ params = {'weight': self.gaussian_img_kernel,
128
+ 'groups': 3, 'padding': self.window_size//2}
129
+ mu1 = F.conv2d(img1, **params)
130
+ mu2 = F.conv2d(img2, **params)
131
+
132
+ mu1_sq = mu1.pow(2)
133
+ mu2_sq = mu2.pow(2)
134
+ mu1_mu2 = mu1*mu2
135
+
136
+ sigma1_sq = F.conv2d(img1*img1, **params) - mu1_sq
137
+ sigma2_sq = F.conv2d(img2*img2, **params) - mu2_sq
138
+ sigma12 = F.conv2d(img1*img2, **params) - mu1_mu2
139
+
140
+ C1 = 0.01**2
141
+ C2 = 0.03**2
142
+
143
+ ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
144
+
145
+ if mask is not None:
146
+ ssim_map = ssim_map * mask
147
+
148
+ return (1.-ssim_map.mean())*0.5
149
+
150
+ def EPE3D_loss(input_flow, target_flow, mask=None):
151
+ """
152
+ :param the estimated optical / scene flow
153
+ :param the ground truth / target optical / scene flow
154
+ :param the mask, the mask has value 0 for all areas that are invalid
155
+ """
156
+ invalid = None
157
+ if mask is not None:
158
+ invalid = 1.-mask
159
+
160
+ epe_map = torch.norm(target_flow-input_flow,p=2,dim=1)
161
+ B = epe_map.shape[0]
162
+
163
+ invalid_flow = (target_flow != target_flow) # check Nan same as torch.isnan
164
+
165
+ mask = (invalid_flow[:,0,:,:] | invalid_flow[:,1,:,:] | invalid_flow[:,2,:,:])
166
+ if invalid is not None:
167
+ mask = mask | (invalid.view(mask.shape) > 0)
168
+
169
+ epes = []
170
+ for idx in range(B):
171
+ epe_sample = epe_map[idx][~mask[idx].data]
172
+ if len(epe_sample) == 0:
173
+ epes.append(torch.zeros(()).type_as(input_flow))
174
+ else:
175
+ epes.append(epe_sample.mean())
176
+
177
+ return torch.stack(epes)
178
+
179
+ def compute_RT_EPE_loss(T_est, T_gt, depth0, K, mask=None):
180
+ """ Compute the epe point error of rotation & translation
181
+ :param estimated rotation matrix Bx3x3
182
+ :param estimated translation vector Bx3
183
+ :param ground truth rotation matrix Bx3x3
184
+ :param ground truth translation vector Bx3
185
+ :param reference depth image,
186
+ :param camera intrinsic
187
+ """
188
+ R_est = T_est[:,:3,:3]
189
+ t_est = T_est[:,:3,3]
190
+ R_gt = T_gt[:,:3,:3]
191
+ t_gt = T_gt[:,:3,3]
192
+
193
+ loss = 0
194
+ if R_est.dim() > 3: # training time [batch, num_poses, rot_row, rot_col]
195
+ rH, rW = 60, 80 # we train the algorithm using a downsized input, (since the size of the input is not super important at training time)
196
+
197
+ B,C,H,W = depth0.shape
198
+ rdepth = func.interpolate(depth0, size=(rH, rW), mode='bilinear')
199
+ rmask = func.interpolate(mask.float(), size=(rH,rW), mode='bilinear')
200
+ rK = K.clone()
201
+ rK[:,0] *= float(rW) / W
202
+ rK[:,1] *= float(rH) / H
203
+ rK[:,2] *= float(rW) / W
204
+ rK[:,3] *= float(rH) / H
205
+ xyz = batch_inverse_project(rdepth, rK)
206
+ flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
207
+
208
+ for idx in range(R_est.shape[1]):
209
+ flow_est= batch_transform_xyz(xyz, R_est[:,idx], t_est[:,idx], get_Jacobian=False)
210
+ loss += EPE3D_loss(flow_est, flow_gt.detach(), rmask) #* (1<<idx) scaling does not help that much
211
+ else:
212
+ xyz = batch_inverse_project(depth0, K)
213
+ flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
214
+
215
+ flow_est= batch_transform_xyz(xyz, R_est, t_est, get_Jacobian=False)
216
+ loss = EPE3D_loss(flow_est, flow_gt, mask)
217
+
218
+ loss = loss.sum()/float(len(loss))
219
+ return loss
@@ -0,0 +1,22 @@
1
+ import math
2
+ import numpy as np
3
+
4
+ # --------------------------------------------
5
+ # PSNR
6
+ # --------------------------------------------
7
+ def calculate_psnr(img1, img2, border=0):
8
+ # img1 and img2 have range [0, 255]
9
+ #img1 = img1.squeeze()
10
+ #img2 = img2.squeeze()
11
+ if not img1.shape == img2.shape:
12
+ raise ValueError('Input images must have the same dimensions.')
13
+ h, w = img1.shape[:2]
14
+ img1 = img1[border:h-border, border:w-border]
15
+ img2 = img2[border:h-border, border:w-border]
16
+
17
+ img1 = img1.astype(np.float64)
18
+ img2 = img2.astype(np.float64)
19
+ mse = np.mean((img1 - img2)**2)
20
+ if mse == 0:
21
+ return float('inf')
22
+ return 20 * math.log10(255.0 / math.sqrt(mse))
@@ -0,0 +1,54 @@
1
+ import numpy as np
2
+ import cv2
3
+
4
+ # --------------------------------------------
5
+ # SSIM
6
+ # --------------------------------------------
7
+ def calculate_ssim(img1, img2, border=0):
8
+ '''calculate SSIM
9
+ the same outputs as MATLAB's
10
+ img1, img2: [0, 255]
11
+ '''
12
+ #img1 = img1.squeeze()
13
+ #img2 = img2.squeeze()
14
+ if not img1.shape == img2.shape:
15
+ raise ValueError('Input images must have the same dimensions.')
16
+ h, w = img1.shape[:2]
17
+ img1 = img1[border:h-border, border:w-border]
18
+ img2 = img2[border:h-border, border:w-border]
19
+
20
+ if img1.ndim == 2:
21
+ return ssim(img1, img2)
22
+ elif img1.ndim == 3:
23
+ if img1.shape[2] == 3:
24
+ ssims = []
25
+ for i in range(3):
26
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
27
+ return np.array(ssims).mean()
28
+ elif img1.shape[2] == 1:
29
+ return ssim(np.squeeze(img1), np.squeeze(img2))
30
+ else:
31
+ raise ValueError('Wrong input image dimensions.')
32
+
33
+
34
+ def ssim(img1, img2):
35
+ C1 = (0.01 * 255)**2
36
+ C2 = (0.03 * 255)**2
37
+
38
+ img1 = img1.astype(np.float64)
39
+ img2 = img2.astype(np.float64)
40
+ kernel = cv2.getGaussianKernel(11, 1.5)
41
+ window = np.outer(kernel, kernel.transpose())
42
+
43
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
44
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
45
+ mu1_sq = mu1**2
46
+ mu2_sq = mu2**2
47
+ mu1_mu2 = mu1 * mu2
48
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
49
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
50
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
51
+
52
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
53
+ (sigma1_sq + sigma2_sq + C2))
54
+ return ssim_map.mean()