spikezoo 0.1.2__py3-none-any.whl → 0.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- spikezoo/__init__.py +13 -0
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/base/nets.py +34 -0
- spikezoo/archs/bsf/README.md +92 -0
- spikezoo/archs/bsf/datasets/datasets.py +328 -0
- spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
- spikezoo/archs/bsf/main.py +398 -0
- spikezoo/archs/bsf/metrics/psnr.py +22 -0
- spikezoo/archs/bsf/metrics/ssim.py +54 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/align.py +154 -0
- spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
- spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
- spikezoo/archs/bsf/models/bsf/rep.py +44 -0
- spikezoo/archs/bsf/models/get_model.py +7 -0
- spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
- spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
- spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
- spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
- spikezoo/archs/bsf/requirements.txt +9 -0
- spikezoo/archs/bsf/test.py +16 -0
- spikezoo/archs/bsf/utils.py +154 -0
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spikeclip/nets.py +40 -0
- spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
- spikezoo/archs/spikeformer/EvalResults/readme +1 -0
- spikezoo/archs/spikeformer/LICENSE +21 -0
- spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
- spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/Loss.py +89 -0
- spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
- spikezoo/archs/spikeformer/Model/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/README.md +30 -0
- spikezoo/archs/spikeformer/evaluate.py +87 -0
- spikezoo/archs/spikeformer/recon_real_data.py +97 -0
- spikezoo/archs/spikeformer/requirements.yml +95 -0
- spikezoo/archs/spikeformer/train.py +173 -0
- spikezoo/archs/spikeformer/utils.py +22 -0
- spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
- spikezoo/archs/spk2imgnet/.gitignore +150 -0
- spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/align_arch.py +159 -0
- spikezoo/archs/spk2imgnet/dataset.py +144 -0
- spikezoo/archs/spk2imgnet/nets.py +230 -0
- spikezoo/archs/spk2imgnet/readme.md +86 -0
- spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
- spikezoo/archs/spk2imgnet/train.py +189 -0
- spikezoo/archs/spk2imgnet/utils.py +64 -0
- spikezoo/archs/ssir/README.md +87 -0
- spikezoo/archs/ssir/configs/SSIR.yml +37 -0
- spikezoo/archs/ssir/configs/yml_parser.py +78 -0
- spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
- spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
- spikezoo/archs/ssir/losses.py +21 -0
- spikezoo/archs/ssir/main.py +326 -0
- spikezoo/archs/ssir/metrics/psnr.py +22 -0
- spikezoo/archs/ssir/metrics/ssim.py +54 -0
- spikezoo/archs/ssir/models/Vgg19.py +42 -0
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/layers.py +110 -0
- spikezoo/archs/ssir/models/networks.py +61 -0
- spikezoo/archs/ssir/requirements.txt +8 -0
- spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
- spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
- spikezoo/archs/ssir/test.py +3 -0
- spikezoo/archs/ssir/utils.py +154 -0
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/cbam.py +224 -0
- spikezoo/archs/ssml/model.py +290 -0
- spikezoo/archs/ssml/res.png +0 -0
- spikezoo/archs/ssml/test.py +67 -0
- spikezoo/archs/stir/.git-credentials +0 -0
- spikezoo/archs/stir/README.md +65 -0
- spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
- spikezoo/archs/stir/configs/STIR.yml +37 -0
- spikezoo/archs/stir/configs/utils.py +155 -0
- spikezoo/archs/stir/configs/yml_parser.py +78 -0
- spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
- spikezoo/archs/stir/datasets/ds_utils.py +66 -0
- spikezoo/archs/stir/eval_SREDS.sh +5 -0
- spikezoo/archs/stir/main.py +397 -0
- spikezoo/archs/stir/metrics/losses.py +219 -0
- spikezoo/archs/stir/metrics/psnr.py +22 -0
- spikezoo/archs/stir/metrics/ssim.py +54 -0
- spikezoo/archs/stir/models/Vgg19.py +42 -0
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/networks_STIR.py +361 -0
- spikezoo/archs/stir/models/submodules.py +86 -0
- spikezoo/archs/stir/models/transformer_new.py +151 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
- spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
- spikezoo/archs/stir/package_core/setup.py +5 -0
- spikezoo/archs/stir/requirements.txt +12 -0
- spikezoo/archs/stir/train_STIR.sh +9 -0
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfi/nets.py +43 -0
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfp/nets.py +13 -0
- spikezoo/archs/wgse/README.md +64 -0
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/dataset.py +59 -0
- spikezoo/archs/wgse/demo.png +0 -0
- spikezoo/archs/wgse/demo.py +83 -0
- spikezoo/archs/wgse/dwtnets.py +145 -0
- spikezoo/archs/wgse/eval.py +133 -0
- spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
- spikezoo/archs/wgse/submodules.py +68 -0
- spikezoo/archs/wgse/train.py +261 -0
- spikezoo/archs/wgse/transform.py +139 -0
- spikezoo/archs/wgse/utils.py +128 -0
- spikezoo/archs/wgse/weights/demo.png +0 -0
- spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
- spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
- spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
- spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
- spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
- spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
- spikezoo/datasets/base_dataset.py +2 -3
- spikezoo/metrics/__init__.py +1 -1
- spikezoo/models/base_model.py +1 -3
- spikezoo/pipeline/base_pipeline.py +7 -5
- spikezoo/pipeline/train_pipeline.py +1 -1
- spikezoo/utils/other_utils.py +16 -6
- spikezoo/utils/spike_utils.py +33 -29
- spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
- spikezoo-0.2.dist-info/METADATA +163 -0
- spikezoo-0.2.dist-info/RECORD +211 -0
- spikezoo/models/spcsnet_model.py +0 -19
- spikezoo-0.1.2.dist-info/METADATA +0 -39
- spikezoo-0.1.2.dist-info/RECORD +0 -36
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/LICENSE.txt +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/WHEEL +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,397 @@
|
|
1
|
+
import argparse
|
2
|
+
import os
|
3
|
+
import os.path as osp
|
4
|
+
import shutil
|
5
|
+
import time
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
import torch.optim
|
9
|
+
import torch.backends.cudnn as cudnn
|
10
|
+
from tensorboardX import SummaryWriter
|
11
|
+
from thop import profile
|
12
|
+
import pprint
|
13
|
+
import datetime
|
14
|
+
import lpips
|
15
|
+
# import pyiqa
|
16
|
+
# import cpbd
|
17
|
+
import imageio
|
18
|
+
from configs.yml_parser import *
|
19
|
+
from datasets.dataset_sreds import *
|
20
|
+
from configs.utils import *
|
21
|
+
from metrics.psnr import *
|
22
|
+
from metrics.ssim import *
|
23
|
+
from metrics.losses import *
|
24
|
+
from models.Vgg19 import *
|
25
|
+
from spikingjelly.clock_driven import functional
|
26
|
+
|
27
|
+
os.environ["KMP_BLOCKTIME"] = "0"
|
28
|
+
os.environ["OMP_NUM_THREADS"] = "1"
|
29
|
+
torch.set_num_threads(1)
|
30
|
+
|
31
|
+
from models.networks_STIR import *
|
32
|
+
|
33
|
+
parser = argparse.ArgumentParser()
|
34
|
+
|
35
|
+
parser.add_argument('--data_root', '-dr', type=str, default='/data/local_userdata/fanbin/REDS_dataset/REDS120fps')
|
36
|
+
parser.add_argument('--arch', '-a', type=str, default='STIR')
|
37
|
+
parser.add_argument('--batch_size', '-b', type=int, default=8)
|
38
|
+
parser.add_argument('--learning_rate', '-lr', type=float, default=1e-4)
|
39
|
+
parser.add_argument('--configs', '-cfg', type=str, default='./configs/STIR.yml')
|
40
|
+
parser.add_argument('--epochs', '-ep', type=int, default=100)
|
41
|
+
parser.add_argument('--epoch_size', '-es', type=int, default=1000)
|
42
|
+
parser.add_argument('--workers', '-j', type=int, default=8)
|
43
|
+
parser.add_argument('--pretrained', '-prt', type=str, default=None)
|
44
|
+
parser.add_argument('--start_epoch', '-sep', type=int, default=0)
|
45
|
+
parser.add_argument('--print_freq', '-pf', type=int, default=1)
|
46
|
+
parser.add_argument('--save_dir', '-sd', type=str, default='ckpt_outputs')
|
47
|
+
parser.add_argument('--save_name', '-sn', type=str, default='t1')
|
48
|
+
parser.add_argument('--vis_path', '-vp', type=str, default='vis_train')
|
49
|
+
parser.add_argument('--vis_name', '-vn', type=str, default='STIR_train')
|
50
|
+
parser.add_argument('--eval_path', '-evp', type=str, default='vis_eval')
|
51
|
+
parser.add_argument('--vis_freq', '-vf', type=int, default=200)
|
52
|
+
parser.add_argument('--eval', '-e', action='store_true')
|
53
|
+
parser.add_argument('--w_per', '-wper', type=float, default=0.2)
|
54
|
+
parser.add_argument('--print_details', '-pd', action='store_true')
|
55
|
+
parser.add_argument('--milestones', default=[20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70], metavar='N', nargs='*')
|
56
|
+
parser.add_argument('--lr_scale_factor', '-lrsf', type=float, default=0.7)
|
57
|
+
parser.add_argument('--eval_interval', '-ei', type=int, default=5)
|
58
|
+
parser.add_argument('--save_interval', '-si', type=int, default=5)
|
59
|
+
parser.add_argument('--no_imwrite', action='store_true', default=False)
|
60
|
+
args = parser.parse_args()
|
61
|
+
|
62
|
+
args.milestones = [int(m) for m in args.milestones]
|
63
|
+
print('milstones', args.milestones)
|
64
|
+
|
65
|
+
cfg_parser = YAMLParser(args.configs)
|
66
|
+
cfg = cfg_parser.config
|
67
|
+
|
68
|
+
cfg['data']['root'] = args.data_root
|
69
|
+
cfg = add_args_to_cfg(cfg, args, ['batch_size', 'arch', 'learning_rate', 'configs', 'epochs', 'epoch_size', 'workers', 'pretrained', 'start_epoch',
|
70
|
+
'print_freq', 'save_dir', 'save_name', 'vis_path', 'vis_name', 'eval_path', 'vis_freq', 'w_per'])
|
71
|
+
|
72
|
+
n_iter = 0
|
73
|
+
|
74
|
+
|
75
|
+
def train(cfg, train_loader, model, optimizer, epoch, train_writer):
|
76
|
+
######################################################################
|
77
|
+
## Init
|
78
|
+
global n_iter
|
79
|
+
batch_time = AverageMeter()
|
80
|
+
data_time = AverageMeter()
|
81
|
+
losses_name = ['rec_loss', 'per_loss', 'mulscl_loss', 'all_loss']
|
82
|
+
losses = AverageMeter(precision=6, i=len(losses_name), names=losses_name)
|
83
|
+
model.train()
|
84
|
+
torch.cuda.synchronize()
|
85
|
+
end = time.time()
|
86
|
+
|
87
|
+
vgg19 = Vgg19(requires_grad=False).cuda()
|
88
|
+
if torch.cuda.device_count() > 1:
|
89
|
+
vgg19 = nn.DataParallel(vgg19, list(range(torch.cuda.device_count())))
|
90
|
+
|
91
|
+
loss_fn_tv2 = VariationLoss(nc=2).cuda()
|
92
|
+
downsampleX2 = nn.AvgPool2d(2, stride=2).cuda()
|
93
|
+
loss_fn_L1 = L1Loss()
|
94
|
+
|
95
|
+
######################################################################
|
96
|
+
## Training Loop
|
97
|
+
|
98
|
+
for ww, data in enumerate(train_loader, 0):
|
99
|
+
|
100
|
+
if ww >= args.epoch_size:
|
101
|
+
return
|
102
|
+
|
103
|
+
spikes = [spk.cuda() for spk in data['spikes']]
|
104
|
+
images = [img.cuda() for img in data['images']]
|
105
|
+
torch.cuda.synchronize()
|
106
|
+
data_time.update(time.time() - end)
|
107
|
+
|
108
|
+
cur_spks = torch.cat(spikes, dim=1)
|
109
|
+
|
110
|
+
rec_loss = 0.0
|
111
|
+
per_loss = 0.0
|
112
|
+
loss_L1_multiscale = 0.0
|
113
|
+
loss_rep_est = 0.0
|
114
|
+
|
115
|
+
seq_len = len(data['spikes']) - 3###corres 23th img GT
|
116
|
+
|
117
|
+
for jj in range(1, 1+seq_len):
|
118
|
+
x = cur_spks[:, jj*20-11 : jj*20+50]
|
119
|
+
|
120
|
+
img_gt = images[jj+1]
|
121
|
+
|
122
|
+
img_pred_0, Fs_lv_0, Fs_lv_1, Fs_lv_2, Fs_lv_3, Fs_lv_4, Est = model(x)
|
123
|
+
pred_F = [Fs_lv_0]
|
124
|
+
pred_F.append(Fs_lv_1)
|
125
|
+
pred_F.append(Fs_lv_2)
|
126
|
+
pred_F.append(Fs_lv_3)
|
127
|
+
pred_F.append(Fs_lv_4)
|
128
|
+
|
129
|
+
# if jj > 1+2:
|
130
|
+
if jj >= 2:
|
131
|
+
rec_loss += loss_fn_L1(img_pred_0, img_gt, mean=True) / (seq_len - 1)
|
132
|
+
if cfg['train']['w_per'] > 0:
|
133
|
+
per_loss += cfg['train']['w_per'] * compute_per_loss_single(img_pred_0, img_gt, vgg19) / (seq_len - 1)
|
134
|
+
else:
|
135
|
+
per_loss = torch.tensor([0.0]).cuda()
|
136
|
+
|
137
|
+
pyr_weights = [1.0, 0.5, 0.25, 0.25, 0.25]
|
138
|
+
num=5 #pyramid: 3, 4, 5
|
139
|
+
for l in range(1, num):
|
140
|
+
img_gt = downsampleX2(img_gt)
|
141
|
+
loss_L1_multiscale += pyr_weights[l] * loss_fn_L1(pred_F[l][0], img_gt, mean=True) / (num-1) / (seq_len - 1)
|
142
|
+
all_loss = rec_loss + per_loss + loss_L1_multiscale #+ loss_rep_est
|
143
|
+
|
144
|
+
# record loss
|
145
|
+
losses.update([rec_loss.item(), per_loss.item(), loss_L1_multiscale.item(), all_loss.item()])
|
146
|
+
train_writer.add_scalar('rec_loss', rec_loss.item(), n_iter)
|
147
|
+
train_writer.add_scalar('per_loss', per_loss.item(), n_iter)
|
148
|
+
train_writer.add_scalar('mulscl_loss', loss_L1_multiscale.item(), n_iter)
|
149
|
+
train_writer.add_scalar('total_loss', all_loss.item(), n_iter)
|
150
|
+
|
151
|
+
## compute gradient and optimize
|
152
|
+
all_loss.backward()
|
153
|
+
optimizer.step()
|
154
|
+
optimizer.zero_grad()
|
155
|
+
functional.reset_net(model)
|
156
|
+
|
157
|
+
torch.cuda.synchronize()
|
158
|
+
batch_time.update(time.time() - end)
|
159
|
+
torch.cuda.synchronize()
|
160
|
+
end = time.time()
|
161
|
+
n_iter += 1
|
162
|
+
|
163
|
+
if n_iter % cfg['train']['vis_freq'] == 0:
|
164
|
+
vis_img(cfg['train']['vis_path'], img_pred_0, cfg['train']['vis_name'])
|
165
|
+
|
166
|
+
if ww % cfg['train']['print_freq'] == 0:
|
167
|
+
out_str = 'Epoch: [{:d}] [{:d}/{:d}], Iter: {:d} '.format(epoch, ww, len(train_loader), n_iter-1)
|
168
|
+
out_str += ' '.join(map('{:s} {:.4f} ({:.6f}) '.format, losses.names, losses.val, losses.avg))
|
169
|
+
out_str += 'lr {:.6f}'.format(optimizer.state_dict()['param_groups'][0]['lr'])
|
170
|
+
print(out_str)
|
171
|
+
|
172
|
+
torch.cuda.synchronize()
|
173
|
+
end = time.time()
|
174
|
+
|
175
|
+
return
|
176
|
+
|
177
|
+
|
178
|
+
def validation(cfg, test_loader, model, epoch, auto_save_path):
|
179
|
+
global n_iter
|
180
|
+
batch_time = AverageMeter()
|
181
|
+
data_time = AverageMeter()
|
182
|
+
metrics_name = ['PSNR', 'SSIM', 'LPIPS', 'AvgTime']
|
183
|
+
all_metrics = AverageMeter(i=len(metrics_name), precision=4, names=metrics_name)
|
184
|
+
|
185
|
+
timestamp1 = datetime.datetime.now().strftime('%m-%d')
|
186
|
+
timestamp2 = datetime.datetime.now().strftime('%H%M%S')
|
187
|
+
|
188
|
+
model.eval()
|
189
|
+
|
190
|
+
#lpips_loss = pyiqa.create_metric('lpips').cuda()
|
191
|
+
loss_fn_vgg = lpips.LPIPS(net='alex').cuda()
|
192
|
+
|
193
|
+
padder = InputPadder(dims=(720, 1280))
|
194
|
+
|
195
|
+
for ww, data in enumerate(test_loader, 0):
|
196
|
+
torch.cuda.synchronize()
|
197
|
+
st1 = time.time()
|
198
|
+
spikes = torch.cat([spk.cuda() for spk in data['spikes']], dim=1)
|
199
|
+
images = data['images']
|
200
|
+
torch.cuda.synchronize()
|
201
|
+
data_time.update(time.time() - st1)
|
202
|
+
|
203
|
+
seq_metrics = AverageMeter(i=len(metrics_name), precision=4, names=metrics_name)
|
204
|
+
|
205
|
+
seq_len = len(data['spikes']) - 3###corres 23th img GT
|
206
|
+
|
207
|
+
pred_gif=[]
|
208
|
+
gt_gif=[]
|
209
|
+
|
210
|
+
for jj in range(1, 1+seq_len):
|
211
|
+
x = spikes[:, jj*20-11 : jj*20+50]
|
212
|
+
x = padder.pad(x)[0]
|
213
|
+
|
214
|
+
gt = images[jj+1].cuda()
|
215
|
+
|
216
|
+
with torch.no_grad():
|
217
|
+
torch.cuda.synchronize()
|
218
|
+
st = time.time()
|
219
|
+
|
220
|
+
out = model(x)
|
221
|
+
torch.cuda.synchronize()
|
222
|
+
mtime = time.time() - st
|
223
|
+
rec = padder.unpad(out)
|
224
|
+
|
225
|
+
cur_rec = torch2numpy255(rec)
|
226
|
+
cur_gt = torch2numpy255(gt)
|
227
|
+
|
228
|
+
if not args.no_imwrite and args.eval:
|
229
|
+
save_path = osp.join(args.eval_path, timestamp1)
|
230
|
+
make_dir(save_path)
|
231
|
+
cur_vis_path = osp.join(save_path, '{:03d}_{:03d}.png'.format(ww, jj))
|
232
|
+
cv2.imwrite(cur_vis_path, cur_rec.astype(np.uint8))
|
233
|
+
|
234
|
+
pred_gif.append(cur_rec.astype(np.uint8))
|
235
|
+
gt_gif.append(cur_gt.astype(np.uint8))
|
236
|
+
|
237
|
+
cur_psnr = calculate_psnr(cur_rec, cur_gt)
|
238
|
+
cur_ssim = calculate_ssim(cur_rec, cur_gt)
|
239
|
+
with torch.no_grad():
|
240
|
+
cur_lpips = loss_fn_vgg(rec, gt)
|
241
|
+
|
242
|
+
cur_metrics_list = [cur_psnr, cur_ssim, cur_lpips.item(), mtime]
|
243
|
+
if args.eval:
|
244
|
+
print("[Seq%d, %d-th image]: PSNR:%.4f SSIM:%.4f LPIPS:%.4f Time:%.4f" % (ww, jj+2, cur_psnr, cur_ssim, cur_lpips.item(), mtime))
|
245
|
+
|
246
|
+
all_metrics.update(cur_metrics_list)
|
247
|
+
seq_metrics.update(cur_metrics_list)
|
248
|
+
|
249
|
+
functional.reset_net(model)
|
250
|
+
|
251
|
+
if args.print_details:
|
252
|
+
print('\n')
|
253
|
+
ostr = 'Data{:02d} '.format(ww) + ' '.join(map('{:s} {:.4f} '.format, seq_metrics.names, seq_metrics.avg))
|
254
|
+
print(ostr)
|
255
|
+
print()
|
256
|
+
|
257
|
+
ostr = 'All ' + ' '.join(map('{:s} {:.4f} '.format, all_metrics.names, all_metrics.avg))
|
258
|
+
print(ostr)
|
259
|
+
|
260
|
+
if args.eval:
|
261
|
+
print('\n')
|
262
|
+
else:
|
263
|
+
print('Test current epoch\n')
|
264
|
+
f_metric_avg=open(os.path.join(auto_save_path, 'ckpt_'+args.save_name+'_metric_avg.txt'), 'a+')#Save the files next to the last line
|
265
|
+
f_metric_avg.write('%s ' % (str(epoch).zfill(2)))
|
266
|
+
f_metric_avg.write(ostr)
|
267
|
+
f_metric_avg.write('\n')
|
268
|
+
f_metric_avg.close()
|
269
|
+
|
270
|
+
return
|
271
|
+
|
272
|
+
|
273
|
+
def main():
|
274
|
+
##########################################################################################################
|
275
|
+
# Set random seeds
|
276
|
+
set_seeds(cfg['seed'])
|
277
|
+
|
278
|
+
# Create save path and logs
|
279
|
+
timestamp1 = datetime.datetime.now().strftime('%m-%d')
|
280
|
+
timestamp2 = datetime.datetime.now().strftime('%H%M%S')
|
281
|
+
if args.save_name == None:
|
282
|
+
save_folder_name = 'b{:d}_{:s}'.format(args.batch_size, timestamp2)
|
283
|
+
else:
|
284
|
+
save_folder_name = 'b{:d}_{:s}_{:s}'.format(args.batch_size, args.save_name, timestamp2)
|
285
|
+
|
286
|
+
save_path = osp.join(args.save_dir, timestamp1, save_folder_name)
|
287
|
+
print('save path: ', save_path)
|
288
|
+
if args.eval:
|
289
|
+
print('\n')
|
290
|
+
else:
|
291
|
+
make_dir(save_path)
|
292
|
+
#auto save test results during training
|
293
|
+
f_metric_avg=open(os.path.join(save_path, 'ckpt_'+args.save_name+'_metric_avg.txt'), 'w')
|
294
|
+
f_metric_avg.close()
|
295
|
+
|
296
|
+
make_dir(args.vis_path)
|
297
|
+
make_dir(args.eval_path)
|
298
|
+
|
299
|
+
train_writer = SummaryWriter(save_path)
|
300
|
+
|
301
|
+
if args.eval:
|
302
|
+
shutil.rmtree(save_path)
|
303
|
+
print('remove path: ', save_path)
|
304
|
+
|
305
|
+
cfg_str = pprint.pformat(cfg)
|
306
|
+
print('=> configurations: ')
|
307
|
+
print(cfg_str)
|
308
|
+
|
309
|
+
##########################################################################################################
|
310
|
+
## Create model
|
311
|
+
model = eval(args.arch)()
|
312
|
+
|
313
|
+
if args.pretrained:
|
314
|
+
network_data = torch.load(args.pretrained)
|
315
|
+
print('=> using pretrained model {:s}'.format(args.pretrained))
|
316
|
+
model = torch.nn.DataParallel(model).cuda()
|
317
|
+
model = model.cuda()
|
318
|
+
model.load_state_dict(network_data)
|
319
|
+
else:
|
320
|
+
network_data = None
|
321
|
+
print('=> train from scratch')
|
322
|
+
model.init_weights()
|
323
|
+
print('=> model params: {:.6f}M'.format(model.num_parameters()/1e6))
|
324
|
+
model = torch.nn.DataParallel(model).cuda()
|
325
|
+
model = model.cuda()
|
326
|
+
|
327
|
+
cudnn.benchmark = True
|
328
|
+
|
329
|
+
##########################################################################################################
|
330
|
+
## Create Optimizer
|
331
|
+
cfgopt = cfg['optimizer']
|
332
|
+
cfgmdl = cfg['model']
|
333
|
+
assert(cfgopt['solver'] in ['Adam', 'SGD'])
|
334
|
+
print('=> settings {:s} solver'.format(cfgopt['solver']))
|
335
|
+
|
336
|
+
param_groups = [{'params': model.parameters(), 'weight_decay': cfgmdl['flow_weight_decay']}]
|
337
|
+
if cfgopt['solver'] == 'Adam':
|
338
|
+
optimizer = torch.optim.Adam(param_groups, args.learning_rate, betas=(cfgopt['momentum'], cfgopt['beta']))
|
339
|
+
elif cfgopt['solver'] == 'SGD':
|
340
|
+
optimizer = torch.optim.SGD(param_groups, args.learning_rate, momentum=cfgopt['momentum'])
|
341
|
+
|
342
|
+
##########################################################################################################
|
343
|
+
## Dataset
|
344
|
+
train_set = sreds_train(cfg)
|
345
|
+
train_loader = torch.utils.data.DataLoader(
|
346
|
+
train_set,
|
347
|
+
drop_last=False,
|
348
|
+
batch_size=cfg['train']['batch_size'],
|
349
|
+
shuffle=True,
|
350
|
+
num_workers=cfg['train']['workers'],
|
351
|
+
# pin_memory=True
|
352
|
+
)
|
353
|
+
|
354
|
+
test_set = sreds_test(cfg)
|
355
|
+
test_loader = torch.utils.data.DataLoader(
|
356
|
+
test_set,
|
357
|
+
drop_last=False,
|
358
|
+
batch_size=1,
|
359
|
+
shuffle=False,
|
360
|
+
num_workers=cfg['train']['workers']
|
361
|
+
)
|
362
|
+
|
363
|
+
##########################################################################################################
|
364
|
+
## Train or Evaluate
|
365
|
+
if args.eval:
|
366
|
+
validation(cfg=cfg, test_loader=test_loader, model=model, epoch=0, auto_save_path=save_path)
|
367
|
+
else:
|
368
|
+
epoch = cfg['train']['start_epoch']
|
369
|
+
while(True):
|
370
|
+
train(
|
371
|
+
cfg=cfg,
|
372
|
+
train_loader=train_loader,
|
373
|
+
model=model,
|
374
|
+
optimizer=optimizer,
|
375
|
+
epoch=epoch,
|
376
|
+
train_writer=train_writer
|
377
|
+
)
|
378
|
+
epoch += 1
|
379
|
+
|
380
|
+
# scheduler can be added here
|
381
|
+
if epoch in args.milestones:
|
382
|
+
for param_group in optimizer.param_groups:
|
383
|
+
param_group['lr'] = param_group['lr'] * args.lr_scale_factor
|
384
|
+
|
385
|
+
# save model
|
386
|
+
if epoch % args.save_interval == 0:
|
387
|
+
model_save_name = '{:s}_epoch{:03d}.pth'.format(cfg['model']['arch'], epoch)
|
388
|
+
torch.save(model.state_dict(), osp.join(save_path, model_save_name))
|
389
|
+
|
390
|
+
if epoch % args.eval_interval == 0:
|
391
|
+
validation(cfg=cfg, test_loader=test_loader, model=model, epoch=epoch, auto_save_path=save_path)
|
392
|
+
|
393
|
+
if epoch >= cfg['train']['epochs']:
|
394
|
+
break
|
395
|
+
|
396
|
+
if __name__ == '__main__':
|
397
|
+
main()
|
@@ -0,0 +1,219 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn as nn
|
3
|
+
import torch.nn.functional as F
|
4
|
+
import torchvision.models as models
|
5
|
+
import torch.nn.functional as F
|
6
|
+
|
7
|
+
import math
|
8
|
+
|
9
|
+
from package_core.losses import *
|
10
|
+
|
11
|
+
def compute_l1_loss(img_list, gt):
|
12
|
+
l1_loss = 0.0
|
13
|
+
for img in img_list:
|
14
|
+
cur_size = img.shape[-2:]
|
15
|
+
#gt_resize = F.interpolate(gt, size=cur_size, mode="bilinear", align_corners=False)
|
16
|
+
l1_loss += (img - gt).abs().mean()
|
17
|
+
|
18
|
+
return l1_loss
|
19
|
+
|
20
|
+
def compute_per_loss_single(img, gt, vgg):
|
21
|
+
img_relu5_1 = vgg((img.repeat([1,3,1,1]) + 1.) / 2.)
|
22
|
+
with torch.no_grad():
|
23
|
+
gt_relu5_1 = vgg((gt.repeat([1,3,1,1]).detach() + 1.) / 2.)
|
24
|
+
percep_loss = F.mse_loss(img_relu5_1, gt_relu5_1)
|
25
|
+
return percep_loss
|
26
|
+
|
27
|
+
def charbonier_loss(pred_im, im_gt, epsilon=0.001, mean=True):
|
28
|
+
x = pred_im - im_gt
|
29
|
+
loss = torch.mean(torch.sqrt(x ** 2 + epsilon ** 2))
|
30
|
+
return loss
|
31
|
+
|
32
|
+
class L1Loss(nn.Module):
|
33
|
+
def __init__(self):
|
34
|
+
super(L1Loss, self).__init__()
|
35
|
+
def forward(self, output, target, weight=None, mean=False):
|
36
|
+
error = torch.abs(output - target)
|
37
|
+
if weight is not None:
|
38
|
+
error = error * weight.float()
|
39
|
+
if mean!=False:
|
40
|
+
return error.sum() / weight.float().sum()
|
41
|
+
if mean!=False:
|
42
|
+
return error.mean()
|
43
|
+
return error.sum()
|
44
|
+
|
45
|
+
class VariationLoss(nn.Module):
|
46
|
+
def __init__(self, nc, grad_fn=Grid_gradient_central_diff):
|
47
|
+
super(VariationLoss, self).__init__()
|
48
|
+
self.grad_fn = grad_fn(nc)
|
49
|
+
|
50
|
+
def forward(self, image, weight=None, mean=False):
|
51
|
+
dx, dy = self.grad_fn(image)
|
52
|
+
variation = dx**2 + dy**2
|
53
|
+
|
54
|
+
if weight is not None:
|
55
|
+
variation = variation * weight.float()
|
56
|
+
if mean!=False:
|
57
|
+
return variation.sum() / weight.sum()
|
58
|
+
if mean!=False:
|
59
|
+
return variation.mean()
|
60
|
+
return variation.sum()
|
61
|
+
|
62
|
+
class EdgeAwareVariationLoss(nn.Module):
|
63
|
+
def __init__(self, in1_nc, in2_nc, grad_fn=Grid_gradient_central_diff):
|
64
|
+
super(EdgeAwareVariationLoss, self).__init__()
|
65
|
+
self.in1_grad_fn = grad_fn(in1_nc)
|
66
|
+
self.in2_grad_fn = grad_fn(in2_nc)
|
67
|
+
|
68
|
+
def forward(self, in1, in2, mean=False):
|
69
|
+
in1_dx, in1_dy = self.in1_grad_fn(in1)
|
70
|
+
in2_dx, in2_dy = self.in2_grad_fn(in2)
|
71
|
+
|
72
|
+
abs_in1_dx, abs_in1_dy = in1_dx.abs().sum(dim=1,keepdim=True), in1_dy.abs().sum(dim=1,keepdim=True)
|
73
|
+
abs_in2_dx, abs_in2_dy = in2_dx.abs().sum(dim=1,keepdim=True), in2_dy.abs().sum(dim=1,keepdim=True)
|
74
|
+
|
75
|
+
weight_dx, weight_dy = torch.exp(-abs_in2_dx), torch.exp(-abs_in2_dy)
|
76
|
+
|
77
|
+
variation = weight_dx*abs_in1_dx + weight_dy*abs_in1_dy
|
78
|
+
|
79
|
+
if mean!=False:
|
80
|
+
return variation.mean()
|
81
|
+
return variation.sum()
|
82
|
+
|
83
|
+
class PerceptualLoss():
|
84
|
+
def contentFunc(self):
|
85
|
+
conv_3_3_layer = 14
|
86
|
+
cnn = models.vgg19(pretrained=True).features
|
87
|
+
cnn = cnn.cuda()
|
88
|
+
model = nn.Sequential()
|
89
|
+
model = model.cuda()
|
90
|
+
for i,layer in enumerate(list(cnn)):
|
91
|
+
model.add_module(str(i),layer)
|
92
|
+
if i == conv_3_3_layer:
|
93
|
+
break
|
94
|
+
return model
|
95
|
+
|
96
|
+
def __init__(self, loss):
|
97
|
+
self.criterion = loss
|
98
|
+
self.contentFunc = self.contentFunc()
|
99
|
+
|
100
|
+
def get_loss(self, fakeIm, realIm):
|
101
|
+
f_fake = self.contentFunc.forward(fakeIm)
|
102
|
+
f_real = self.contentFunc.forward(realIm)
|
103
|
+
f_real_no_grad = f_real.detach()
|
104
|
+
loss = self.criterion(f_fake, f_real_no_grad)
|
105
|
+
return loss
|
106
|
+
|
107
|
+
class SSIMLoss(nn.Module):
|
108
|
+
def __init__(self, nc=3):
|
109
|
+
super(SSIMLoss, self).__init__()
|
110
|
+
self.window_size=5
|
111
|
+
self.gaussian_img_kernel = self.create_gaussian_window(self.window_size, nc).float()
|
112
|
+
|
113
|
+
def create_gaussian_window(self, window_size, channel):
|
114
|
+
def _gaussian(window_size, sigma):
|
115
|
+
gauss = torch.Tensor(
|
116
|
+
[math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
117
|
+
return gauss/gauss.sum()
|
118
|
+
|
119
|
+
_1D_window = _gaussian(window_size, 1.5).unsqueeze(1)
|
120
|
+
_2D_window = _1D_window@(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
121
|
+
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
122
|
+
return window
|
123
|
+
|
124
|
+
def forward(self, img1, img2, mask=None):
|
125
|
+
self.gaussian_img_kernel = self.gaussian_img_kernel.to(img1.device)
|
126
|
+
|
127
|
+
params = {'weight': self.gaussian_img_kernel,
|
128
|
+
'groups': 3, 'padding': self.window_size//2}
|
129
|
+
mu1 = F.conv2d(img1, **params)
|
130
|
+
mu2 = F.conv2d(img2, **params)
|
131
|
+
|
132
|
+
mu1_sq = mu1.pow(2)
|
133
|
+
mu2_sq = mu2.pow(2)
|
134
|
+
mu1_mu2 = mu1*mu2
|
135
|
+
|
136
|
+
sigma1_sq = F.conv2d(img1*img1, **params) - mu1_sq
|
137
|
+
sigma2_sq = F.conv2d(img2*img2, **params) - mu2_sq
|
138
|
+
sigma12 = F.conv2d(img1*img2, **params) - mu1_mu2
|
139
|
+
|
140
|
+
C1 = 0.01**2
|
141
|
+
C2 = 0.03**2
|
142
|
+
|
143
|
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
144
|
+
|
145
|
+
if mask is not None:
|
146
|
+
ssim_map = ssim_map * mask
|
147
|
+
|
148
|
+
return (1.-ssim_map.mean())*0.5
|
149
|
+
|
150
|
+
def EPE3D_loss(input_flow, target_flow, mask=None):
|
151
|
+
"""
|
152
|
+
:param the estimated optical / scene flow
|
153
|
+
:param the ground truth / target optical / scene flow
|
154
|
+
:param the mask, the mask has value 0 for all areas that are invalid
|
155
|
+
"""
|
156
|
+
invalid = None
|
157
|
+
if mask is not None:
|
158
|
+
invalid = 1.-mask
|
159
|
+
|
160
|
+
epe_map = torch.norm(target_flow-input_flow,p=2,dim=1)
|
161
|
+
B = epe_map.shape[0]
|
162
|
+
|
163
|
+
invalid_flow = (target_flow != target_flow) # check Nan same as torch.isnan
|
164
|
+
|
165
|
+
mask = (invalid_flow[:,0,:,:] | invalid_flow[:,1,:,:] | invalid_flow[:,2,:,:])
|
166
|
+
if invalid is not None:
|
167
|
+
mask = mask | (invalid.view(mask.shape) > 0)
|
168
|
+
|
169
|
+
epes = []
|
170
|
+
for idx in range(B):
|
171
|
+
epe_sample = epe_map[idx][~mask[idx].data]
|
172
|
+
if len(epe_sample) == 0:
|
173
|
+
epes.append(torch.zeros(()).type_as(input_flow))
|
174
|
+
else:
|
175
|
+
epes.append(epe_sample.mean())
|
176
|
+
|
177
|
+
return torch.stack(epes)
|
178
|
+
|
179
|
+
def compute_RT_EPE_loss(T_est, T_gt, depth0, K, mask=None):
|
180
|
+
""" Compute the epe point error of rotation & translation
|
181
|
+
:param estimated rotation matrix Bx3x3
|
182
|
+
:param estimated translation vector Bx3
|
183
|
+
:param ground truth rotation matrix Bx3x3
|
184
|
+
:param ground truth translation vector Bx3
|
185
|
+
:param reference depth image,
|
186
|
+
:param camera intrinsic
|
187
|
+
"""
|
188
|
+
R_est = T_est[:,:3,:3]
|
189
|
+
t_est = T_est[:,:3,3]
|
190
|
+
R_gt = T_gt[:,:3,:3]
|
191
|
+
t_gt = T_gt[:,:3,3]
|
192
|
+
|
193
|
+
loss = 0
|
194
|
+
if R_est.dim() > 3: # training time [batch, num_poses, rot_row, rot_col]
|
195
|
+
rH, rW = 60, 80 # we train the algorithm using a downsized input, (since the size of the input is not super important at training time)
|
196
|
+
|
197
|
+
B,C,H,W = depth0.shape
|
198
|
+
rdepth = func.interpolate(depth0, size=(rH, rW), mode='bilinear')
|
199
|
+
rmask = func.interpolate(mask.float(), size=(rH,rW), mode='bilinear')
|
200
|
+
rK = K.clone()
|
201
|
+
rK[:,0] *= float(rW) / W
|
202
|
+
rK[:,1] *= float(rH) / H
|
203
|
+
rK[:,2] *= float(rW) / W
|
204
|
+
rK[:,3] *= float(rH) / H
|
205
|
+
xyz = batch_inverse_project(rdepth, rK)
|
206
|
+
flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
|
207
|
+
|
208
|
+
for idx in range(R_est.shape[1]):
|
209
|
+
flow_est= batch_transform_xyz(xyz, R_est[:,idx], t_est[:,idx], get_Jacobian=False)
|
210
|
+
loss += EPE3D_loss(flow_est, flow_gt.detach(), rmask) #* (1<<idx) scaling does not help that much
|
211
|
+
else:
|
212
|
+
xyz = batch_inverse_project(depth0, K)
|
213
|
+
flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
|
214
|
+
|
215
|
+
flow_est= batch_transform_xyz(xyz, R_est, t_est, get_Jacobian=False)
|
216
|
+
loss = EPE3D_loss(flow_est, flow_gt, mask)
|
217
|
+
|
218
|
+
loss = loss.sum()/float(len(loss))
|
219
|
+
return loss
|
@@ -0,0 +1,22 @@
|
|
1
|
+
import math
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
# --------------------------------------------
|
5
|
+
# PSNR
|
6
|
+
# --------------------------------------------
|
7
|
+
def calculate_psnr(img1, img2, border=0):
|
8
|
+
# img1 and img2 have range [0, 255]
|
9
|
+
#img1 = img1.squeeze()
|
10
|
+
#img2 = img2.squeeze()
|
11
|
+
if not img1.shape == img2.shape:
|
12
|
+
raise ValueError('Input images must have the same dimensions.')
|
13
|
+
h, w = img1.shape[:2]
|
14
|
+
img1 = img1[border:h-border, border:w-border]
|
15
|
+
img2 = img2[border:h-border, border:w-border]
|
16
|
+
|
17
|
+
img1 = img1.astype(np.float64)
|
18
|
+
img2 = img2.astype(np.float64)
|
19
|
+
mse = np.mean((img1 - img2)**2)
|
20
|
+
if mse == 0:
|
21
|
+
return float('inf')
|
22
|
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
@@ -0,0 +1,54 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import cv2
|
3
|
+
|
4
|
+
# --------------------------------------------
|
5
|
+
# SSIM
|
6
|
+
# --------------------------------------------
|
7
|
+
def calculate_ssim(img1, img2, border=0):
|
8
|
+
'''calculate SSIM
|
9
|
+
the same outputs as MATLAB's
|
10
|
+
img1, img2: [0, 255]
|
11
|
+
'''
|
12
|
+
#img1 = img1.squeeze()
|
13
|
+
#img2 = img2.squeeze()
|
14
|
+
if not img1.shape == img2.shape:
|
15
|
+
raise ValueError('Input images must have the same dimensions.')
|
16
|
+
h, w = img1.shape[:2]
|
17
|
+
img1 = img1[border:h-border, border:w-border]
|
18
|
+
img2 = img2[border:h-border, border:w-border]
|
19
|
+
|
20
|
+
if img1.ndim == 2:
|
21
|
+
return ssim(img1, img2)
|
22
|
+
elif img1.ndim == 3:
|
23
|
+
if img1.shape[2] == 3:
|
24
|
+
ssims = []
|
25
|
+
for i in range(3):
|
26
|
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
27
|
+
return np.array(ssims).mean()
|
28
|
+
elif img1.shape[2] == 1:
|
29
|
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
30
|
+
else:
|
31
|
+
raise ValueError('Wrong input image dimensions.')
|
32
|
+
|
33
|
+
|
34
|
+
def ssim(img1, img2):
|
35
|
+
C1 = (0.01 * 255)**2
|
36
|
+
C2 = (0.03 * 255)**2
|
37
|
+
|
38
|
+
img1 = img1.astype(np.float64)
|
39
|
+
img2 = img2.astype(np.float64)
|
40
|
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
41
|
+
window = np.outer(kernel, kernel.transpose())
|
42
|
+
|
43
|
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
44
|
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
45
|
+
mu1_sq = mu1**2
|
46
|
+
mu2_sq = mu2**2
|
47
|
+
mu1_mu2 = mu1 * mu2
|
48
|
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
49
|
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
50
|
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
51
|
+
|
52
|
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
53
|
+
(sigma1_sq + sigma2_sq + C2))
|
54
|
+
return ssim_map.mean()
|