spikezoo 0.1.2__py3-none-any.whl → 0.2.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- spikezoo/__init__.py +13 -0
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/base/nets.py +34 -0
- spikezoo/archs/bsf/README.md +92 -0
- spikezoo/archs/bsf/datasets/datasets.py +328 -0
- spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
- spikezoo/archs/bsf/main.py +398 -0
- spikezoo/archs/bsf/metrics/psnr.py +22 -0
- spikezoo/archs/bsf/metrics/ssim.py +54 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/align.py +154 -0
- spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
- spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
- spikezoo/archs/bsf/models/bsf/rep.py +44 -0
- spikezoo/archs/bsf/models/get_model.py +7 -0
- spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
- spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
- spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
- spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
- spikezoo/archs/bsf/requirements.txt +9 -0
- spikezoo/archs/bsf/test.py +16 -0
- spikezoo/archs/bsf/utils.py +154 -0
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spikeclip/nets.py +40 -0
- spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
- spikezoo/archs/spikeformer/EvalResults/readme +1 -0
- spikezoo/archs/spikeformer/LICENSE +21 -0
- spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
- spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/Loss.py +89 -0
- spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
- spikezoo/archs/spikeformer/Model/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/README.md +30 -0
- spikezoo/archs/spikeformer/evaluate.py +87 -0
- spikezoo/archs/spikeformer/recon_real_data.py +97 -0
- spikezoo/archs/spikeformer/requirements.yml +95 -0
- spikezoo/archs/spikeformer/train.py +173 -0
- spikezoo/archs/spikeformer/utils.py +22 -0
- spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
- spikezoo/archs/spk2imgnet/.gitignore +150 -0
- spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/align_arch.py +159 -0
- spikezoo/archs/spk2imgnet/dataset.py +144 -0
- spikezoo/archs/spk2imgnet/nets.py +230 -0
- spikezoo/archs/spk2imgnet/readme.md +86 -0
- spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
- spikezoo/archs/spk2imgnet/train.py +189 -0
- spikezoo/archs/spk2imgnet/utils.py +64 -0
- spikezoo/archs/ssir/README.md +87 -0
- spikezoo/archs/ssir/configs/SSIR.yml +37 -0
- spikezoo/archs/ssir/configs/yml_parser.py +78 -0
- spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
- spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
- spikezoo/archs/ssir/losses.py +21 -0
- spikezoo/archs/ssir/main.py +326 -0
- spikezoo/archs/ssir/metrics/psnr.py +22 -0
- spikezoo/archs/ssir/metrics/ssim.py +54 -0
- spikezoo/archs/ssir/models/Vgg19.py +42 -0
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/layers.py +110 -0
- spikezoo/archs/ssir/models/networks.py +61 -0
- spikezoo/archs/ssir/requirements.txt +8 -0
- spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
- spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
- spikezoo/archs/ssir/test.py +3 -0
- spikezoo/archs/ssir/utils.py +154 -0
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/cbam.py +224 -0
- spikezoo/archs/ssml/model.py +290 -0
- spikezoo/archs/ssml/res.png +0 -0
- spikezoo/archs/ssml/test.py +67 -0
- spikezoo/archs/stir/.git-credentials +0 -0
- spikezoo/archs/stir/README.md +65 -0
- spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
- spikezoo/archs/stir/configs/STIR.yml +37 -0
- spikezoo/archs/stir/configs/utils.py +155 -0
- spikezoo/archs/stir/configs/yml_parser.py +78 -0
- spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
- spikezoo/archs/stir/datasets/ds_utils.py +66 -0
- spikezoo/archs/stir/eval_SREDS.sh +5 -0
- spikezoo/archs/stir/main.py +397 -0
- spikezoo/archs/stir/metrics/losses.py +219 -0
- spikezoo/archs/stir/metrics/psnr.py +22 -0
- spikezoo/archs/stir/metrics/ssim.py +54 -0
- spikezoo/archs/stir/models/Vgg19.py +42 -0
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/networks_STIR.py +361 -0
- spikezoo/archs/stir/models/submodules.py +86 -0
- spikezoo/archs/stir/models/transformer_new.py +151 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
- spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
- spikezoo/archs/stir/package_core/setup.py +5 -0
- spikezoo/archs/stir/requirements.txt +12 -0
- spikezoo/archs/stir/train_STIR.sh +9 -0
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfi/nets.py +43 -0
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfp/nets.py +13 -0
- spikezoo/archs/wgse/README.md +64 -0
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/dataset.py +59 -0
- spikezoo/archs/wgse/demo.png +0 -0
- spikezoo/archs/wgse/demo.py +83 -0
- spikezoo/archs/wgse/dwtnets.py +145 -0
- spikezoo/archs/wgse/eval.py +133 -0
- spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
- spikezoo/archs/wgse/submodules.py +68 -0
- spikezoo/archs/wgse/train.py +261 -0
- spikezoo/archs/wgse/transform.py +139 -0
- spikezoo/archs/wgse/utils.py +128 -0
- spikezoo/archs/wgse/weights/demo.png +0 -0
- spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
- spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
- spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
- spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
- spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
- spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
- spikezoo/datasets/base_dataset.py +2 -3
- spikezoo/metrics/__init__.py +1 -1
- spikezoo/models/base_model.py +1 -3
- spikezoo/pipeline/base_pipeline.py +7 -5
- spikezoo/pipeline/train_pipeline.py +1 -1
- spikezoo/utils/other_utils.py +16 -6
- spikezoo/utils/spike_utils.py +33 -29
- spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
- spikezoo-0.2.1.dist-info/METADATA +167 -0
- spikezoo-0.2.1.dist-info/RECORD +211 -0
- spikezoo/models/spcsnet_model.py +0 -19
- spikezoo-0.1.2.dist-info/METADATA +0 -39
- spikezoo-0.1.2.dist-info/RECORD +0 -36
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/LICENSE.txt +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/WHEEL +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,198 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn as nn
|
3
|
+
import torchvision.models as models
|
4
|
+
import torch.nn.functional as F
|
5
|
+
|
6
|
+
import math
|
7
|
+
|
8
|
+
from .image_proc import *
|
9
|
+
from .geometry import *
|
10
|
+
|
11
|
+
class L1Loss(nn.Module):
|
12
|
+
def __init__(self):
|
13
|
+
super(L1Loss, self).__init__()
|
14
|
+
def forward(self, output, target, weight=None, mean=False):
|
15
|
+
error = torch.abs(output - target)
|
16
|
+
if weight is not None:
|
17
|
+
error = error * weight.float()
|
18
|
+
if mean!=False:
|
19
|
+
return error.sum() / weight.float().sum()
|
20
|
+
if mean!=False:
|
21
|
+
return error.mean()
|
22
|
+
return error.sum()
|
23
|
+
|
24
|
+
class VariationLoss(nn.Module):
|
25
|
+
def __init__(self, nc, grad_fn=Grid_gradient_central_diff):
|
26
|
+
super(VariationLoss, self).__init__()
|
27
|
+
self.grad_fn = grad_fn(nc)
|
28
|
+
|
29
|
+
def forward(self, image, weight=None, mean=False):
|
30
|
+
dx, dy = self.grad_fn(image)
|
31
|
+
variation = dx**2 + dy**2
|
32
|
+
|
33
|
+
if weight is not None:
|
34
|
+
variation = variation * weight.float()
|
35
|
+
if mean!=False:
|
36
|
+
return variation.sum() / weight.sum()
|
37
|
+
if mean!=False:
|
38
|
+
return variation.mean()
|
39
|
+
return variation.sum()
|
40
|
+
|
41
|
+
class EdgeAwareVariationLoss(nn.Module):
|
42
|
+
def __init__(self, in1_nc, in2_nc, grad_fn=Grid_gradient_central_diff):
|
43
|
+
super(EdgeAwareVariationLoss, self).__init__()
|
44
|
+
self.in1_grad_fn = grad_fn(in1_nc)
|
45
|
+
self.in2_grad_fn = grad_fn(in2_nc)
|
46
|
+
|
47
|
+
def forward(self, in1, in2, mean=False):
|
48
|
+
in1_dx, in1_dy = self.in1_grad_fn(in1)
|
49
|
+
in2_dx, in2_dy = self.in2_grad_fn(in2)
|
50
|
+
|
51
|
+
abs_in1_dx, abs_in1_dy = in1_dx.abs().sum(dim=1,keepdim=True), in1_dy.abs().sum(dim=1,keepdim=True)
|
52
|
+
abs_in2_dx, abs_in2_dy = in2_dx.abs().sum(dim=1,keepdim=True), in2_dy.abs().sum(dim=1,keepdim=True)
|
53
|
+
|
54
|
+
weight_dx, weight_dy = torch.exp(-abs_in2_dx), torch.exp(-abs_in2_dy)
|
55
|
+
|
56
|
+
variation = weight_dx*abs_in1_dx + weight_dy*abs_in1_dy
|
57
|
+
|
58
|
+
if mean!=False:
|
59
|
+
return variation.mean()
|
60
|
+
return variation.sum()
|
61
|
+
|
62
|
+
class PerceptualLoss():
|
63
|
+
def contentFunc(self):
|
64
|
+
conv_3_3_layer = 14
|
65
|
+
cnn = models.vgg19(pretrained=True).features
|
66
|
+
cnn = cnn.cuda()
|
67
|
+
model = nn.Sequential()
|
68
|
+
model = model.cuda()
|
69
|
+
for i,layer in enumerate(list(cnn)):
|
70
|
+
model.add_module(str(i),layer)
|
71
|
+
if i == conv_3_3_layer:
|
72
|
+
break
|
73
|
+
return model
|
74
|
+
|
75
|
+
def __init__(self, loss):
|
76
|
+
self.criterion = loss
|
77
|
+
self.contentFunc = self.contentFunc()
|
78
|
+
|
79
|
+
def get_loss(self, fakeIm, realIm):
|
80
|
+
f_fake = self.contentFunc.forward(fakeIm)
|
81
|
+
f_real = self.contentFunc.forward(realIm)
|
82
|
+
f_real_no_grad = f_real.detach()
|
83
|
+
loss = self.criterion(f_fake, f_real_no_grad)
|
84
|
+
return loss
|
85
|
+
|
86
|
+
class SSIMLoss(nn.Module):
|
87
|
+
def __init__(self, nc=3):
|
88
|
+
super(SSIMLoss, self).__init__()
|
89
|
+
self.window_size=5
|
90
|
+
self.gaussian_img_kernel = self.create_gaussian_window(self.window_size, nc).float()
|
91
|
+
|
92
|
+
def create_gaussian_window(self, window_size, channel):
|
93
|
+
def _gaussian(window_size, sigma):
|
94
|
+
gauss = torch.Tensor(
|
95
|
+
[math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
96
|
+
return gauss/gauss.sum()
|
97
|
+
|
98
|
+
_1D_window = _gaussian(window_size, 1.5).unsqueeze(1)
|
99
|
+
_2D_window = _1D_window@(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
100
|
+
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
101
|
+
return window
|
102
|
+
|
103
|
+
def forward(self, img1, img2, mask=None):
|
104
|
+
self.gaussian_img_kernel = self.gaussian_img_kernel.to(img1.device)
|
105
|
+
|
106
|
+
params = {'weight': self.gaussian_img_kernel,
|
107
|
+
'groups': 3, 'padding': self.window_size//2}
|
108
|
+
mu1 = F.conv2d(img1, **params)
|
109
|
+
mu2 = F.conv2d(img2, **params)
|
110
|
+
|
111
|
+
mu1_sq = mu1.pow(2)
|
112
|
+
mu2_sq = mu2.pow(2)
|
113
|
+
mu1_mu2 = mu1*mu2
|
114
|
+
|
115
|
+
sigma1_sq = F.conv2d(img1*img1, **params) - mu1_sq
|
116
|
+
sigma2_sq = F.conv2d(img2*img2, **params) - mu2_sq
|
117
|
+
sigma12 = F.conv2d(img1*img2, **params) - mu1_mu2
|
118
|
+
|
119
|
+
C1 = 0.01**2
|
120
|
+
C2 = 0.03**2
|
121
|
+
|
122
|
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
123
|
+
|
124
|
+
if mask is not None:
|
125
|
+
ssim_map = ssim_map * mask
|
126
|
+
|
127
|
+
return (1.-ssim_map.mean())*0.5
|
128
|
+
|
129
|
+
def EPE3D_loss(input_flow, target_flow, mask=None):
|
130
|
+
"""
|
131
|
+
:param the estimated optical / scene flow
|
132
|
+
:param the ground truth / target optical / scene flow
|
133
|
+
:param the mask, the mask has value 0 for all areas that are invalid
|
134
|
+
"""
|
135
|
+
invalid = None
|
136
|
+
if mask is not None:
|
137
|
+
invalid = 1.-mask
|
138
|
+
|
139
|
+
epe_map = torch.norm(target_flow-input_flow,p=2,dim=1)
|
140
|
+
B = epe_map.shape[0]
|
141
|
+
|
142
|
+
invalid_flow = (target_flow != target_flow) # check Nan same as torch.isnan
|
143
|
+
|
144
|
+
mask = (invalid_flow[:,0,:,:] | invalid_flow[:,1,:,:] | invalid_flow[:,2,:,:])
|
145
|
+
if invalid is not None:
|
146
|
+
mask = mask | (invalid.view(mask.shape) > 0)
|
147
|
+
|
148
|
+
epes = []
|
149
|
+
for idx in range(B):
|
150
|
+
epe_sample = epe_map[idx][~mask[idx].data]
|
151
|
+
if len(epe_sample) == 0:
|
152
|
+
epes.append(torch.zeros(()).type_as(input_flow))
|
153
|
+
else:
|
154
|
+
epes.append(epe_sample.mean())
|
155
|
+
|
156
|
+
return torch.stack(epes)
|
157
|
+
|
158
|
+
def compute_RT_EPE_loss(T_est, T_gt, depth0, K, mask=None):
|
159
|
+
""" Compute the epe point error of rotation & translation
|
160
|
+
:param estimated rotation matrix Bx3x3
|
161
|
+
:param estimated translation vector Bx3
|
162
|
+
:param ground truth rotation matrix Bx3x3
|
163
|
+
:param ground truth translation vector Bx3
|
164
|
+
:param reference depth image,
|
165
|
+
:param camera intrinsic
|
166
|
+
"""
|
167
|
+
R_est = T_est[:,:3,:3]
|
168
|
+
t_est = T_est[:,:3,3]
|
169
|
+
R_gt = T_gt[:,:3,:3]
|
170
|
+
t_gt = T_gt[:,:3,3]
|
171
|
+
|
172
|
+
loss = 0
|
173
|
+
if R_est.dim() > 3: # training time [batch, num_poses, rot_row, rot_col]
|
174
|
+
rH, rW = 60, 80 # we train the algorithm using a downsized input, (since the size of the input is not super important at training time)
|
175
|
+
|
176
|
+
B,C,H,W = depth0.shape
|
177
|
+
rdepth = func.interpolate(depth0, size=(rH, rW), mode='bilinear')
|
178
|
+
rmask = func.interpolate(mask.float(), size=(rH,rW), mode='bilinear')
|
179
|
+
rK = K.clone()
|
180
|
+
rK[:,0] *= float(rW) / W
|
181
|
+
rK[:,1] *= float(rH) / H
|
182
|
+
rK[:,2] *= float(rW) / W
|
183
|
+
rK[:,3] *= float(rH) / H
|
184
|
+
xyz = batch_inverse_project(rdepth, rK)
|
185
|
+
flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
|
186
|
+
|
187
|
+
for idx in range(R_est.shape[1]):
|
188
|
+
flow_est= batch_transform_xyz(xyz, R_est[:,idx], t_est[:,idx], get_Jacobian=False)
|
189
|
+
loss += EPE3D_loss(flow_est, flow_gt.detach(), rmask) #* (1<<idx) scaling does not help that much
|
190
|
+
else:
|
191
|
+
xyz = batch_inverse_project(depth0, K)
|
192
|
+
flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
|
193
|
+
|
194
|
+
flow_est= batch_transform_xyz(xyz, R_est, t_est, get_Jacobian=False)
|
195
|
+
loss = EPE3D_loss(flow_est, flow_gt, mask)
|
196
|
+
|
197
|
+
loss = loss.sum()/float(len(loss))
|
198
|
+
return loss
|
@@ -0,0 +1,51 @@
|
|
1
|
+
import math
|
2
|
+
import torch
|
3
|
+
import torch.nn.functional as F
|
4
|
+
from torch.autograd import Variable
|
5
|
+
import numpy as np
|
6
|
+
from math import exp
|
7
|
+
|
8
|
+
def gaussian(window_size, sigma):
|
9
|
+
gauss = torch.Tensor([exp(-(x - window_size/2)**2/float(2*sigma**2)) for x in range(window_size)])
|
10
|
+
return gauss/gauss.sum()
|
11
|
+
|
12
|
+
def create_window(window_size, channel):
|
13
|
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
14
|
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
15
|
+
window = Variable(_2D_window.expand(channel, 1, window_size, window_size))
|
16
|
+
return window
|
17
|
+
|
18
|
+
def SSIM(img1, img2):
|
19
|
+
(_, channel, _, _) = img1.size()
|
20
|
+
window_size = 11
|
21
|
+
window = create_window(window_size, channel).cuda()
|
22
|
+
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
|
23
|
+
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
|
24
|
+
|
25
|
+
mu1_sq = mu1.pow(2)
|
26
|
+
mu2_sq = mu2.pow(2)
|
27
|
+
mu1_mu2 = mu1*mu2
|
28
|
+
|
29
|
+
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
|
30
|
+
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
|
31
|
+
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
|
32
|
+
|
33
|
+
C1 = 0.01**2
|
34
|
+
C2 = 0.03**2
|
35
|
+
|
36
|
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
37
|
+
return ssim_map.mean()
|
38
|
+
|
39
|
+
def PSNR(img1, img2, mask=None):
|
40
|
+
if mask is not None:
|
41
|
+
mask = mask.cuda()
|
42
|
+
mse = (img1 - img2) ** 2
|
43
|
+
B,C,H,W=mse.size()
|
44
|
+
mse = torch.sum(mse * mask.float()) / (torch.sum(mask.float())*C)
|
45
|
+
else:
|
46
|
+
mse = torch.mean( (img1 - img2) ** 2 )
|
47
|
+
|
48
|
+
if mse == 0:
|
49
|
+
return 100
|
50
|
+
PIXEL_MAX = 1
|
51
|
+
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
|
@@ -0,0 +1,53 @@
|
|
1
|
+
import torch
|
2
|
+
import os
|
3
|
+
import numpy as np
|
4
|
+
from torch.optim import lr_scheduler
|
5
|
+
|
6
|
+
class ModelBase():
|
7
|
+
def save_network(self, network, network_label, epoch_label, save_dir, on_gpu=True):
|
8
|
+
if not os.path.exists(save_dir):
|
9
|
+
os.makedirs(save_dir)
|
10
|
+
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
|
11
|
+
save_path = os.path.join(save_dir, save_filename)
|
12
|
+
torch.save(network.cpu().state_dict(), save_path)
|
13
|
+
|
14
|
+
if on_gpu:
|
15
|
+
network.cuda()
|
16
|
+
|
17
|
+
def load_network(self, network, network_label, epoch_label, save_dir):
|
18
|
+
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
|
19
|
+
save_path = os.path.join(save_dir, save_filename)
|
20
|
+
network.load_state_dict(torch.load(save_path))
|
21
|
+
print('load network from ', save_path)
|
22
|
+
|
23
|
+
def print_networks(self, net):
|
24
|
+
print('---------- Networks initialized -------------')
|
25
|
+
num_params = 0
|
26
|
+
for param in net.parameters():
|
27
|
+
num_params += param.numel()
|
28
|
+
# print(net)
|
29
|
+
print('[Network] Total number of parameters : %.3f M' % (num_params / 1e6))
|
30
|
+
print('-----------------------------------------------')
|
31
|
+
|
32
|
+
# used in test time, wrapping `forward` in no_grad() so we don't save
|
33
|
+
# intermediate steps for backprop
|
34
|
+
# def eval(self):
|
35
|
+
# with torch.no_grad():
|
36
|
+
# return self.forward()
|
37
|
+
|
38
|
+
def build_lr_scheduler(self):
|
39
|
+
self.lr_schedulers = []
|
40
|
+
for name in self.optimizer_names:
|
41
|
+
if isinstance(name, str):
|
42
|
+
optimizer = getattr(self, 'optimizer_' + name)
|
43
|
+
self.lr_schedulers.append(lr_scheduler.StepLR(optimizer, step_size=self.opts.lr_step, gamma=0.5))
|
44
|
+
|
45
|
+
def update_lr(self):
|
46
|
+
for scheduler in self.lr_schedulers:
|
47
|
+
scheduler.step()
|
48
|
+
|
49
|
+
for name in self.optimizer_names:
|
50
|
+
if isinstance(name, str):
|
51
|
+
optimizer = getattr(self, 'optimizer_' + name)
|
52
|
+
for param_group in optimizer.param_groups:
|
53
|
+
print('optimizer_'+name+'_lr', param_group['lr'])
|
@@ -0,0 +1,100 @@
|
|
1
|
+
'''
|
2
|
+
CNN building blocks.
|
3
|
+
Taken from https://github.com/shubhtuls/factored3d/
|
4
|
+
'''
|
5
|
+
from __future__ import division
|
6
|
+
from __future__ import print_function
|
7
|
+
import torch
|
8
|
+
import torch.nn as nn
|
9
|
+
import numpy as np
|
10
|
+
import math
|
11
|
+
|
12
|
+
## 2D convolution layers
|
13
|
+
class conv2d(nn.Module):
|
14
|
+
def __init__(self, in_planes, out_planes, batch_norm, activation, kernel_size=3, stride=1):
|
15
|
+
super(conv2d, self).__init__()
|
16
|
+
|
17
|
+
use_bias = True
|
18
|
+
if batch_norm:
|
19
|
+
use_bias = False
|
20
|
+
|
21
|
+
modules = []
|
22
|
+
modules.append(nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=use_bias))
|
23
|
+
if batch_norm:
|
24
|
+
modules.append(nn.BatchNorm2d(out_planes))
|
25
|
+
if activation:
|
26
|
+
modules.append(activation)
|
27
|
+
|
28
|
+
self.net=nn.Sequential(*modules)
|
29
|
+
|
30
|
+
# initialization
|
31
|
+
for m in self.modules():
|
32
|
+
if isinstance(m, nn.Conv2d):
|
33
|
+
nn.init.xavier_uniform_(m.weight)
|
34
|
+
if m.bias is not None:
|
35
|
+
m.bias.data.zero_()
|
36
|
+
def forward(self, x):
|
37
|
+
return self.net(x)
|
38
|
+
|
39
|
+
class deconv2d(nn.Module):
|
40
|
+
def __init__(self, in_planes, out_planes):
|
41
|
+
super(deconv2d, self).__init__()
|
42
|
+
|
43
|
+
#self.net = nn.Sequential(nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
44
|
+
# nn.ReLU(inplace=True))
|
45
|
+
|
46
|
+
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear")
|
47
|
+
self.net = nn.Sequential(conv2d(in_planes=in_planes, out_planes=out_planes, batch_norm=False, activation=False, kernel_size=3, stride=1))
|
48
|
+
|
49
|
+
for m in self.modules():
|
50
|
+
if isinstance(m, nn.ConvTranspose2d):
|
51
|
+
nn.init.xavier_uniform_(m.weight)
|
52
|
+
if m.bias is not None:
|
53
|
+
m.bias.data.zero_()
|
54
|
+
|
55
|
+
def forward(self, x):
|
56
|
+
x = self.upsample(x)
|
57
|
+
return self.net(x)
|
58
|
+
|
59
|
+
class ResnetBlock(nn.Module):
|
60
|
+
def __init__(self, in_planes):
|
61
|
+
super(ResnetBlock, self).__init__()
|
62
|
+
self.conv_block = self.build_conv_block(in_planes)
|
63
|
+
|
64
|
+
# initialization
|
65
|
+
for m in self.modules():
|
66
|
+
if isinstance(m, nn.Conv2d):
|
67
|
+
nn.init.xavier_uniform_(m.weight)
|
68
|
+
if m.bias is not None:
|
69
|
+
m.bias.data.zero_()
|
70
|
+
|
71
|
+
def build_conv_block(self, in_planes):
|
72
|
+
conv_block = []
|
73
|
+
conv_block += [conv2d(in_planes=in_planes, out_planes=in_planes, batch_norm=False, activation=nn.ReLU(), kernel_size=3, stride=1)]
|
74
|
+
conv_block += [conv2d(in_planes=in_planes, out_planes=in_planes, batch_norm=False, activation=False, kernel_size=3, stride=1)]
|
75
|
+
|
76
|
+
return nn.Sequential(*conv_block)
|
77
|
+
|
78
|
+
def forward(self, x):
|
79
|
+
out = x + self.conv_block(x)
|
80
|
+
return out
|
81
|
+
|
82
|
+
class Cascade_resnet_blocks(nn.Module):
|
83
|
+
def __init__(self, in_planes, n_blocks):
|
84
|
+
super(Cascade_resnet_blocks, self).__init__()
|
85
|
+
|
86
|
+
resnet_blocks = []
|
87
|
+
for i in range(n_blocks):
|
88
|
+
resnet_blocks += [ResnetBlock(in_planes)]
|
89
|
+
|
90
|
+
self.net = nn.Sequential(*resnet_blocks)
|
91
|
+
|
92
|
+
# initialization
|
93
|
+
for m in self.modules():
|
94
|
+
if isinstance(m, nn.Conv2d):
|
95
|
+
nn.init.xavier_normal_(m.weight)
|
96
|
+
if m.bias is not None:
|
97
|
+
m.bias.data.zero_()
|
98
|
+
|
99
|
+
def forward(self, x):
|
100
|
+
return self.net(x)
|