spikezoo 0.1.2__py3-none-any.whl → 0.2.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (192) hide show
  1. spikezoo/__init__.py +13 -0
  2. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  3. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  4. spikezoo/archs/base/nets.py +34 -0
  5. spikezoo/archs/bsf/README.md +92 -0
  6. spikezoo/archs/bsf/datasets/datasets.py +328 -0
  7. spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
  8. spikezoo/archs/bsf/main.py +398 -0
  9. spikezoo/archs/bsf/metrics/psnr.py +22 -0
  10. spikezoo/archs/bsf/metrics/ssim.py +54 -0
  11. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  12. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  13. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  14. spikezoo/archs/bsf/models/bsf/align.py +154 -0
  15. spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
  16. spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
  17. spikezoo/archs/bsf/models/bsf/rep.py +44 -0
  18. spikezoo/archs/bsf/models/get_model.py +7 -0
  19. spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
  20. spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
  21. spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
  22. spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
  23. spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
  24. spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
  25. spikezoo/archs/bsf/requirements.txt +9 -0
  26. spikezoo/archs/bsf/test.py +16 -0
  27. spikezoo/archs/bsf/utils.py +154 -0
  28. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  29. spikezoo/archs/spikeclip/nets.py +40 -0
  30. spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
  31. spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
  32. spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
  33. spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
  34. spikezoo/archs/spikeformer/EvalResults/readme +1 -0
  35. spikezoo/archs/spikeformer/LICENSE +21 -0
  36. spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
  37. spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
  38. spikezoo/archs/spikeformer/Model/Loss.py +89 -0
  39. spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
  40. spikezoo/archs/spikeformer/Model/__init__.py +0 -0
  41. spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
  42. spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
  43. spikezoo/archs/spikeformer/README.md +30 -0
  44. spikezoo/archs/spikeformer/evaluate.py +87 -0
  45. spikezoo/archs/spikeformer/recon_real_data.py +97 -0
  46. spikezoo/archs/spikeformer/requirements.yml +95 -0
  47. spikezoo/archs/spikeformer/train.py +173 -0
  48. spikezoo/archs/spikeformer/utils.py +22 -0
  49. spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
  50. spikezoo/archs/spk2imgnet/.gitignore +150 -0
  51. spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
  52. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  53. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  54. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  55. spikezoo/archs/spk2imgnet/align_arch.py +159 -0
  56. spikezoo/archs/spk2imgnet/dataset.py +144 -0
  57. spikezoo/archs/spk2imgnet/nets.py +230 -0
  58. spikezoo/archs/spk2imgnet/readme.md +86 -0
  59. spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
  60. spikezoo/archs/spk2imgnet/train.py +189 -0
  61. spikezoo/archs/spk2imgnet/utils.py +64 -0
  62. spikezoo/archs/ssir/README.md +87 -0
  63. spikezoo/archs/ssir/configs/SSIR.yml +37 -0
  64. spikezoo/archs/ssir/configs/yml_parser.py +78 -0
  65. spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
  66. spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
  67. spikezoo/archs/ssir/losses.py +21 -0
  68. spikezoo/archs/ssir/main.py +326 -0
  69. spikezoo/archs/ssir/metrics/psnr.py +22 -0
  70. spikezoo/archs/ssir/metrics/ssim.py +54 -0
  71. spikezoo/archs/ssir/models/Vgg19.py +42 -0
  72. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  73. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  74. spikezoo/archs/ssir/models/layers.py +110 -0
  75. spikezoo/archs/ssir/models/networks.py +61 -0
  76. spikezoo/archs/ssir/requirements.txt +8 -0
  77. spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
  78. spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
  79. spikezoo/archs/ssir/test.py +3 -0
  80. spikezoo/archs/ssir/utils.py +154 -0
  81. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  82. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  83. spikezoo/archs/ssml/cbam.py +224 -0
  84. spikezoo/archs/ssml/model.py +290 -0
  85. spikezoo/archs/ssml/res.png +0 -0
  86. spikezoo/archs/ssml/test.py +67 -0
  87. spikezoo/archs/stir/.git-credentials +0 -0
  88. spikezoo/archs/stir/README.md +65 -0
  89. spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
  90. spikezoo/archs/stir/configs/STIR.yml +37 -0
  91. spikezoo/archs/stir/configs/utils.py +155 -0
  92. spikezoo/archs/stir/configs/yml_parser.py +78 -0
  93. spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
  94. spikezoo/archs/stir/datasets/ds_utils.py +66 -0
  95. spikezoo/archs/stir/eval_SREDS.sh +5 -0
  96. spikezoo/archs/stir/main.py +397 -0
  97. spikezoo/archs/stir/metrics/losses.py +219 -0
  98. spikezoo/archs/stir/metrics/psnr.py +22 -0
  99. spikezoo/archs/stir/metrics/ssim.py +54 -0
  100. spikezoo/archs/stir/models/Vgg19.py +42 -0
  101. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  102. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  103. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  104. spikezoo/archs/stir/models/networks_STIR.py +361 -0
  105. spikezoo/archs/stir/models/submodules.py +86 -0
  106. spikezoo/archs/stir/models/transformer_new.py +151 -0
  107. spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
  108. spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
  109. spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
  110. spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
  111. spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
  112. spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
  113. spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
  114. spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
  115. spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
  116. spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
  117. spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
  118. spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
  119. spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
  120. spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
  121. spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
  122. spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
  123. spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
  124. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  125. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  126. spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
  127. spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
  128. spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
  129. spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
  130. spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
  131. spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
  132. spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
  133. spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
  134. spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
  135. spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
  136. spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
  137. spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
  138. spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
  139. spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
  140. spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
  141. spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
  142. spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
  143. spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
  144. spikezoo/archs/stir/package_core/setup.py +5 -0
  145. spikezoo/archs/stir/requirements.txt +12 -0
  146. spikezoo/archs/stir/train_STIR.sh +9 -0
  147. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  148. spikezoo/archs/tfi/nets.py +43 -0
  149. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  150. spikezoo/archs/tfp/nets.py +13 -0
  151. spikezoo/archs/wgse/README.md +64 -0
  152. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  153. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  154. spikezoo/archs/wgse/dataset.py +59 -0
  155. spikezoo/archs/wgse/demo.png +0 -0
  156. spikezoo/archs/wgse/demo.py +83 -0
  157. spikezoo/archs/wgse/dwtnets.py +145 -0
  158. spikezoo/archs/wgse/eval.py +133 -0
  159. spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
  160. spikezoo/archs/wgse/submodules.py +68 -0
  161. spikezoo/archs/wgse/train.py +261 -0
  162. spikezoo/archs/wgse/transform.py +139 -0
  163. spikezoo/archs/wgse/utils.py +128 -0
  164. spikezoo/archs/wgse/weights/demo.png +0 -0
  165. spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
  166. spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
  167. spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
  168. spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
  169. spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
  170. spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
  171. spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
  172. spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
  173. spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
  174. spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
  175. spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
  176. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  177. spikezoo/datasets/base_dataset.py +2 -3
  178. spikezoo/metrics/__init__.py +1 -1
  179. spikezoo/models/base_model.py +1 -3
  180. spikezoo/pipeline/base_pipeline.py +7 -5
  181. spikezoo/pipeline/train_pipeline.py +1 -1
  182. spikezoo/utils/other_utils.py +16 -6
  183. spikezoo/utils/spike_utils.py +33 -29
  184. spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
  185. spikezoo-0.2.1.dist-info/METADATA +167 -0
  186. spikezoo-0.2.1.dist-info/RECORD +211 -0
  187. spikezoo/models/spcsnet_model.py +0 -19
  188. spikezoo-0.1.2.dist-info/METADATA +0 -39
  189. spikezoo-0.1.2.dist-info/RECORD +0 -36
  190. {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/LICENSE.txt +0 -0
  191. {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/WHEEL +0 -0
  192. {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,198 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torchvision.models as models
4
+ import torch.nn.functional as F
5
+
6
+ import math
7
+
8
+ from .image_proc import *
9
+ from .geometry import *
10
+
11
+ class L1Loss(nn.Module):
12
+ def __init__(self):
13
+ super(L1Loss, self).__init__()
14
+ def forward(self, output, target, weight=None, mean=False):
15
+ error = torch.abs(output - target)
16
+ if weight is not None:
17
+ error = error * weight.float()
18
+ if mean!=False:
19
+ return error.sum() / weight.float().sum()
20
+ if mean!=False:
21
+ return error.mean()
22
+ return error.sum()
23
+
24
+ class VariationLoss(nn.Module):
25
+ def __init__(self, nc, grad_fn=Grid_gradient_central_diff):
26
+ super(VariationLoss, self).__init__()
27
+ self.grad_fn = grad_fn(nc)
28
+
29
+ def forward(self, image, weight=None, mean=False):
30
+ dx, dy = self.grad_fn(image)
31
+ variation = dx**2 + dy**2
32
+
33
+ if weight is not None:
34
+ variation = variation * weight.float()
35
+ if mean!=False:
36
+ return variation.sum() / weight.sum()
37
+ if mean!=False:
38
+ return variation.mean()
39
+ return variation.sum()
40
+
41
+ class EdgeAwareVariationLoss(nn.Module):
42
+ def __init__(self, in1_nc, in2_nc, grad_fn=Grid_gradient_central_diff):
43
+ super(EdgeAwareVariationLoss, self).__init__()
44
+ self.in1_grad_fn = grad_fn(in1_nc)
45
+ self.in2_grad_fn = grad_fn(in2_nc)
46
+
47
+ def forward(self, in1, in2, mean=False):
48
+ in1_dx, in1_dy = self.in1_grad_fn(in1)
49
+ in2_dx, in2_dy = self.in2_grad_fn(in2)
50
+
51
+ abs_in1_dx, abs_in1_dy = in1_dx.abs().sum(dim=1,keepdim=True), in1_dy.abs().sum(dim=1,keepdim=True)
52
+ abs_in2_dx, abs_in2_dy = in2_dx.abs().sum(dim=1,keepdim=True), in2_dy.abs().sum(dim=1,keepdim=True)
53
+
54
+ weight_dx, weight_dy = torch.exp(-abs_in2_dx), torch.exp(-abs_in2_dy)
55
+
56
+ variation = weight_dx*abs_in1_dx + weight_dy*abs_in1_dy
57
+
58
+ if mean!=False:
59
+ return variation.mean()
60
+ return variation.sum()
61
+
62
+ class PerceptualLoss():
63
+ def contentFunc(self):
64
+ conv_3_3_layer = 14
65
+ cnn = models.vgg19(pretrained=True).features
66
+ cnn = cnn.cuda()
67
+ model = nn.Sequential()
68
+ model = model.cuda()
69
+ for i,layer in enumerate(list(cnn)):
70
+ model.add_module(str(i),layer)
71
+ if i == conv_3_3_layer:
72
+ break
73
+ return model
74
+
75
+ def __init__(self, loss):
76
+ self.criterion = loss
77
+ self.contentFunc = self.contentFunc()
78
+
79
+ def get_loss(self, fakeIm, realIm):
80
+ f_fake = self.contentFunc.forward(fakeIm)
81
+ f_real = self.contentFunc.forward(realIm)
82
+ f_real_no_grad = f_real.detach()
83
+ loss = self.criterion(f_fake, f_real_no_grad)
84
+ return loss
85
+
86
+ class SSIMLoss(nn.Module):
87
+ def __init__(self, nc=3):
88
+ super(SSIMLoss, self).__init__()
89
+ self.window_size=5
90
+ self.gaussian_img_kernel = self.create_gaussian_window(self.window_size, nc).float()
91
+
92
+ def create_gaussian_window(self, window_size, channel):
93
+ def _gaussian(window_size, sigma):
94
+ gauss = torch.Tensor(
95
+ [math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
96
+ return gauss/gauss.sum()
97
+
98
+ _1D_window = _gaussian(window_size, 1.5).unsqueeze(1)
99
+ _2D_window = _1D_window@(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
100
+ window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
101
+ return window
102
+
103
+ def forward(self, img1, img2, mask=None):
104
+ self.gaussian_img_kernel = self.gaussian_img_kernel.to(img1.device)
105
+
106
+ params = {'weight': self.gaussian_img_kernel,
107
+ 'groups': 3, 'padding': self.window_size//2}
108
+ mu1 = F.conv2d(img1, **params)
109
+ mu2 = F.conv2d(img2, **params)
110
+
111
+ mu1_sq = mu1.pow(2)
112
+ mu2_sq = mu2.pow(2)
113
+ mu1_mu2 = mu1*mu2
114
+
115
+ sigma1_sq = F.conv2d(img1*img1, **params) - mu1_sq
116
+ sigma2_sq = F.conv2d(img2*img2, **params) - mu2_sq
117
+ sigma12 = F.conv2d(img1*img2, **params) - mu1_mu2
118
+
119
+ C1 = 0.01**2
120
+ C2 = 0.03**2
121
+
122
+ ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2)) / ((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
123
+
124
+ if mask is not None:
125
+ ssim_map = ssim_map * mask
126
+
127
+ return (1.-ssim_map.mean())*0.5
128
+
129
+ def EPE3D_loss(input_flow, target_flow, mask=None):
130
+ """
131
+ :param the estimated optical / scene flow
132
+ :param the ground truth / target optical / scene flow
133
+ :param the mask, the mask has value 0 for all areas that are invalid
134
+ """
135
+ invalid = None
136
+ if mask is not None:
137
+ invalid = 1.-mask
138
+
139
+ epe_map = torch.norm(target_flow-input_flow,p=2,dim=1)
140
+ B = epe_map.shape[0]
141
+
142
+ invalid_flow = (target_flow != target_flow) # check Nan same as torch.isnan
143
+
144
+ mask = (invalid_flow[:,0,:,:] | invalid_flow[:,1,:,:] | invalid_flow[:,2,:,:])
145
+ if invalid is not None:
146
+ mask = mask | (invalid.view(mask.shape) > 0)
147
+
148
+ epes = []
149
+ for idx in range(B):
150
+ epe_sample = epe_map[idx][~mask[idx].data]
151
+ if len(epe_sample) == 0:
152
+ epes.append(torch.zeros(()).type_as(input_flow))
153
+ else:
154
+ epes.append(epe_sample.mean())
155
+
156
+ return torch.stack(epes)
157
+
158
+ def compute_RT_EPE_loss(T_est, T_gt, depth0, K, mask=None):
159
+ """ Compute the epe point error of rotation & translation
160
+ :param estimated rotation matrix Bx3x3
161
+ :param estimated translation vector Bx3
162
+ :param ground truth rotation matrix Bx3x3
163
+ :param ground truth translation vector Bx3
164
+ :param reference depth image,
165
+ :param camera intrinsic
166
+ """
167
+ R_est = T_est[:,:3,:3]
168
+ t_est = T_est[:,:3,3]
169
+ R_gt = T_gt[:,:3,:3]
170
+ t_gt = T_gt[:,:3,3]
171
+
172
+ loss = 0
173
+ if R_est.dim() > 3: # training time [batch, num_poses, rot_row, rot_col]
174
+ rH, rW = 60, 80 # we train the algorithm using a downsized input, (since the size of the input is not super important at training time)
175
+
176
+ B,C,H,W = depth0.shape
177
+ rdepth = func.interpolate(depth0, size=(rH, rW), mode='bilinear')
178
+ rmask = func.interpolate(mask.float(), size=(rH,rW), mode='bilinear')
179
+ rK = K.clone()
180
+ rK[:,0] *= float(rW) / W
181
+ rK[:,1] *= float(rH) / H
182
+ rK[:,2] *= float(rW) / W
183
+ rK[:,3] *= float(rH) / H
184
+ xyz = batch_inverse_project(rdepth, rK)
185
+ flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
186
+
187
+ for idx in range(R_est.shape[1]):
188
+ flow_est= batch_transform_xyz(xyz, R_est[:,idx], t_est[:,idx], get_Jacobian=False)
189
+ loss += EPE3D_loss(flow_est, flow_gt.detach(), rmask) #* (1<<idx) scaling does not help that much
190
+ else:
191
+ xyz = batch_inverse_project(depth0, K)
192
+ flow_gt = batch_transform_xyz(xyz, R_gt, t_gt, get_Jacobian=False)
193
+
194
+ flow_est= batch_transform_xyz(xyz, R_est, t_est, get_Jacobian=False)
195
+ loss = EPE3D_loss(flow_est, flow_gt, mask)
196
+
197
+ loss = loss.sum()/float(len(loss))
198
+ return loss
@@ -0,0 +1,51 @@
1
+ import math
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Variable
5
+ import numpy as np
6
+ from math import exp
7
+
8
+ def gaussian(window_size, sigma):
9
+ gauss = torch.Tensor([exp(-(x - window_size/2)**2/float(2*sigma**2)) for x in range(window_size)])
10
+ return gauss/gauss.sum()
11
+
12
+ def create_window(window_size, channel):
13
+ _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
14
+ _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
15
+ window = Variable(_2D_window.expand(channel, 1, window_size, window_size))
16
+ return window
17
+
18
+ def SSIM(img1, img2):
19
+ (_, channel, _, _) = img1.size()
20
+ window_size = 11
21
+ window = create_window(window_size, channel).cuda()
22
+ mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
23
+ mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
24
+
25
+ mu1_sq = mu1.pow(2)
26
+ mu2_sq = mu2.pow(2)
27
+ mu1_mu2 = mu1*mu2
28
+
29
+ sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
30
+ sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
31
+ sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
32
+
33
+ C1 = 0.01**2
34
+ C2 = 0.03**2
35
+
36
+ ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
37
+ return ssim_map.mean()
38
+
39
+ def PSNR(img1, img2, mask=None):
40
+ if mask is not None:
41
+ mask = mask.cuda()
42
+ mse = (img1 - img2) ** 2
43
+ B,C,H,W=mse.size()
44
+ mse = torch.sum(mse * mask.float()) / (torch.sum(mask.float())*C)
45
+ else:
46
+ mse = torch.mean( (img1 - img2) ** 2 )
47
+
48
+ if mse == 0:
49
+ return 100
50
+ PIXEL_MAX = 1
51
+ return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
@@ -0,0 +1,53 @@
1
+ import torch
2
+ import os
3
+ import numpy as np
4
+ from torch.optim import lr_scheduler
5
+
6
+ class ModelBase():
7
+ def save_network(self, network, network_label, epoch_label, save_dir, on_gpu=True):
8
+ if not os.path.exists(save_dir):
9
+ os.makedirs(save_dir)
10
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
11
+ save_path = os.path.join(save_dir, save_filename)
12
+ torch.save(network.cpu().state_dict(), save_path)
13
+
14
+ if on_gpu:
15
+ network.cuda()
16
+
17
+ def load_network(self, network, network_label, epoch_label, save_dir):
18
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
19
+ save_path = os.path.join(save_dir, save_filename)
20
+ network.load_state_dict(torch.load(save_path))
21
+ print('load network from ', save_path)
22
+
23
+ def print_networks(self, net):
24
+ print('---------- Networks initialized -------------')
25
+ num_params = 0
26
+ for param in net.parameters():
27
+ num_params += param.numel()
28
+ # print(net)
29
+ print('[Network] Total number of parameters : %.3f M' % (num_params / 1e6))
30
+ print('-----------------------------------------------')
31
+
32
+ # used in test time, wrapping `forward` in no_grad() so we don't save
33
+ # intermediate steps for backprop
34
+ # def eval(self):
35
+ # with torch.no_grad():
36
+ # return self.forward()
37
+
38
+ def build_lr_scheduler(self):
39
+ self.lr_schedulers = []
40
+ for name in self.optimizer_names:
41
+ if isinstance(name, str):
42
+ optimizer = getattr(self, 'optimizer_' + name)
43
+ self.lr_schedulers.append(lr_scheduler.StepLR(optimizer, step_size=self.opts.lr_step, gamma=0.5))
44
+
45
+ def update_lr(self):
46
+ for scheduler in self.lr_schedulers:
47
+ scheduler.step()
48
+
49
+ for name in self.optimizer_names:
50
+ if isinstance(name, str):
51
+ optimizer = getattr(self, 'optimizer_' + name)
52
+ for param_group in optimizer.param_groups:
53
+ print('optimizer_'+name+'_lr', param_group['lr'])
@@ -0,0 +1,100 @@
1
+ '''
2
+ CNN building blocks.
3
+ Taken from https://github.com/shubhtuls/factored3d/
4
+ '''
5
+ from __future__ import division
6
+ from __future__ import print_function
7
+ import torch
8
+ import torch.nn as nn
9
+ import numpy as np
10
+ import math
11
+
12
+ ## 2D convolution layers
13
+ class conv2d(nn.Module):
14
+ def __init__(self, in_planes, out_planes, batch_norm, activation, kernel_size=3, stride=1):
15
+ super(conv2d, self).__init__()
16
+
17
+ use_bias = True
18
+ if batch_norm:
19
+ use_bias = False
20
+
21
+ modules = []
22
+ modules.append(nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=use_bias))
23
+ if batch_norm:
24
+ modules.append(nn.BatchNorm2d(out_planes))
25
+ if activation:
26
+ modules.append(activation)
27
+
28
+ self.net=nn.Sequential(*modules)
29
+
30
+ # initialization
31
+ for m in self.modules():
32
+ if isinstance(m, nn.Conv2d):
33
+ nn.init.xavier_uniform_(m.weight)
34
+ if m.bias is not None:
35
+ m.bias.data.zero_()
36
+ def forward(self, x):
37
+ return self.net(x)
38
+
39
+ class deconv2d(nn.Module):
40
+ def __init__(self, in_planes, out_planes):
41
+ super(deconv2d, self).__init__()
42
+
43
+ #self.net = nn.Sequential(nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True),
44
+ # nn.ReLU(inplace=True))
45
+
46
+ self.upsample = nn.Upsample(scale_factor=2, mode="bilinear")
47
+ self.net = nn.Sequential(conv2d(in_planes=in_planes, out_planes=out_planes, batch_norm=False, activation=False, kernel_size=3, stride=1))
48
+
49
+ for m in self.modules():
50
+ if isinstance(m, nn.ConvTranspose2d):
51
+ nn.init.xavier_uniform_(m.weight)
52
+ if m.bias is not None:
53
+ m.bias.data.zero_()
54
+
55
+ def forward(self, x):
56
+ x = self.upsample(x)
57
+ return self.net(x)
58
+
59
+ class ResnetBlock(nn.Module):
60
+ def __init__(self, in_planes):
61
+ super(ResnetBlock, self).__init__()
62
+ self.conv_block = self.build_conv_block(in_planes)
63
+
64
+ # initialization
65
+ for m in self.modules():
66
+ if isinstance(m, nn.Conv2d):
67
+ nn.init.xavier_uniform_(m.weight)
68
+ if m.bias is not None:
69
+ m.bias.data.zero_()
70
+
71
+ def build_conv_block(self, in_planes):
72
+ conv_block = []
73
+ conv_block += [conv2d(in_planes=in_planes, out_planes=in_planes, batch_norm=False, activation=nn.ReLU(), kernel_size=3, stride=1)]
74
+ conv_block += [conv2d(in_planes=in_planes, out_planes=in_planes, batch_norm=False, activation=False, kernel_size=3, stride=1)]
75
+
76
+ return nn.Sequential(*conv_block)
77
+
78
+ def forward(self, x):
79
+ out = x + self.conv_block(x)
80
+ return out
81
+
82
+ class Cascade_resnet_blocks(nn.Module):
83
+ def __init__(self, in_planes, n_blocks):
84
+ super(Cascade_resnet_blocks, self).__init__()
85
+
86
+ resnet_blocks = []
87
+ for i in range(n_blocks):
88
+ resnet_blocks += [ResnetBlock(in_planes)]
89
+
90
+ self.net = nn.Sequential(*resnet_blocks)
91
+
92
+ # initialization
93
+ for m in self.modules():
94
+ if isinstance(m, nn.Conv2d):
95
+ nn.init.xavier_normal_(m.weight)
96
+ if m.bias is not None:
97
+ m.bias.data.zero_()
98
+
99
+ def forward(self, x):
100
+ return self.net(x)