spikezoo 0.1.2__py3-none-any.whl → 0.2.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- spikezoo/__init__.py +13 -0
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/base/nets.py +34 -0
- spikezoo/archs/bsf/README.md +92 -0
- spikezoo/archs/bsf/datasets/datasets.py +328 -0
- spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
- spikezoo/archs/bsf/main.py +398 -0
- spikezoo/archs/bsf/metrics/psnr.py +22 -0
- spikezoo/archs/bsf/metrics/ssim.py +54 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
- spikezoo/archs/bsf/models/bsf/align.py +154 -0
- spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
- spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
- spikezoo/archs/bsf/models/bsf/rep.py +44 -0
- spikezoo/archs/bsf/models/get_model.py +7 -0
- spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
- spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
- spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
- spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
- spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
- spikezoo/archs/bsf/requirements.txt +9 -0
- spikezoo/archs/bsf/test.py +16 -0
- spikezoo/archs/bsf/utils.py +154 -0
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spikeclip/nets.py +40 -0
- spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
- spikezoo/archs/spikeformer/EvalResults/readme +1 -0
- spikezoo/archs/spikeformer/LICENSE +21 -0
- spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
- spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/Loss.py +89 -0
- spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
- spikezoo/archs/spikeformer/Model/__init__.py +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/spikeformer/README.md +30 -0
- spikezoo/archs/spikeformer/evaluate.py +87 -0
- spikezoo/archs/spikeformer/recon_real_data.py +97 -0
- spikezoo/archs/spikeformer/requirements.yml +95 -0
- spikezoo/archs/spikeformer/train.py +173 -0
- spikezoo/archs/spikeformer/utils.py +22 -0
- spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
- spikezoo/archs/spk2imgnet/.gitignore +150 -0
- spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/spk2imgnet/align_arch.py +159 -0
- spikezoo/archs/spk2imgnet/dataset.py +144 -0
- spikezoo/archs/spk2imgnet/nets.py +230 -0
- spikezoo/archs/spk2imgnet/readme.md +86 -0
- spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
- spikezoo/archs/spk2imgnet/train.py +189 -0
- spikezoo/archs/spk2imgnet/utils.py +64 -0
- spikezoo/archs/ssir/README.md +87 -0
- spikezoo/archs/ssir/configs/SSIR.yml +37 -0
- spikezoo/archs/ssir/configs/yml_parser.py +78 -0
- spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
- spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
- spikezoo/archs/ssir/losses.py +21 -0
- spikezoo/archs/ssir/main.py +326 -0
- spikezoo/archs/ssir/metrics/psnr.py +22 -0
- spikezoo/archs/ssir/metrics/ssim.py +54 -0
- spikezoo/archs/ssir/models/Vgg19.py +42 -0
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
- spikezoo/archs/ssir/models/layers.py +110 -0
- spikezoo/archs/ssir/models/networks.py +61 -0
- spikezoo/archs/ssir/requirements.txt +8 -0
- spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
- spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
- spikezoo/archs/ssir/test.py +3 -0
- spikezoo/archs/ssir/utils.py +154 -0
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
- spikezoo/archs/ssml/cbam.py +224 -0
- spikezoo/archs/ssml/model.py +290 -0
- spikezoo/archs/ssml/res.png +0 -0
- spikezoo/archs/ssml/test.py +67 -0
- spikezoo/archs/stir/.git-credentials +0 -0
- spikezoo/archs/stir/README.md +65 -0
- spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
- spikezoo/archs/stir/configs/STIR.yml +37 -0
- spikezoo/archs/stir/configs/utils.py +155 -0
- spikezoo/archs/stir/configs/yml_parser.py +78 -0
- spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
- spikezoo/archs/stir/datasets/ds_utils.py +66 -0
- spikezoo/archs/stir/eval_SREDS.sh +5 -0
- spikezoo/archs/stir/main.py +397 -0
- spikezoo/archs/stir/metrics/losses.py +219 -0
- spikezoo/archs/stir/metrics/psnr.py +22 -0
- spikezoo/archs/stir/metrics/ssim.py +54 -0
- spikezoo/archs/stir/models/Vgg19.py +42 -0
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
- spikezoo/archs/stir/models/networks_STIR.py +361 -0
- spikezoo/archs/stir/models/submodules.py +86 -0
- spikezoo/archs/stir/models/transformer_new.py +151 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
- spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
- spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
- spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
- spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
- spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
- spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
- spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
- spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
- spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
- spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
- spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
- spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
- spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
- spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
- spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
- spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
- spikezoo/archs/stir/package_core/setup.py +5 -0
- spikezoo/archs/stir/requirements.txt +12 -0
- spikezoo/archs/stir/train_STIR.sh +9 -0
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfi/nets.py +43 -0
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
- spikezoo/archs/tfp/nets.py +13 -0
- spikezoo/archs/wgse/README.md +64 -0
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
- spikezoo/archs/wgse/dataset.py +59 -0
- spikezoo/archs/wgse/demo.png +0 -0
- spikezoo/archs/wgse/demo.py +83 -0
- spikezoo/archs/wgse/dwtnets.py +145 -0
- spikezoo/archs/wgse/eval.py +133 -0
- spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
- spikezoo/archs/wgse/submodules.py +68 -0
- spikezoo/archs/wgse/train.py +261 -0
- spikezoo/archs/wgse/transform.py +139 -0
- spikezoo/archs/wgse/utils.py +128 -0
- spikezoo/archs/wgse/weights/demo.png +0 -0
- spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
- spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
- spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
- spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
- spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
- spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
- spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
- spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
- spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
- spikezoo/datasets/base_dataset.py +2 -3
- spikezoo/metrics/__init__.py +1 -1
- spikezoo/models/base_model.py +1 -3
- spikezoo/pipeline/base_pipeline.py +7 -5
- spikezoo/pipeline/train_pipeline.py +1 -1
- spikezoo/utils/other_utils.py +16 -6
- spikezoo/utils/spike_utils.py +33 -29
- spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
- spikezoo-0.2.1.dist-info/METADATA +167 -0
- spikezoo-0.2.1.dist-info/RECORD +211 -0
- spikezoo/models/spcsnet_model.py +0 -19
- spikezoo-0.1.2.dist-info/METADATA +0 -39
- spikezoo-0.1.2.dist-info/RECORD +0 -36
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/LICENSE.txt +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/WHEEL +0 -0
- {spikezoo-0.1.2.dist-info → spikezoo-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,398 @@
|
|
1
|
+
import argparse
|
2
|
+
import os
|
3
|
+
import os.path as osp
|
4
|
+
import time
|
5
|
+
import numpy as np
|
6
|
+
import torch
|
7
|
+
import torch.backends.cudnn as cudnn
|
8
|
+
from tensorboardX import SummaryWriter
|
9
|
+
import datetime
|
10
|
+
from datasets import datasets
|
11
|
+
from models.get_model import get_model
|
12
|
+
from utils import *
|
13
|
+
from metrics.psnr import *
|
14
|
+
from metrics.ssim import *
|
15
|
+
import lpips
|
16
|
+
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
|
17
|
+
import pprint
|
18
|
+
from models.bsf.dsft_convert import convert_dsft4
|
19
|
+
|
20
|
+
parser = argparse.ArgumentParser()
|
21
|
+
############################ Dataset Root ############################
|
22
|
+
parser.add_argument('--dataset_storage', type=str, default='ram') ## ram or disk
|
23
|
+
parser.add_argument('--data-root', type=str, default='/dev/shm/rzhao/REDS120fps')
|
24
|
+
parser.add_argument('--half_reserve', type=int, default=2, help=' DSFT half reserve + 3ref + 4key + 3ref + DSFT half reserve')
|
25
|
+
############################ Training Params ############################
|
26
|
+
parser.add_argument('--arch', '-a', type=str, default='MEPF')
|
27
|
+
parser.add_argument('--batch-size', '-bs', type=int, default=8)
|
28
|
+
parser.add_argument('--learning-rate', '-lr', type=float, default=2e-4)
|
29
|
+
parser.add_argument('--train-res', '-tr', type=int, default=[128, 128], metavar='N', nargs='*')
|
30
|
+
parser.add_argument('--input-type', type=str, default='raw_spike', choices=['dsft', 'raw_spike'])
|
31
|
+
parser.add_argument('--epochs', '-ep', type=int, default=100)
|
32
|
+
parser.add_argument('--workers', '-j', type=int, default=8)
|
33
|
+
parser.add_argument('--pretrained', '-prt', type=str, default=None)
|
34
|
+
parser.add_argument('--start-epoch', '-sep', type=int, default=0)
|
35
|
+
parser.add_argument('--print-freq', '-pf', type=int, default=100)
|
36
|
+
parser.add_argument('--save-dir', '-sd', type=str, default='outputs')
|
37
|
+
parser.add_argument('--save-name', '-sn', type=str, default=None)
|
38
|
+
parser.add_argument('--vis-path', '-vp', type=str, default='vis')
|
39
|
+
parser.add_argument('--vis-name', '-vn', type=str, default='model1')
|
40
|
+
parser.add_argument('--eval-path', '-evp', type=str, default='eval_vis/model1')
|
41
|
+
parser.add_argument('--vis-freq', '-vf', type=int, default=20)
|
42
|
+
parser.add_argument('--eval', '-e', action='store_true')
|
43
|
+
parser.add_argument('--print_details', '-pd', action='store_true')
|
44
|
+
parser.add_argument('--milestones', default=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100], metavar='N', nargs='*')
|
45
|
+
parser.add_argument('--lr-scale-factor', '-lrsf', type=float, default=0.7)
|
46
|
+
parser.add_argument('--eval-interval', '-ei', type=int, default=5)
|
47
|
+
parser.add_argument('--no_imwrite', action='store_true', default=False)
|
48
|
+
parser.add_argument('--compile_model', '-cmpmd', action='store_true')
|
49
|
+
parser.add_argument('--seed', type=int, default=2728)
|
50
|
+
############################ Params about Dataset ############################
|
51
|
+
parser.add_argument('--alpha', type=float, default=0.7)
|
52
|
+
parser.add_argument('--eta_list', default=[1.00, 0.75, 0.50], type=float, metavar='N', nargs='*')
|
53
|
+
parser.add_argument('--gamma', type=int, default=60)
|
54
|
+
############################ About Optimizer ############################
|
55
|
+
parser.add_argument('--solver', type=str, default='Adam')
|
56
|
+
parser.add_argument('--momentum', type=float, default=0.9)
|
57
|
+
parser.add_argument('--beta', type=float, default=0.999)
|
58
|
+
parser.add_argument('--weight_decay', type=float, default=0.0)
|
59
|
+
|
60
|
+
parser.add_argument('--test_eval', action='store_true')
|
61
|
+
parser.add_argument('--logs_file_name', type=str, default='bsf')
|
62
|
+
|
63
|
+
parser.add_argument('--loss_type', type=str, default='l1')
|
64
|
+
parser.add_argument('--dsft_convertor_type', type=int, default=4)
|
65
|
+
|
66
|
+
parser.add_argument('--no_dsft', action='store_true')
|
67
|
+
args = parser.parse_args()
|
68
|
+
|
69
|
+
|
70
|
+
|
71
|
+
##########################################################################################################
|
72
|
+
## configs
|
73
|
+
writer_root = 'logs/{:s}/'.format(args.logs_file_name)
|
74
|
+
os.makedirs(writer_root, exist_ok=True)
|
75
|
+
writer_path = writer_root + args.arch + '.txt'
|
76
|
+
writer = open(writer_path, 'a')
|
77
|
+
|
78
|
+
for k, v in vars(args).items():
|
79
|
+
vv = pprint.pformat(v)
|
80
|
+
ostr = '{:s} : {:s}'.format(k, vv)
|
81
|
+
writer.write(ostr + '\n')
|
82
|
+
|
83
|
+
args.milestones = [int(m) for m in args.milestones]
|
84
|
+
ostr = 'milsones '
|
85
|
+
for mmm in args.milestones:
|
86
|
+
ostr += '{:d} '.format(mmm)
|
87
|
+
writer.write(ostr + '\n')
|
88
|
+
|
89
|
+
n_iter = 0
|
90
|
+
|
91
|
+
|
92
|
+
def batch_PSNR(img, imclean, data_range):
|
93
|
+
Img = img.data.cpu().numpy().astype(np.float32)
|
94
|
+
Iclean = imclean.data.cpu().numpy().astype(np.float32)
|
95
|
+
PSNR = compare_psnr(Img, Iclean, data_range=data_range)
|
96
|
+
'''
|
97
|
+
PSNR = 0
|
98
|
+
for i in range(Img.shape[0]):
|
99
|
+
PSNR += compare_psnr(Iclean[i,:,:,:], Img[i,:,:,:], data_range=data_range)
|
100
|
+
return (PSNR/Img.shape[0])
|
101
|
+
'''
|
102
|
+
return PSNR
|
103
|
+
|
104
|
+
|
105
|
+
def train(args, train_loader, model, optimizer, epoch, train_writer):
|
106
|
+
######################################################################
|
107
|
+
## Init
|
108
|
+
global n_iter
|
109
|
+
batch_time = AverageMeter(precision=3)
|
110
|
+
data_time = AverageMeter(precision=3)
|
111
|
+
|
112
|
+
losses = AverageMeter(precision=6, names=['Loss'])
|
113
|
+
batch_psnr = AverageMeter(precision=4)
|
114
|
+
|
115
|
+
model.train()
|
116
|
+
|
117
|
+
end = time.time()
|
118
|
+
|
119
|
+
######################################################################
|
120
|
+
## Training Loop
|
121
|
+
for ww, data in enumerate(train_loader, 0):
|
122
|
+
spikes = [spk.float().cuda() for spk in data['spikes']]
|
123
|
+
spks = torch.cat(spikes, dim=1)
|
124
|
+
central_idx = 10*args.half_reserve + 30
|
125
|
+
spks = spks[:, central_idx-30:central_idx+31]
|
126
|
+
|
127
|
+
if not args.no_dsft:
|
128
|
+
dsfts = [d.float().cuda() for d in data['dsft']]
|
129
|
+
dsfts = torch.cat(dsfts, dim=1)
|
130
|
+
central_idx = 10*args.half_reserve + 30
|
131
|
+
dsfts = dsfts[:, central_idx-30:central_idx+31]
|
132
|
+
|
133
|
+
images = [img.cuda() for img in data['images']]
|
134
|
+
norm_fac = data['norm_fac'].unsqueeze_(dim=1).unsqueeze_(dim=1).unsqueeze_(dim=1).cuda().float()
|
135
|
+
|
136
|
+
data_time.update(time.time() - end)
|
137
|
+
|
138
|
+
if not args.no_dsft:
|
139
|
+
dsft_dict = convert_dsft4(spike=spks, dsft=dsfts)
|
140
|
+
|
141
|
+
input_dict = {
|
142
|
+
'dsft_dict': dsft_dict,
|
143
|
+
'spikes': spks,
|
144
|
+
}
|
145
|
+
|
146
|
+
gt = images[0]
|
147
|
+
|
148
|
+
rec = model(input_dict=input_dict)
|
149
|
+
|
150
|
+
rec = rec / norm_fac
|
151
|
+
|
152
|
+
if args.loss_type == 'l1':
|
153
|
+
loss = (rec - gt).abs().mean()
|
154
|
+
elif args.loss_type == 'charbonnier':
|
155
|
+
loss = torch.sqrt((rec - gt)**2 + 1e-6).mean()
|
156
|
+
|
157
|
+
# record loss
|
158
|
+
losses.update(loss)
|
159
|
+
cur_batch_psnr = batch_PSNR(img=rec, imclean=gt, data_range=1.0)
|
160
|
+
batch_psnr.update(cur_batch_psnr)
|
161
|
+
|
162
|
+
if ww % 10 == 0:
|
163
|
+
train_writer.add_scalar('loss', loss.item(), n_iter)
|
164
|
+
train_writer.add_scalar('batch_psnr', cur_batch_psnr, n_iter)
|
165
|
+
|
166
|
+
loss.backward()
|
167
|
+
optimizer.step()
|
168
|
+
optimizer.zero_grad()
|
169
|
+
|
170
|
+
batch_time.update(time.time() - end)
|
171
|
+
n_iter += 1
|
172
|
+
|
173
|
+
if n_iter % args.vis_freq == 0:
|
174
|
+
vis_img(args.vis_path, torch.clip(rec, 0, 1), args.arch)
|
175
|
+
|
176
|
+
ostr = 'Epoch: [{:03d}] [{:04d}/{:04d}], Iter: {:6d} '.format(epoch+1, ww, len(train_loader), n_iter-1)
|
177
|
+
ostr += 'Time: {}, Data: {} '.format(batch_time, data_time)
|
178
|
+
ostr += ' '.join(map('{:s} {:.4f} ({:.6f}) '.format, losses.names, losses.val, losses.avg))
|
179
|
+
ostr += 'batch_PSNR {} '.format(batch_psnr)
|
180
|
+
ostr += 'lr {:.6f}'.format(optimizer.state_dict()['param_groups'][0]['lr'])
|
181
|
+
if ww % args.print_freq == 0:
|
182
|
+
writer.write(ostr + '\n')
|
183
|
+
end = time.time()
|
184
|
+
|
185
|
+
return
|
186
|
+
|
187
|
+
|
188
|
+
def validation(args, test_loader_list, model, lpips_function_dict):
|
189
|
+
model.eval()
|
190
|
+
|
191
|
+
for eta, test_loader in zip(args.eta_list, test_loader_list):
|
192
|
+
cur_eval_root = osp.join(args.eval_path, args.arch, 'eta_{:.2f}'.format(eta))
|
193
|
+
os.makedirs(cur_eval_root, exist_ok=True)
|
194
|
+
|
195
|
+
global n_iter
|
196
|
+
batch_time = AverageMeter()
|
197
|
+
data_time = AverageMeter()
|
198
|
+
metrics_name = ['PSNR', 'SSIM', 'LPIPS-A', 'LPIPS-V', 'AvgTime']
|
199
|
+
metrics = AverageMeter(i=len(metrics_name), precision=4, names=metrics_name)
|
200
|
+
|
201
|
+
for ww, data in enumerate(test_loader, 0):
|
202
|
+
st1 = time.time()
|
203
|
+
spks = torch.cat([spk.float().cuda() for spk in data['spikes']], dim=1)
|
204
|
+
central_idx = 10*args.half_reserve + 30
|
205
|
+
spks = spks[:, central_idx-30:central_idx+31]
|
206
|
+
|
207
|
+
if not args.no_dsft:
|
208
|
+
dsfts = torch.cat([d.float().cuda() for d in data['dsft']], dim=1)
|
209
|
+
central_idx = 10*args.half_reserve + 30
|
210
|
+
dsfts = dsfts[:, central_idx-30:central_idx+31]
|
211
|
+
|
212
|
+
images = data['images']
|
213
|
+
norm_fac = data['norm_fac'].unsqueeze_(dim=1).unsqueeze_(dim=1).unsqueeze_(dim=1).cuda().float()
|
214
|
+
|
215
|
+
data_time.update(time.time() - st1)
|
216
|
+
|
217
|
+
if not args.no_dsft:
|
218
|
+
dsft_dict = convert_dsft4(spike=spks, dsft=dsfts)
|
219
|
+
|
220
|
+
input_dict = {
|
221
|
+
'dsft_dict': dsft_dict,
|
222
|
+
'spikes': spks,
|
223
|
+
}
|
224
|
+
|
225
|
+
with torch.no_grad():
|
226
|
+
st = time.time()
|
227
|
+
rec = model(input_dict=input_dict)
|
228
|
+
mtime = time.time() - st
|
229
|
+
|
230
|
+
rec = rec / norm_fac
|
231
|
+
rec = torch.clip(rec, 0, 1)
|
232
|
+
rec_np = torch2numpy255(rec)
|
233
|
+
img_np = torch2numpy255(images[0])
|
234
|
+
|
235
|
+
if not args.no_imwrite:
|
236
|
+
cur_vis_path = osp.join(cur_eval_root, '{:03d}.png'.format(ww))
|
237
|
+
cv2.imwrite(cur_vis_path, rec_np.astype(np.uint8))
|
238
|
+
|
239
|
+
cur_psnr = calculate_psnr(rec_np, img_np)
|
240
|
+
cur_ssim = calculate_ssim(rec_np, img_np)
|
241
|
+
with torch.no_grad():
|
242
|
+
cur_lpips_alex = lpips_function_dict['alex'](rec, images[0].cuda())
|
243
|
+
cur_lpips_vgg = lpips_function_dict['vgg'](rec, images[0].cuda())
|
244
|
+
|
245
|
+
cur_metrics_list = [cur_psnr, cur_ssim, cur_lpips_alex.item(), cur_lpips_vgg.item() , mtime]
|
246
|
+
metrics.update(cur_metrics_list)
|
247
|
+
|
248
|
+
torch.cuda.empty_cache()
|
249
|
+
ostr = 'Eta {:.2f} ALL '.format(eta) + ' '.join(map('{:s} {:.4f}'.format, metrics.names, metrics.avg))
|
250
|
+
writer.write(ostr + '\n')
|
251
|
+
|
252
|
+
return
|
253
|
+
|
254
|
+
|
255
|
+
def main():
|
256
|
+
##########################################################################################################
|
257
|
+
# Set random seeds
|
258
|
+
set_seeds(args.seed)
|
259
|
+
|
260
|
+
# Create save path and logs
|
261
|
+
timestamp1 = datetime.datetime.now().strftime('%m-%d')
|
262
|
+
timestamp2 = datetime.datetime.now().strftime('%H%M%S')
|
263
|
+
|
264
|
+
save_folder_name = 'a_{:s}_b{:d}_{:s}'.format(args.arch, args.batch_size, timestamp2)
|
265
|
+
|
266
|
+
save_path = osp.join(args.save_dir, timestamp1, save_folder_name)
|
267
|
+
make_dir(save_path)
|
268
|
+
ostr = '=>Save path: ' + save_path
|
269
|
+
writer.write(ostr + '\n')
|
270
|
+
# print('=>Save path: ', save_path)
|
271
|
+
train_writer = SummaryWriter(save_path)
|
272
|
+
|
273
|
+
make_dir(args.vis_path)
|
274
|
+
make_dir(args.eval_path)
|
275
|
+
|
276
|
+
model = None
|
277
|
+
optimizer = None
|
278
|
+
|
279
|
+
##########################################################################################################
|
280
|
+
## Create model
|
281
|
+
print(args.arch)
|
282
|
+
model = get_model(args)
|
283
|
+
|
284
|
+
if args.compile_model and (torch.__version__ >= '2.0.0'):
|
285
|
+
ostr = 'Start compile the model'
|
286
|
+
writer.write(ostr + '\n')
|
287
|
+
st = time.time()
|
288
|
+
torch.compile(model)
|
289
|
+
ostr = 'Finish compiling the model Time {:.2f}s'.format(time.time() - st)
|
290
|
+
writer.write(ostr + '\n')
|
291
|
+
|
292
|
+
if args.pretrained != None:
|
293
|
+
network_data = torch.load(args.pretrained)
|
294
|
+
ostr = '=> using pretrained model {:s}'.format(args.pretrained)
|
295
|
+
writer.write(ostr + '\n')
|
296
|
+
ostr = '=> model params: {:.6f}M'.format(model.num_parameters()/1e6)
|
297
|
+
writer.write(ostr + '\n')
|
298
|
+
model = torch.nn.DataParallel(model).cuda()
|
299
|
+
model = model.cuda()
|
300
|
+
model.load_state_dict(network_data)
|
301
|
+
else:
|
302
|
+
network_data = None
|
303
|
+
ostr = '=> train from scratch'
|
304
|
+
writer.write(ostr + '\n')
|
305
|
+
model.init_weights()
|
306
|
+
ostr = '=> model params: {:.6f}M'.format(model.num_parameters()/1e6)
|
307
|
+
writer.write(ostr + '\n')
|
308
|
+
model = torch.nn.DataParallel(model).cuda()
|
309
|
+
model = model.cuda()
|
310
|
+
|
311
|
+
cudnn.benchmark = True
|
312
|
+
|
313
|
+
##########################################################################################################
|
314
|
+
## Create Optimizer
|
315
|
+
assert(args.solver in ['Adam', 'SGD'])
|
316
|
+
ostr = '=> settings {:s} solver'.format(args.solver)
|
317
|
+
writer.write(ostr + '\n')
|
318
|
+
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
|
319
|
+
|
320
|
+
|
321
|
+
##########################################################################################################
|
322
|
+
## Dataset
|
323
|
+
train_set = datasets.sreds_train(args)
|
324
|
+
train_loader = torch.utils.data.DataLoader(
|
325
|
+
train_set,
|
326
|
+
drop_last=False,
|
327
|
+
batch_size=args.batch_size,
|
328
|
+
shuffle=True,
|
329
|
+
num_workers=args.workers,
|
330
|
+
)
|
331
|
+
|
332
|
+
test_loader_list = []
|
333
|
+
for eta in args.eta_list:
|
334
|
+
test_set = datasets.sreds_test_small(args, eta=eta)
|
335
|
+
test_loader = torch.utils.data.DataLoader(
|
336
|
+
test_set,
|
337
|
+
drop_last=False,
|
338
|
+
batch_size=1,
|
339
|
+
shuffle=False,
|
340
|
+
num_workers=args.workers,
|
341
|
+
)
|
342
|
+
test_loader_list.append(test_loader)
|
343
|
+
|
344
|
+
##########################################################################################################
|
345
|
+
## For LPIPS
|
346
|
+
loss_fn_alex = lpips.LPIPS(net='alex').cuda() # closer to "traditional" perceptual loss, when used for optimization
|
347
|
+
loss_fn_vgg = lpips.LPIPS(net='vgg').cuda() # closer to "traditional" perceptual loss, when used for optimization
|
348
|
+
lpips_function_dict = {'alex': loss_fn_alex, 'vgg': loss_fn_vgg}
|
349
|
+
|
350
|
+
##########################################################################################################
|
351
|
+
## Train or Evaluate
|
352
|
+
if args.test_eval:
|
353
|
+
validation(
|
354
|
+
args=args,
|
355
|
+
test_loader_list=test_loader_list,
|
356
|
+
model=model,
|
357
|
+
lpips_function_dict=lpips_function_dict,
|
358
|
+
)
|
359
|
+
return
|
360
|
+
|
361
|
+
epoch = args.start_epoch
|
362
|
+
while(True):
|
363
|
+
train(
|
364
|
+
args=args,
|
365
|
+
train_loader=train_loader,
|
366
|
+
model=model,
|
367
|
+
optimizer=optimizer,
|
368
|
+
epoch=epoch,
|
369
|
+
train_writer=train_writer,
|
370
|
+
)
|
371
|
+
epoch += 1
|
372
|
+
|
373
|
+
# scheduler can be added here
|
374
|
+
if epoch in args.milestones:
|
375
|
+
for param_group in optimizer.param_groups:
|
376
|
+
param_group['lr'] = param_group['lr'] * args.lr_scale_factor
|
377
|
+
|
378
|
+
# save model
|
379
|
+
if epoch % 5 == 0:
|
380
|
+
model_save_name = '{:s}_epoch{:03d}.pth'.format(args.arch, epoch)
|
381
|
+
torch.save(model.state_dict(), osp.join(save_path, model_save_name))
|
382
|
+
|
383
|
+
# if epoch % 5 == 0:
|
384
|
+
if epoch % args.eval_interval == 0:
|
385
|
+
validation(
|
386
|
+
args=args,
|
387
|
+
test_loader_list=test_loader_list,
|
388
|
+
model=model,
|
389
|
+
lpips_function_dict=lpips_function_dict,
|
390
|
+
)
|
391
|
+
|
392
|
+
|
393
|
+
if epoch >= args.epochs:
|
394
|
+
break
|
395
|
+
|
396
|
+
|
397
|
+
if __name__ == '__main__':
|
398
|
+
main()
|
@@ -0,0 +1,22 @@
|
|
1
|
+
import math
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
# --------------------------------------------
|
5
|
+
# PSNR
|
6
|
+
# --------------------------------------------
|
7
|
+
def calculate_psnr(img1, img2, border=0):
|
8
|
+
# img1 and img2 have range [0, 255]
|
9
|
+
#img1 = img1.squeeze()
|
10
|
+
#img2 = img2.squeeze()
|
11
|
+
if not img1.shape == img2.shape:
|
12
|
+
raise ValueError('Input images must have the same dimensions.')
|
13
|
+
h, w = img1.shape[:2]
|
14
|
+
img1 = img1[border:h-border, border:w-border]
|
15
|
+
img2 = img2[border:h-border, border:w-border]
|
16
|
+
|
17
|
+
img1 = img1.astype(np.float64)
|
18
|
+
img2 = img2.astype(np.float64)
|
19
|
+
mse = np.mean((img1 - img2)**2)
|
20
|
+
if mse == 0:
|
21
|
+
return float('inf')
|
22
|
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
@@ -0,0 +1,54 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import cv2
|
3
|
+
|
4
|
+
# --------------------------------------------
|
5
|
+
# SSIM
|
6
|
+
# --------------------------------------------
|
7
|
+
def calculate_ssim(img1, img2, border=0):
|
8
|
+
'''calculate SSIM
|
9
|
+
the same outputs as MATLAB's
|
10
|
+
img1, img2: [0, 255]
|
11
|
+
'''
|
12
|
+
#img1 = img1.squeeze()
|
13
|
+
#img2 = img2.squeeze()
|
14
|
+
if not img1.shape == img2.shape:
|
15
|
+
raise ValueError('Input images must have the same dimensions.')
|
16
|
+
h, w = img1.shape[:2]
|
17
|
+
img1 = img1[border:h-border, border:w-border]
|
18
|
+
img2 = img2[border:h-border, border:w-border]
|
19
|
+
|
20
|
+
if img1.ndim == 2:
|
21
|
+
return ssim(img1, img2)
|
22
|
+
elif img1.ndim == 3:
|
23
|
+
if img1.shape[2] == 3:
|
24
|
+
ssims = []
|
25
|
+
for i in range(3):
|
26
|
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
27
|
+
return np.array(ssims).mean()
|
28
|
+
elif img1.shape[2] == 1:
|
29
|
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
30
|
+
else:
|
31
|
+
raise ValueError('Wrong input image dimensions.')
|
32
|
+
|
33
|
+
|
34
|
+
def ssim(img1, img2):
|
35
|
+
C1 = (0.01 * 255)**2
|
36
|
+
C2 = (0.03 * 255)**2
|
37
|
+
|
38
|
+
img1 = img1.astype(np.float64)
|
39
|
+
img2 = img2.astype(np.float64)
|
40
|
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
41
|
+
window = np.outer(kernel, kernel.transpose())
|
42
|
+
|
43
|
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
44
|
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
45
|
+
mu1_sq = mu1**2
|
46
|
+
mu2_sq = mu2**2
|
47
|
+
mu1_mu2 = mu1 * mu2
|
48
|
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
49
|
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
50
|
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
51
|
+
|
52
|
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
53
|
+
(sigma1_sq + sigma2_sq + C2))
|
54
|
+
return ssim_map.mean()
|
Binary file
|
Binary file
|
Binary file
|
@@ -0,0 +1,154 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn as nn
|
3
|
+
import torch.nn.functional as F
|
4
|
+
from torchvision.ops import DeformConv2d
|
5
|
+
|
6
|
+
|
7
|
+
class CAPA(nn.Module):
|
8
|
+
def __init__(self, chnn, sc=11):
|
9
|
+
super().__init__()
|
10
|
+
self.sc = sc
|
11
|
+
self.unfold = nn.Unfold(kernel_size=3*self.sc, dilation=1, padding=self.sc, stride=self.sc)
|
12
|
+
self.scale = chnn ** -0.5
|
13
|
+
self.to_q = nn.Conv2d(chnn, chnn, 1, bias=False)
|
14
|
+
self.to_k = nn.Conv2d(chnn, chnn, 1, bias=False)
|
15
|
+
self.to_v = nn.Conv2d(chnn, chnn, 1, bias=False)
|
16
|
+
self.gamma = nn.Parameter(torch.zeros(1))
|
17
|
+
self.mask_k = True
|
18
|
+
|
19
|
+
def forward(self, x_key, x_ref):
|
20
|
+
b, c, h_in, w_in = x_key.shape
|
21
|
+
x_pad = self.sc - w_in % self.sc
|
22
|
+
y_pad = self.sc - h_in % self.sc
|
23
|
+
feat_key = F.pad(x_key, (0, x_pad, 0, y_pad))
|
24
|
+
feat_ref = F.pad(x_ref, (0, x_pad, 0, y_pad))
|
25
|
+
b, c, h, w = feat_key.shape
|
26
|
+
h_sc = h // self.sc
|
27
|
+
w_sc = w // self.sc
|
28
|
+
|
29
|
+
fm = torch.ones(1, 1, h_in, w_in).to(feat_key.device)
|
30
|
+
fm = F.pad(fm, (0, x_pad, 0, y_pad))
|
31
|
+
fm_k = self.unfold(fm).view(1, 1, -1, h_sc*w_sc)
|
32
|
+
fm_q = fm.view(1, 1, h_sc, self.sc, w_sc, self.sc).permute(0, 1, 2, 4, 3, 5).contiguous().view(1, 1, h_sc*w_sc, self.sc**2)
|
33
|
+
am = torch.einsum('b c k n, b c n s -> b k n s', fm_k, fm_q)
|
34
|
+
am = (am - 1) * 99.
|
35
|
+
am = am.repeat(b, 1, 1, 1)
|
36
|
+
|
37
|
+
feat_q = self.to_q(feat_key)
|
38
|
+
feat_k = self.to_k(feat_ref)
|
39
|
+
feat_k = self.unfold(feat_k).view(b, c, -1, h_sc*w_sc)
|
40
|
+
feat_k = self.scale * feat_k
|
41
|
+
feat_q = feat_q.view(b, c, h_sc, self.sc, w_sc, self.sc).permute(0, 1, 2, 4, 3, 5).contiguous().view(b, c, h_sc*w_sc, self.sc**2)
|
42
|
+
attn = torch.einsum('b c k n, b c n s -> b k n s', feat_k, feat_q)
|
43
|
+
|
44
|
+
|
45
|
+
attn = attn + am
|
46
|
+
self.attn = F.softmax(attn, dim=1)
|
47
|
+
|
48
|
+
feat_v = self.to_v(feat_ref)
|
49
|
+
feat_v = self.unfold(feat_v).view(b, c, -1, h_sc*w_sc)
|
50
|
+
feat_r = torch.einsum('b k n s, b c k n -> b c n s', self.attn, feat_v)
|
51
|
+
feat_r = feat_r.view(b, c, h_sc, w_sc, self.sc, self.sc).permute(0, 1, 2, 4, 3, 5).contiguous().view(b, c, h, w)
|
52
|
+
feat_r = feat_r[:,:,:h_in,:w_in]
|
53
|
+
feat_o = x_ref + feat_r * self.gamma
|
54
|
+
return feat_o
|
55
|
+
|
56
|
+
|
57
|
+
class Multi_Granularity_Align_One_Level(nn.Module):
|
58
|
+
def __init__(self, base_dim=64, offset_groups=4, act=nn.ReLU(), memory=True):
|
59
|
+
super().__init__()
|
60
|
+
self.offset_groups = offset_groups
|
61
|
+
self.memory = memory
|
62
|
+
|
63
|
+
if self.memory:
|
64
|
+
first_output_dim = base_dim
|
65
|
+
else:
|
66
|
+
first_output_dim = 3*self.offset_groups*3*3
|
67
|
+
|
68
|
+
self.offset_conv_1 = self._make_two_conv_layer(input_dim=base_dim*2, hidden_dim=base_dim, output_dim=first_output_dim, kernel_size=3, stride=1, padding=1, act=act)
|
69
|
+
if self.memory:
|
70
|
+
self.offset_conv2_1 = self._make_two_conv_layer(input_dim=base_dim + 3*self.offset_groups*3*3, hidden_dim=base_dim, output_dim=3*self.offset_groups*3*3, kernel_size=3, stride=1, padding=1, act=act)
|
71
|
+
self.fuse_feat = self._make_two_conv_layer(input_dim=base_dim*2, hidden_dim=base_dim, output_dim=base_dim, kernel_size=3, stride=1, padding=1, act=act)
|
72
|
+
|
73
|
+
def _make_two_conv_layer(self, input_dim, hidden_dim, output_dim, kernel_size, stride, padding, act):
|
74
|
+
layer = nn.Sequential(
|
75
|
+
nn.Conv2d(input_dim, hidden_dim, kernel_size=kernel_size, stride=stride, padding=padding),
|
76
|
+
act,
|
77
|
+
nn.Conv2d(hidden_dim, output_dim, kernel_size=kernel_size, stride=1, padding=padding),
|
78
|
+
)
|
79
|
+
return layer
|
80
|
+
|
81
|
+
def forward(self, feat_list, kpa, deform_conv, prev_offset_feat=None, prev_feat=None):
|
82
|
+
xa, xb, xc, xd, xe = feat_list
|
83
|
+
|
84
|
+
xa_kpa, xb_kpa, xd_kpa, xe_kpa = [kpa(x_key=xc, x_ref=xxx) for xxx in [xa, xb, xd, xe]]
|
85
|
+
feat_for_conv_offset1 = [torch.cat([xxx, xc], dim=1) for xxx in [xa_kpa, xb_kpa, xd_kpa, xe_kpa]]
|
86
|
+
|
87
|
+
offset_feat_list1 = [self.offset_conv_1(f) for f in feat_for_conv_offset1]
|
88
|
+
if self.memory:
|
89
|
+
prev_offset_upsample_list1 = [F.interpolate(offset_feat, scale_factor=2, mode='bilinear') for offset_feat in prev_offset_feat]
|
90
|
+
offset_feat_list1 = [self.offset_conv2_1(torch.cat((f1, f2), dim=1)) for f1, f2 in zip(offset_feat_list1, prev_offset_upsample_list1)]
|
91
|
+
|
92
|
+
o1o2m_abde_list1 = [f.chunk(3, dim=1) for f in offset_feat_list1]
|
93
|
+
offset_abde_list1 = [torch.cat((o1o2m[0], o1o2m[1]), dim=1) for o1o2m in o1o2m_abde_list1]
|
94
|
+
mask_abde_list1 = [torch.sigmoid(o1o2m[2]) for o1o2m in o1o2m_abde_list1]
|
95
|
+
|
96
|
+
x_align_abde = [deform_conv(input=xx, offset=offset, mask=mask) for xx,offset,mask in zip([xa_kpa, xb_kpa, xd_kpa, xe_kpa], offset_abde_list1, mask_abde_list1)]
|
97
|
+
|
98
|
+
if self.memory:
|
99
|
+
prev_x_abde_align_upasmple_list = [F.interpolate(xxx, scale_factor=2, mode='bilinear') for xxx in prev_feat]
|
100
|
+
x_align_abde = [self.fuse_feat(torch.cat((x_align, prev_x_align_upsample), dim=1)) for x_align, prev_x_align_upsample in zip(x_align_abde, prev_x_abde_align_upasmple_list)]
|
101
|
+
|
102
|
+
xa_align, xb_align, xd_align, xe_align = x_align_abde
|
103
|
+
x_align = (xa_align, xb_align, xc, xd_align, xe_align)
|
104
|
+
return x_align, offset_feat_list1
|
105
|
+
|
106
|
+
|
107
|
+
class Multi_Granularity_Align(nn.Module):
|
108
|
+
def __init__(self, base_dim=64, groups=4, act=nn.ReLU(), sc=11):
|
109
|
+
super().__init__()
|
110
|
+
self.offset_groups = groups
|
111
|
+
self.sc = sc
|
112
|
+
|
113
|
+
self.kpa = CAPA(chnn=base_dim, sc=self.sc)
|
114
|
+
self.deform_conv = DeformConv2d(in_channels=base_dim, out_channels=base_dim, kernel_size=3, stride=1, padding=1, groups=1)
|
115
|
+
|
116
|
+
## Downsample
|
117
|
+
self.conv_ds_L2 = self._make_two_conv_layer(input_dim=base_dim, hidden_dim=base_dim, output_dim=base_dim, kernel_size=3, stride=2, padding=1, act=act)
|
118
|
+
self.conv_ds_L3 = self._make_two_conv_layer(input_dim=base_dim, hidden_dim=base_dim, output_dim=base_dim, kernel_size=3, stride=2, padding=1, act=act)
|
119
|
+
|
120
|
+
self.align_L3 = Multi_Granularity_Align_One_Level(base_dim=base_dim, offset_groups=self.offset_groups, act=act, memory=False)
|
121
|
+
self.align_L2 = Multi_Granularity_Align_One_Level(base_dim=base_dim, offset_groups=self.offset_groups, act=act, memory=True)
|
122
|
+
self.align_L1 = Multi_Granularity_Align_One_Level(base_dim=base_dim, offset_groups=self.offset_groups, act=act, memory=True)
|
123
|
+
|
124
|
+
def _make_two_conv_layer(self, input_dim, hidden_dim, output_dim, kernel_size, stride, padding, act):
|
125
|
+
layer = nn.Sequential(
|
126
|
+
nn.Conv2d(input_dim, hidden_dim, kernel_size=kernel_size, stride=stride, padding=padding),
|
127
|
+
act,
|
128
|
+
nn.Conv2d(hidden_dim, output_dim, kernel_size=kernel_size, stride=1, padding=padding),
|
129
|
+
)
|
130
|
+
return layer
|
131
|
+
|
132
|
+
def forward(self, feat_list):
|
133
|
+
'''
|
134
|
+
feat_list: xa, xb, xc, xd, xe
|
135
|
+
'''
|
136
|
+
|
137
|
+
xa, xb, xc, xd, xe = feat_list
|
138
|
+
## Downsample
|
139
|
+
feat_batch_cat_L1 = torch.cat(feat_list, dim=0)
|
140
|
+
feat_batch_cat_L2 = self.conv_ds_L2(feat_batch_cat_L1)
|
141
|
+
feat_batch_cat_L3 = self.conv_ds_L3(feat_batch_cat_L2)
|
142
|
+
|
143
|
+
L3_align_feat_list, L3_offset_feat_list = self.align_L3(feat_list=feat_batch_cat_L3.chunk(5, dim=0), kpa=self.kpa, deform_conv=self.deform_conv,
|
144
|
+
prev_offset_feat=None, prev_feat=None)
|
145
|
+
|
146
|
+
L2_align_feat_list, L2_offset_feat_list = self.align_L2(feat_list=feat_batch_cat_L2.chunk(5, dim=0), kpa=self.kpa, deform_conv=self.deform_conv,
|
147
|
+
prev_offset_feat=L3_offset_feat_list, prev_feat=L3_align_feat_list)
|
148
|
+
|
149
|
+
L1_align_feat_list, L1_offset_feat_list = self.align_L1(feat_list=feat_batch_cat_L1.chunk(5, dim=0), kpa=self.kpa, deform_conv=self.deform_conv,
|
150
|
+
prev_offset_feat=L2_offset_feat_list, prev_feat=L2_align_feat_list)
|
151
|
+
|
152
|
+
return L1_align_feat_list
|
153
|
+
|
154
|
+
|