spark-nlp 5.5.3__py2.py3-none-any.whl → 6.0.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

Files changed (37) hide show
  1. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/METADATA +20 -11
  2. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/RECORD +36 -17
  3. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/WHEEL +1 -1
  4. sparknlp/__init__.py +2 -2
  5. sparknlp/annotator/classifier_dl/__init__.py +4 -0
  6. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  7. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +2 -2
  8. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  9. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  10. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  11. sparknlp/annotator/cleaners/__init__.py +15 -0
  12. sparknlp/annotator/cleaners/cleaner.py +202 -0
  13. sparknlp/annotator/cleaners/extractor.py +191 -0
  14. sparknlp/annotator/cv/__init__.py +9 -1
  15. sparknlp/annotator/cv/gemma3_for_multimodal.py +351 -0
  16. sparknlp/annotator/cv/janus_for_multimodal.py +356 -0
  17. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  18. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  19. sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
  20. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  21. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  22. sparknlp/annotator/cv/smolvlm_transformer.py +432 -0
  23. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +10 -6
  24. sparknlp/annotator/seq2seq/__init__.py +3 -0
  25. sparknlp/annotator/seq2seq/auto_gguf_model.py +8 -503
  26. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +333 -0
  27. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  28. sparknlp/annotator/seq2seq/llama3_transformer.py +4 -4
  29. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  30. sparknlp/base/image_assembler.py +58 -0
  31. sparknlp/common/properties.py +605 -96
  32. sparknlp/internal/__init__.py +127 -2
  33. sparknlp/reader/enums.py +19 -0
  34. sparknlp/reader/pdf_to_text.py +111 -0
  35. sparknlp/reader/sparknlp_reader.py +222 -14
  36. spark_nlp-5.5.3.dist-info/.uuid +0 -1
  37. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,356 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class JanusForMultiModal(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """
24
+ JanusForMultiModal can load Janus Vision models for visual question answering.
25
+ The model consists of a vision encoder, a text encoder, and a text decoder.
26
+ The vision encoder encodes the input image, the text encoder processes the input question
27
+ alongside the image encoding, and the text decoder generates the answer to the question.
28
+
29
+ Janus is a novel autoregressive framework that unifies multimodal understanding and generation.
30
+ It decouples visual encoding into separate pathways while utilizing a single, unified transformer architecture for processing.
31
+ This decoupling alleviates conflicts between the visual encoder’s roles in understanding and generation, enhancing the framework’s flexibility.
32
+
33
+ Janus surpasses previous unified models and matches or exceeds the performance of task-specific models.
34
+ It uses the DeepSeek-LLM-1.3b-base trained on approximately 500B text tokens.
35
+ For multimodal understanding, it employs the SigLIP-L vision encoder supporting 384 x 384 image input,
36
+ and for image generation, it uses a tokenizer with a downsample rate of 16.
37
+
38
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
39
+ >>> visualQAClassifier = JanusForMultiModal.pretrained() \
40
+ ... .setInputCols(["image_assembler"]) \
41
+ ... .setOutputCol("answer")
42
+
43
+ The default model is `"janus_1_3b_int4"`, if no name is provided.
44
+ For available pretrained models, refer to the `Models Hub
45
+ <https://sparknlp.org/models?task=Question+Answering>`__.
46
+
47
+ Models from the HuggingFace 🧧 Transformers library are also compatible with Spark NLP 🚀.
48
+ To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀
49
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
50
+ For extended examples, refer to the `JanusForMultiModal Test Suite
51
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/JanusForMultiModalTest.scala>`_.
52
+
53
+ ====================== ======================
54
+ Input Annotation types Output Annotation type
55
+ ====================== ======================
56
+ ``IMAGE`` ``DOCUMENT``
57
+ ====================== ======================
58
+
59
+ Parameters
60
+ ----------
61
+ batchSize : int, optional
62
+ Batch size. Larger values allow faster processing but require more memory,
63
+ by default 2.
64
+ configProtoBytes : bytes, optional
65
+ ConfigProto from TensorFlow, serialized into a byte array.
66
+ maxSentenceLength : int, optional
67
+ Maximum sentence length to process, by default 50.
68
+
69
+ Examples
70
+ --------
71
+ >>> import sparknlp
72
+ >>> from sparknlp.base import *
73
+ >>> from sparknlp.annotator import *
74
+ >>> from pyspark.ml import Pipeline
75
+ >>> from pyspark.sql.functions import lit
76
+
77
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
78
+ >>> test_df = image_df.withColumn(
79
+ ... "text",
80
+ ... lit("User: <image_placeholder>Describe image in details\n\nAssistant:")
81
+ ... )
82
+
83
+ >>> imageAssembler = ImageAssembler() \
84
+ ... .setInputCol("image") \
85
+ ... .setOutputCol("image_assembler")
86
+
87
+ >>> visualQAClassifier = JanusForMultiModal.pretrained() \
88
+ ... .setInputCols("image_assembler") \
89
+ ... .setOutputCol("answer")
90
+
91
+ >>> pipeline = Pipeline().setStages([
92
+ ... imageAssembler,
93
+ ... visualQAClassifier
94
+ ... ])
95
+
96
+ >>> result = pipeline.fit(test_df).transform(test_df)
97
+ >>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
98
+
99
+ +--------------------------------------+----------------------------------------------------------------------+
100
+ |origin |result |
101
+ +--------------------------------------+----------------------------------------------------------------------+
102
+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
103
+ +--------------------------------------+----------------------------------------------------------------------+
104
+ """
105
+
106
+
107
+
108
+ name = "JanusForMultiModal"
109
+
110
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
111
+
112
+ outputAnnotatorType = AnnotatorType.DOCUMENT
113
+
114
+ configProtoBytes = Param(Params._dummy(),
115
+ "configProtoBytes",
116
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
117
+ "config_proto.SerializeToString()",
118
+ TypeConverters.toListInt)
119
+
120
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
121
+ typeConverter=TypeConverters.toInt)
122
+
123
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
124
+ typeConverter=TypeConverters.toInt)
125
+
126
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
127
+ typeConverter=TypeConverters.toBoolean)
128
+
129
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
130
+ typeConverter=TypeConverters.toFloat)
131
+
132
+ topK = Param(Params._dummy(), "topK",
133
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
134
+ typeConverter=TypeConverters.toInt)
135
+
136
+ topP = Param(Params._dummy(), "topP",
137
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
138
+ typeConverter=TypeConverters.toFloat)
139
+
140
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
141
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
142
+ typeConverter=TypeConverters.toFloat)
143
+
144
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
145
+ "If set to int > 0, all ngrams of that size can only occur once",
146
+ typeConverter=TypeConverters.toInt)
147
+
148
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
149
+ "A list of token ids which are ignored in the decoder's output",
150
+ typeConverter=TypeConverters.toListInt)
151
+ beamSize = Param(Params._dummy(), "beamSize",
152
+ "The Number of beams for beam search.",
153
+ typeConverter=TypeConverters.toInt)
154
+ imageGenerateMode = Param(Params._dummy(), "imageGenerateMode",
155
+ "Image generation mode",
156
+ typeConverter=TypeConverters.toBoolean)
157
+ numOfParallelImages = Param(Params._dummy(), "numOfParallelImages",
158
+ "Number of parallel images to Generate",
159
+ typeConverter=TypeConverters.toInt)
160
+
161
+ def setMaxSentenceSize(self, value):
162
+ """Sets Maximum sentence length that the annotator will process, by
163
+ default 50.
164
+ Parameters
165
+ ----------
166
+ value : int
167
+ Maximum sentence length that the annotator will process
168
+ """
169
+ return self._set(maxSentenceLength=value)
170
+
171
+ def setIgnoreTokenIds(self, value):
172
+ """A list of token ids which are ignored in the decoder's output.
173
+ Parameters
174
+ ----------
175
+ value : List[int]
176
+ The words to be filtered out
177
+ """
178
+ return self._set(ignoreTokenIds=value)
179
+
180
+ def setConfigProtoBytes(self, b):
181
+ """Sets configProto from tensorflow, serialized into byte array.
182
+ Parameters
183
+ ----------
184
+ b : List[int]
185
+ ConfigProto from tensorflow, serialized into byte array
186
+ """
187
+ return self._set(configProtoBytes=b)
188
+
189
+ def setMinOutputLength(self, value):
190
+ """Sets minimum length of the sequence to be generated.
191
+ Parameters
192
+ ----------
193
+ value : int
194
+ Minimum length of the sequence to be generated
195
+ """
196
+ return self._set(minOutputLength=value)
197
+
198
+ def setMaxOutputLength(self, value):
199
+ """Sets maximum length of output text.
200
+ Parameters
201
+ ----------
202
+ value : int
203
+ Maximum length of output text
204
+ """
205
+ return self._set(maxOutputLength=value)
206
+
207
+ def setDoSample(self, value):
208
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
209
+ Parameters
210
+ ----------
211
+ value : bool
212
+ Whether or not to use sampling; use greedy decoding otherwise
213
+ """
214
+ return self._set(doSample=value)
215
+
216
+ def setTemperature(self, value):
217
+ """Sets the value used to module the next token probabilities.
218
+ Parameters
219
+ ----------
220
+ value : float
221
+ The value used to module the next token probabilities
222
+ """
223
+ return self._set(temperature=value)
224
+
225
+ def setTopK(self, value):
226
+ """Sets the number of highest probability vocabulary tokens to keep for
227
+ top-k-filtering.
228
+ Parameters
229
+ ----------
230
+ value : int
231
+ Number of highest probability vocabulary tokens to keep
232
+ """
233
+ return self._set(topK=value)
234
+
235
+ def setTopP(self, value):
236
+ """Sets the top cumulative probability for vocabulary tokens.
237
+ If set to float < 1, only the most probable tokens with probabilities
238
+ that add up to ``topP`` or higher are kept for generation.
239
+ Parameters
240
+ ----------
241
+ value : float
242
+ Cumulative probability for vocabulary tokens
243
+ """
244
+ return self._set(topP=value)
245
+
246
+ def setRepetitionPenalty(self, value):
247
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
248
+ Parameters
249
+ ----------
250
+ value : float
251
+ The repetition penalty
252
+ References
253
+ ----------
254
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
255
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
256
+ """
257
+ return self._set(repetitionPenalty=value)
258
+
259
+ def setNoRepeatNgramSize(self, value):
260
+ """Sets size of n-grams that can only occur once.
261
+ If set to int > 0, all ngrams of that size can only occur once.
262
+ Parameters
263
+ ----------
264
+ value : int
265
+ N-gram size can only occur once
266
+ """
267
+ return self._set(noRepeatNgramSize=value)
268
+
269
+ def setBeamSize(self, value):
270
+ """Sets the number of beam size for beam search, by default `4`.
271
+ Parameters
272
+ ----------
273
+ value : int
274
+ Number of beam size for beam search
275
+ """
276
+ return self._set(beamSize=value)
277
+
278
+ def setImageGenerateMode(self, value):
279
+ """Sets the image generation mode.
280
+ Parameters
281
+ ----------
282
+ value : bool
283
+ Image generation mode
284
+ """
285
+ return self._set(imageGenerateMode=value)
286
+
287
+ def setNumOfParallelImages(self, value):
288
+ """Sets the number of parallel images to generate.
289
+ Parameters
290
+ ----------
291
+ value : int
292
+ Number of parallel images to generate
293
+ """
294
+ return self._set(numOfParallelImages=value)
295
+
296
+ @keyword_only
297
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.JanusForMultiModal",
298
+ java_model=None):
299
+ super(JanusForMultiModal, self).__init__(
300
+ classname=classname,
301
+ java_model=java_model
302
+ )
303
+ self._setDefault(
304
+ batchSize=1,
305
+ minOutputLength=0,
306
+ maxOutputLength=50,
307
+ doSample=False,
308
+ temperature=1,
309
+ topK=50,
310
+ topP=1,
311
+ repetitionPenalty=1.0,
312
+ noRepeatNgramSize=0,
313
+ ignoreTokenIds=[],
314
+ beamSize=1,
315
+ imageGenerateMode=False,
316
+ numOfParallelImages=1
317
+ )
318
+
319
+ @staticmethod
320
+ def loadSavedModel(folder, spark_session, use_openvino=False):
321
+ """Loads a locally saved model.
322
+ Parameters
323
+ ----------
324
+ folder : str
325
+ Folder of the saved model
326
+ spark_session : pyspark.sql.SparkSession
327
+ The current SparkSession
328
+ Returns
329
+ -------
330
+ CLIPForZeroShotClassification
331
+ The restored model
332
+ """
333
+ from sparknlp.internal import _JanusForMultiModalLoader
334
+ jModel = _JanusForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
335
+ return JanusForMultiModal(java_model=jModel)
336
+
337
+ @staticmethod
338
+ def pretrained(name="janus_1_3b_int4", lang="en", remote_loc=None):
339
+ """Downloads and loads a pretrained model.
340
+ Parameters
341
+ ----------
342
+ name : str, optional
343
+ Name of the pretrained model, by default
344
+ "janus_1_3b_int4"
345
+ lang : str, optional
346
+ Language of the pretrained model, by default "en"
347
+ remote_loc : str, optional
348
+ Optional remote address of the resource, by default None. Will use
349
+ Spark NLPs repositories otherwise.
350
+ Returns
351
+ -------
352
+ CLIPForZeroShotClassification
353
+ The restored model
354
+ """
355
+ from sparknlp.pretrained import ResourceDownloader
356
+ return ResourceDownloader.downloadModel(JanusForMultiModal, name, lang, remote_loc)
@@ -0,0 +1,328 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class LLAVAForMultiModal(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """LLAVAForMultiModal can load LLAVA models for visual question answering.
24
+ The model consists of a vision encoder, a text encoder as well as a text decoder.
25
+ The vision encoder will encode the input image, the text encoder will encode the input question together
26
+ with the encoding of the image, and the text decoder will output the answer to the question.
27
+
28
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
29
+ object:
30
+
31
+ >>> visualQAClassifier = LLAVAForMultiModal.pretrained() \\
32
+ ... .setInputCols(["image_assembler"]) \\
33
+ ... .setOutputCol("answer")
34
+
35
+ The default model is ``"llava_1_5_7b_hf"``, if no name is
36
+ provided.
37
+
38
+ For available pretrained models please see the `Models Hub
39
+ <https://sparknlp.org/models?task=Question+Answering>`__.
40
+
41
+ To see which models are compatible and how to import them see
42
+ `Import Transformers into Spark NLP 🚀
43
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
44
+
45
+ ====================== ======================
46
+ Input Annotation types Output Annotation type
47
+ ====================== ======================
48
+ ``IMAGE`` ``DOCUMENT``
49
+ ====================== ======================
50
+
51
+ Parameters
52
+ ----------
53
+ batchSize
54
+ Batch size. Large values allows faster processing but requires more
55
+ memory, by default 2
56
+ configProtoBytes
57
+ ConfigProto from tensorflow, serialized into byte array.
58
+ maxSentenceLength
59
+ Max sentence length to process, by default 50
60
+
61
+ Examples
62
+ --------
63
+ >>> import sparknlp
64
+ >>> from sparknlp.base import *
65
+ >>> from sparknlp.annotator import *
66
+ >>> from pyspark.ml import Pipeline
67
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
68
+ >>> test_df = image_df.withColumn("text", lit("USER: \n <|image|> \n What's this picture about? \n ASSISTANT:\n"))
69
+ >>> imageAssembler = ImageAssembler() \\
70
+ ... .setInputCol("image") \\
71
+ ... .setOutputCol("image_assembler")
72
+ >>> visualQAClassifier = LLAVAForMultiModal.pretrained() \\
73
+ ... .setInputCols("image_assembler") \\
74
+ ... .setOutputCol("answer")
75
+ >>> pipeline = Pipeline().setStages([
76
+ ... imageAssembler,
77
+ ... visualQAClassifier
78
+ ... ])
79
+ >>> result = pipeline.fit(test_df).transform(test_df)
80
+ >>> result.select("image_assembler.origin", "answer.result").show(false)
81
+ +--------------------------------------+------+
82
+ |origin |result|
83
+ +--------------------------------------+------+
84
+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
85
+ +--------------------------------------+------+
86
+ """
87
+
88
+ name = "LLAVAForMultiModal"
89
+
90
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
91
+
92
+ outputAnnotatorType = AnnotatorType.DOCUMENT
93
+
94
+ configProtoBytes = Param(Params._dummy(),
95
+ "configProtoBytes",
96
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
97
+ "config_proto.SerializeToString()",
98
+ TypeConverters.toListInt)
99
+
100
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
101
+ typeConverter=TypeConverters.toInt)
102
+
103
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
104
+ typeConverter=TypeConverters.toInt)
105
+
106
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
107
+ typeConverter=TypeConverters.toBoolean)
108
+
109
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
110
+ typeConverter=TypeConverters.toFloat)
111
+
112
+ topK = Param(Params._dummy(), "topK",
113
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
114
+ typeConverter=TypeConverters.toInt)
115
+
116
+ topP = Param(Params._dummy(), "topP",
117
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
118
+ typeConverter=TypeConverters.toFloat)
119
+
120
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
121
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
122
+ typeConverter=TypeConverters.toFloat)
123
+
124
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
125
+ "If set to int > 0, all ngrams of that size can only occur once",
126
+ typeConverter=TypeConverters.toInt)
127
+
128
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
129
+ "A list of token ids which are ignored in the decoder's output",
130
+ typeConverter=TypeConverters.toListInt)
131
+ beamSize = Param(Params._dummy(), "beamSize",
132
+ "The Number of beams for beam search.",
133
+ typeConverter=TypeConverters.toInt)
134
+
135
+ def setMaxSentenceSize(self, value):
136
+ """Sets Maximum sentence length that the annotator will process, by
137
+ default 50.
138
+
139
+ Parameters
140
+ ----------
141
+ value : int
142
+ Maximum sentence length that the annotator will process
143
+ """
144
+ return self._set(maxSentenceLength=value)
145
+
146
+ def setIgnoreTokenIds(self, value):
147
+ """A list of token ids which are ignored in the decoder's output.
148
+
149
+ Parameters
150
+ ----------
151
+ value : List[int]
152
+ The words to be filtered out
153
+ """
154
+ return self._set(ignoreTokenIds=value)
155
+
156
+ def setConfigProtoBytes(self, b):
157
+ """Sets configProto from tensorflow, serialized into byte array.
158
+
159
+ Parameters
160
+ ----------
161
+ b : List[int]
162
+ ConfigProto from tensorflow, serialized into byte array
163
+ """
164
+ return self._set(configProtoBytes=b)
165
+
166
+ def setMinOutputLength(self, value):
167
+ """Sets minimum length of the sequence to be generated.
168
+
169
+ Parameters
170
+ ----------
171
+ value : int
172
+ Minimum length of the sequence to be generated
173
+ """
174
+ return self._set(minOutputLength=value)
175
+
176
+ def setMaxOutputLength(self, value):
177
+ """Sets maximum length of output text.
178
+
179
+ Parameters
180
+ ----------
181
+ value : int
182
+ Maximum length of output text
183
+ """
184
+ return self._set(maxOutputLength=value)
185
+
186
+ def setDoSample(self, value):
187
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
188
+
189
+ Parameters
190
+ ----------
191
+ value : bool
192
+ Whether or not to use sampling; use greedy decoding otherwise
193
+ """
194
+ return self._set(doSample=value)
195
+
196
+ def setTemperature(self, value):
197
+ """Sets the value used to module the next token probabilities.
198
+
199
+ Parameters
200
+ ----------
201
+ value : float
202
+ The value used to module the next token probabilities
203
+ """
204
+ return self._set(temperature=value)
205
+
206
+ def setTopK(self, value):
207
+ """Sets the number of highest probability vocabulary tokens to keep for
208
+ top-k-filtering.
209
+
210
+ Parameters
211
+ ----------
212
+ value : int
213
+ Number of highest probability vocabulary tokens to keep
214
+ """
215
+ return self._set(topK=value)
216
+
217
+ def setTopP(self, value):
218
+ """Sets the top cumulative probability for vocabulary tokens.
219
+
220
+ If set to float < 1, only the most probable tokens with probabilities
221
+ that add up to ``topP`` or higher are kept for generation.
222
+
223
+ Parameters
224
+ ----------
225
+ value : float
226
+ Cumulative probability for vocabulary tokens
227
+ """
228
+ return self._set(topP=value)
229
+
230
+ def setRepetitionPenalty(self, value):
231
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
232
+
233
+ Parameters
234
+ ----------
235
+ value : float
236
+ The repetition penalty
237
+
238
+ References
239
+ ----------
240
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
241
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
242
+ """
243
+ return self._set(repetitionPenalty=value)
244
+
245
+ def setNoRepeatNgramSize(self, value):
246
+ """Sets size of n-grams that can only occur once.
247
+
248
+ If set to int > 0, all ngrams of that size can only occur once.
249
+
250
+ Parameters
251
+ ----------
252
+ value : int
253
+ N-gram size can only occur once
254
+ """
255
+ return self._set(noRepeatNgramSize=value)
256
+
257
+ def setBeamSize(self, value):
258
+ """Sets the number of beam size for beam search, by default `4`.
259
+
260
+ Parameters
261
+ ----------
262
+ value : int
263
+ Number of beam size for beam search
264
+ """
265
+ return self._set(beamSize=value)
266
+ @keyword_only
267
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.LLAVAForMultiModal",
268
+ java_model=None):
269
+ super(LLAVAForMultiModal, self).__init__(
270
+ classname=classname,
271
+ java_model=java_model
272
+ )
273
+ self._setDefault(
274
+ batchSize=2,
275
+ minOutputLength=0,
276
+ maxOutputLength=200,
277
+ doSample=False,
278
+ temperature=1,
279
+ topK=50,
280
+ topP=1,
281
+ repetitionPenalty=1.0,
282
+ noRepeatNgramSize=0,
283
+ ignoreTokenIds=[],
284
+ beamSize=1,
285
+ )
286
+
287
+ @staticmethod
288
+ def loadSavedModel(folder, spark_session, use_openvino=False):
289
+ """Loads a locally saved model.
290
+
291
+ Parameters
292
+ ----------
293
+ folder : str
294
+ Folder of the saved model
295
+ spark_session : pyspark.sql.SparkSession
296
+ The current SparkSession
297
+
298
+ Returns
299
+ -------
300
+ CLIPForZeroShotClassification
301
+ The restored model
302
+ """
303
+ from sparknlp.internal import _LLAVAForMultiModalLoader
304
+ jModel = _LLAVAForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
305
+ return LLAVAForMultiModal(java_model=jModel)
306
+
307
+ @staticmethod
308
+ def pretrained(name="llava_1_5_7b_hf", lang="en", remote_loc=None):
309
+ """Downloads and loads a pretrained model.
310
+
311
+ Parameters
312
+ ----------
313
+ name : str, optional
314
+ Name of the pretrained model, by default
315
+ "llava_1_5_7b_hf"
316
+ lang : str, optional
317
+ Language of the pretrained model, by default "en"
318
+ remote_loc : str, optional
319
+ Optional remote address of the resource, by default None. Will use
320
+ Spark NLPs repositories otherwise.
321
+
322
+ Returns
323
+ -------
324
+ LLAVAForMultiModal
325
+ The restored model
326
+ """
327
+ from sparknlp.pretrained import ResourceDownloader
328
+ return ResourceDownloader.downloadModel(LLAVAForMultiModal, name, lang, remote_loc)