spark-nlp 5.5.3__py2.py3-none-any.whl → 6.0.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/METADATA +20 -11
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/RECORD +36 -17
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/classifier_dl/__init__.py +4 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +2 -2
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/cv/__init__.py +9 -1
- sparknlp/annotator/cv/gemma3_for_multimodal.py +351 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +356 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +432 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +10 -6
- sparknlp/annotator/seq2seq/__init__.py +3 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +8 -503
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +333 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +4 -4
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/base/image_assembler.py +58 -0
- sparknlp/common/properties.py +605 -96
- sparknlp/internal/__init__.py +127 -2
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +111 -0
- sparknlp/reader/sparknlp_reader.py +222 -14
- spark_nlp-5.5.3.dist-info/.uuid +0 -1
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class RoBertaForMultipleChoice(AnnotatorModel,
|
|
18
|
+
HasCaseSensitiveProperties,
|
|
19
|
+
HasBatchedAnnotate,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasMaxSentenceLengthLimit):
|
|
22
|
+
"""RoBertaForMultipleChoice can load RoBERTa Models with a multiple choice classification head on top
|
|
23
|
+
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
26
|
+
object:
|
|
27
|
+
|
|
28
|
+
>>> spanClassifier = RoBertaForMultipleChoice.pretrained() \\
|
|
29
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
30
|
+
... .setOutputCol("answer")
|
|
31
|
+
|
|
32
|
+
The default model is ``"roberta_base_uncased_multiple_choice"``, if no name is
|
|
33
|
+
provided.
|
|
34
|
+
|
|
35
|
+
For available pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?task=Multiple+Choice>`__.
|
|
37
|
+
|
|
38
|
+
To see which models are compatible and how to import them see
|
|
39
|
+
`Import Transformers into Spark NLP 🚀
|
|
40
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
batchSize
|
|
51
|
+
Batch size. Large values allows faster processing but requires more
|
|
52
|
+
memory, by default 8
|
|
53
|
+
caseSensitive
|
|
54
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
55
|
+
False
|
|
56
|
+
maxSentenceLength
|
|
57
|
+
Max sentence length to process, by default 512
|
|
58
|
+
|
|
59
|
+
Examples
|
|
60
|
+
--------
|
|
61
|
+
>>> import sparknlp
|
|
62
|
+
>>> from sparknlp.base import *
|
|
63
|
+
>>> from sparknlp.annotator import *
|
|
64
|
+
>>> from pyspark.ml import Pipeline
|
|
65
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
66
|
+
... .setInputCols(["question", "context"]) \\
|
|
67
|
+
... .setOutputCols(["document_question", "document_context"])
|
|
68
|
+
>>> questionAnswering = RoBertaForMultipleChoice.pretrained() \\
|
|
69
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
70
|
+
... .setOutputCol("answer") \\
|
|
71
|
+
... .setCaseSensitive(False)
|
|
72
|
+
>>> pipeline = Pipeline().setStages([
|
|
73
|
+
... documentAssembler,
|
|
74
|
+
... questionAnswering
|
|
75
|
+
... ])
|
|
76
|
+
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
|
|
77
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
78
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
79
|
+
+--------------------+
|
|
80
|
+
|result |
|
|
81
|
+
+--------------------+
|
|
82
|
+
|[France] |
|
|
83
|
+
+--------------------+
|
|
84
|
+
"""
|
|
85
|
+
name = "RobertaForMultipleChoice"
|
|
86
|
+
|
|
87
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
88
|
+
|
|
89
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
90
|
+
|
|
91
|
+
choicesDelimiter = Param(Params._dummy(),
|
|
92
|
+
"choicesDelimiter",
|
|
93
|
+
"Delimiter character use to split the choices",
|
|
94
|
+
TypeConverters.toString)
|
|
95
|
+
|
|
96
|
+
def setChoicesDelimiter(self, value):
|
|
97
|
+
"""Sets delimiter character use to split the choices
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : string
|
|
102
|
+
Delimiter character use to split the choices
|
|
103
|
+
"""
|
|
104
|
+
return self._set(caseSensitive=value)
|
|
105
|
+
|
|
106
|
+
@keyword_only
|
|
107
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForMultipleChoice",
|
|
108
|
+
java_model=None):
|
|
109
|
+
super(RoBertaForMultipleChoice, self).__init__(
|
|
110
|
+
classname=classname,
|
|
111
|
+
java_model=java_model
|
|
112
|
+
)
|
|
113
|
+
self._setDefault(
|
|
114
|
+
batchSize=4,
|
|
115
|
+
maxSentenceLength=512,
|
|
116
|
+
caseSensitive=False,
|
|
117
|
+
choicesDelimiter = ","
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def loadSavedModel(folder, spark_session):
|
|
122
|
+
"""Loads a locally saved model.
|
|
123
|
+
|
|
124
|
+
Parameters
|
|
125
|
+
----------
|
|
126
|
+
folder : str
|
|
127
|
+
Folder of the saved model
|
|
128
|
+
spark_session : pyspark.sql.SparkSession
|
|
129
|
+
The current SparkSession
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
RobertaForQuestionAnswering
|
|
134
|
+
The restored model
|
|
135
|
+
"""
|
|
136
|
+
from sparknlp.internal import _RoBertaMultipleChoiceLoader
|
|
137
|
+
jModel = _RoBertaMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
138
|
+
return RoBertaForMultipleChoice(java_model=jModel)
|
|
139
|
+
|
|
140
|
+
@staticmethod
|
|
141
|
+
def pretrained(name="Roberta_base_uncased_multiple_choice", lang="en", remote_loc=None):
|
|
142
|
+
"""Downloads and loads a pretrained model.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
name : str, optional
|
|
147
|
+
Name of the pretrained model, by default
|
|
148
|
+
"Roberta_base_uncased_multiple_choice"
|
|
149
|
+
lang : str, optional
|
|
150
|
+
Language of the pretrained model, by default "en"
|
|
151
|
+
remote_loc : str, optional
|
|
152
|
+
Optional remote address of the resource, by default None. Will use
|
|
153
|
+
Spark NLPs repositories otherwise.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
RoBertaForMultipleChoice
|
|
158
|
+
The restored model
|
|
159
|
+
"""
|
|
160
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
161
|
+
return ResourceDownloader.downloadModel(RoBertaForMultipleChoice, name, lang, remote_loc)
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class XlmRoBertaForMultipleChoice(AnnotatorModel,
|
|
19
|
+
HasCaseSensitiveProperties,
|
|
20
|
+
HasBatchedAnnotate,
|
|
21
|
+
HasEngine,
|
|
22
|
+
HasMaxSentenceLengthLimit):
|
|
23
|
+
"""XlmRoBertaForMultipleChoice can load XLM-RoBERTa Models with a span classification head on top for extractive
|
|
24
|
+
question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start
|
|
25
|
+
logits and span end logits).
|
|
26
|
+
|
|
27
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
28
|
+
object:
|
|
29
|
+
|
|
30
|
+
>>> spanClassifier = XlmRoBertaForMultipleChoice.pretrained() \\
|
|
31
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
32
|
+
... .setOutputCol("answer")
|
|
33
|
+
|
|
34
|
+
The default model is ``"xlm_roberta_base_qa_squad2"``, if no name is
|
|
35
|
+
provided.
|
|
36
|
+
|
|
37
|
+
For available pretrained models please see the `Models Hub
|
|
38
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
39
|
+
|
|
40
|
+
To see which models are compatible and how to import them see
|
|
41
|
+
`Import Transformers into Spark NLP 🚀
|
|
42
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Batch size. Large values allows faster processing but requires more
|
|
54
|
+
memory, by default 8
|
|
55
|
+
caseSensitive
|
|
56
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
57
|
+
False
|
|
58
|
+
configProtoBytes
|
|
59
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
60
|
+
maxSentenceLength
|
|
61
|
+
Max sentence length to process, by default 128
|
|
62
|
+
|
|
63
|
+
Examples
|
|
64
|
+
--------
|
|
65
|
+
>>> import sparknlp
|
|
66
|
+
>>> from sparknlp.base import *
|
|
67
|
+
>>> from sparknlp.annotator import *
|
|
68
|
+
>>> from pyspark.ml import Pipeline
|
|
69
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
70
|
+
... .setInputCols(["question", "context"]) \\
|
|
71
|
+
... .setOutputCol(["document_question", "document_context"])
|
|
72
|
+
>>> spanClassifier = XlmRoBertaForMultipleChoice.pretrained() \\
|
|
73
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
74
|
+
... .setOutputCol("answer") \\
|
|
75
|
+
... .setCaseSensitive(False)
|
|
76
|
+
>>> pipeline = Pipeline().setStages([
|
|
77
|
+
... documentAssembler,
|
|
78
|
+
... spanClassifier
|
|
79
|
+
... ])
|
|
80
|
+
>>> data = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
|
|
81
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
82
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
83
|
+
+--------------------+
|
|
84
|
+
|result |
|
|
85
|
+
+--------------------+
|
|
86
|
+
|[Clara] |
|
|
87
|
+
+--------------------+
|
|
88
|
+
"""
|
|
89
|
+
name = "XlmRoBertaForMultipleChoice"
|
|
90
|
+
|
|
91
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
92
|
+
|
|
93
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
94
|
+
|
|
95
|
+
@keyword_only
|
|
96
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.XlmRoBertaForMultipleChoice",
|
|
97
|
+
java_model=None):
|
|
98
|
+
super(XlmRoBertaForMultipleChoice, self).__init__(
|
|
99
|
+
classname=classname,
|
|
100
|
+
java_model=java_model
|
|
101
|
+
)
|
|
102
|
+
self._setDefault(
|
|
103
|
+
batchSize=8,
|
|
104
|
+
maxSentenceLength=128,
|
|
105
|
+
caseSensitive=False
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
@staticmethod
|
|
109
|
+
def loadSavedModel(folder, spark_session):
|
|
110
|
+
"""Loads a locally saved model.
|
|
111
|
+
|
|
112
|
+
Parameters
|
|
113
|
+
----------
|
|
114
|
+
folder : str
|
|
115
|
+
Folder of the saved model
|
|
116
|
+
spark_session : pyspark.sql.SparkSession
|
|
117
|
+
The current SparkSession
|
|
118
|
+
|
|
119
|
+
Returns
|
|
120
|
+
-------
|
|
121
|
+
XlmRoBertaForMultipleChoice
|
|
122
|
+
The restored model
|
|
123
|
+
"""
|
|
124
|
+
from sparknlp.internal import _XlmRoBertaMultipleChoiceLoader
|
|
125
|
+
jModel = _XlmRoBertaMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
126
|
+
return XlmRoBertaForMultipleChoice(java_model=jModel)
|
|
127
|
+
|
|
128
|
+
@staticmethod
|
|
129
|
+
def pretrained(name="xlm_roberta_base_mc", lang="en", remote_loc=None):
|
|
130
|
+
"""Downloads and loads a pretrained model.
|
|
131
|
+
|
|
132
|
+
Parameters
|
|
133
|
+
----------
|
|
134
|
+
name : str, optional
|
|
135
|
+
Name of the pretrained model, by default
|
|
136
|
+
"xlm_roberta_base_qa_squad2"
|
|
137
|
+
lang : str, optional
|
|
138
|
+
Language of the pretrained model, by default "en"
|
|
139
|
+
remote_loc : str, optional
|
|
140
|
+
Optional remote address of the resource, by default None. Will use
|
|
141
|
+
Spark NLPs repositories otherwise.
|
|
142
|
+
|
|
143
|
+
Returns
|
|
144
|
+
-------
|
|
145
|
+
XlmRoBertaForMultipleChoice
|
|
146
|
+
The restored model
|
|
147
|
+
"""
|
|
148
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
149
|
+
return ResourceDownloader.downloadModel(XlmRoBertaForMultipleChoice, name, lang, remote_loc)
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from sparknlp.annotator.cleaners.extractor import *
|
|
15
|
+
from sparknlp.annotator.cleaners.cleaner import *
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for Cleaner."""
|
|
15
|
+
from sparknlp.annotator import MarianTransformer
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
class Cleaner(MarianTransformer):
|
|
19
|
+
name = "Cleaner"
|
|
20
|
+
|
|
21
|
+
inputAnnotatorTypes = [AnnotatorType.TOKEN]
|
|
22
|
+
|
|
23
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
24
|
+
|
|
25
|
+
encoding = Param(Params._dummy(),
|
|
26
|
+
"encoding",
|
|
27
|
+
"The encoding to be used for decoding the byte string (default is utf-8)",
|
|
28
|
+
typeConverter=TypeConverters.toString)
|
|
29
|
+
|
|
30
|
+
cleanPrefixPattern = Param(Params._dummy(),
|
|
31
|
+
"cleanPrefixPattern",
|
|
32
|
+
"The pattern for the prefix. Can be a simple string or a regex pattern.",
|
|
33
|
+
typeConverter=TypeConverters.toString)
|
|
34
|
+
|
|
35
|
+
cleanPostfixPattern = Param(Params._dummy(),
|
|
36
|
+
"cleanPostfixPattern",
|
|
37
|
+
"The pattern for the postfix. Can be a simple string or a regex pattern.",
|
|
38
|
+
typeConverter=TypeConverters.toString)
|
|
39
|
+
|
|
40
|
+
cleanerMode = Param(
|
|
41
|
+
Params._dummy(),
|
|
42
|
+
"cleanerMode",
|
|
43
|
+
"possible values: " +
|
|
44
|
+
"clean, bytes_string_to_string, clean_non_ascii_chars, clean_ordered_bullets, clean_postfix, clean_prefix, remove_punctuation, replace_unicode_quotes",
|
|
45
|
+
typeConverter=TypeConverters.toString
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
extraWhitespace = Param(Params._dummy(),
|
|
49
|
+
"extraWhitespace",
|
|
50
|
+
"Whether to remove extra whitespace.",
|
|
51
|
+
typeConverter=TypeConverters.toBoolean)
|
|
52
|
+
|
|
53
|
+
dashes = Param(Params._dummy(),
|
|
54
|
+
"dashes",
|
|
55
|
+
"Whether to handle dashes in text.",
|
|
56
|
+
typeConverter=TypeConverters.toBoolean)
|
|
57
|
+
|
|
58
|
+
bullets = Param(Params._dummy(),
|
|
59
|
+
"bullets",
|
|
60
|
+
"Whether to handle bullets in text.",
|
|
61
|
+
typeConverter=TypeConverters.toBoolean)
|
|
62
|
+
|
|
63
|
+
trailingPunctuation = Param(Params._dummy(),
|
|
64
|
+
"trailingPunctuation",
|
|
65
|
+
"Whether to remove trailing punctuation from text.",
|
|
66
|
+
typeConverter=TypeConverters.toBoolean)
|
|
67
|
+
|
|
68
|
+
lowercase = Param(Params._dummy(),
|
|
69
|
+
"lowercase",
|
|
70
|
+
"Whether to convert text to lowercase.",
|
|
71
|
+
typeConverter=TypeConverters.toBoolean)
|
|
72
|
+
|
|
73
|
+
ignoreCase = Param(Params._dummy(),
|
|
74
|
+
"ignoreCase",
|
|
75
|
+
"If true, ignores case in the pattern.",
|
|
76
|
+
typeConverter=TypeConverters.toBoolean)
|
|
77
|
+
|
|
78
|
+
strip = Param(Params._dummy(),
|
|
79
|
+
"strip",
|
|
80
|
+
"If true, removes leading or trailing whitespace from the cleaned string.",
|
|
81
|
+
typeConverter=TypeConverters.toBoolean)
|
|
82
|
+
|
|
83
|
+
def setEncoding(self, value):
|
|
84
|
+
"""Sets the encoding to be used for decoding the byte string (default is utf-8).
|
|
85
|
+
|
|
86
|
+
Parameters
|
|
87
|
+
----------
|
|
88
|
+
value : str
|
|
89
|
+
The encoding to be used for decoding the byte string (default is utf-8)
|
|
90
|
+
"""
|
|
91
|
+
return self._set(encoding=value)
|
|
92
|
+
|
|
93
|
+
def setCleanPrefixPattern(self, value):
|
|
94
|
+
"""Sets the pattern for the prefix. Can be a simple string or a regex pattern.
|
|
95
|
+
|
|
96
|
+
Parameters
|
|
97
|
+
----------
|
|
98
|
+
value : str
|
|
99
|
+
The pattern for the prefix. Can be a simple string or a regex pattern.
|
|
100
|
+
"""
|
|
101
|
+
return self._set(cleanPrefixPattern=value)
|
|
102
|
+
|
|
103
|
+
def setCleanPostfixPattern(self, value):
|
|
104
|
+
"""Sets the pattern for the postfix. Can be a simple string or a regex pattern.
|
|
105
|
+
|
|
106
|
+
Parameters
|
|
107
|
+
----------
|
|
108
|
+
value : str
|
|
109
|
+
The pattern for the postfix. Can be a simple string or a regex pattern.
|
|
110
|
+
"""
|
|
111
|
+
return self._set(cleanPostfixPattern=value)
|
|
112
|
+
|
|
113
|
+
def setCleanerMode(self, value):
|
|
114
|
+
"""Sets the cleaner mode.
|
|
115
|
+
|
|
116
|
+
Possible values:
|
|
117
|
+
clean, bytes_string_to_string, clean_non_ascii_chars, clean_ordered_bullets,
|
|
118
|
+
clean_postfix, clean_prefix, remove_punctuation, replace_unicode_quotes
|
|
119
|
+
|
|
120
|
+
Parameters
|
|
121
|
+
----------
|
|
122
|
+
value : str
|
|
123
|
+
The mode for cleaning operations.
|
|
124
|
+
"""
|
|
125
|
+
return self._set(cleanerMode=value)
|
|
126
|
+
|
|
127
|
+
def setExtraWhitespace(self, value):
|
|
128
|
+
"""Sets whether to remove extra whitespace.
|
|
129
|
+
|
|
130
|
+
Parameters
|
|
131
|
+
----------
|
|
132
|
+
value : bool
|
|
133
|
+
Whether to remove extra whitespace.
|
|
134
|
+
"""
|
|
135
|
+
return self._set(extraWhitespace=value)
|
|
136
|
+
|
|
137
|
+
def setDashes(self, value):
|
|
138
|
+
"""Sets whether to handle dashes in text.
|
|
139
|
+
|
|
140
|
+
Parameters
|
|
141
|
+
----------
|
|
142
|
+
value : bool
|
|
143
|
+
Whether to handle dashes in text.
|
|
144
|
+
"""
|
|
145
|
+
return self._set(dashes=value)
|
|
146
|
+
|
|
147
|
+
def setBullets(self, value):
|
|
148
|
+
"""Sets whether to handle bullets in text.
|
|
149
|
+
|
|
150
|
+
Parameters
|
|
151
|
+
----------
|
|
152
|
+
value : bool
|
|
153
|
+
Whether to handle bullets in text.
|
|
154
|
+
"""
|
|
155
|
+
return self._set(bullets=value)
|
|
156
|
+
|
|
157
|
+
def setTrailingPunctuation(self, value):
|
|
158
|
+
"""Sets whether to remove trailing punctuation from text.
|
|
159
|
+
|
|
160
|
+
Parameters
|
|
161
|
+
----------
|
|
162
|
+
value : bool
|
|
163
|
+
Whether to remove trailing punctuation from text.
|
|
164
|
+
"""
|
|
165
|
+
return self._set(trailingPunctuation=value)
|
|
166
|
+
|
|
167
|
+
def setLowercase(self, value):
|
|
168
|
+
"""Sets whether to convert text to lowercase.
|
|
169
|
+
|
|
170
|
+
Parameters
|
|
171
|
+
----------
|
|
172
|
+
value : bool
|
|
173
|
+
Whether to convert text to lowercase.
|
|
174
|
+
"""
|
|
175
|
+
return self._set(lowercase=value)
|
|
176
|
+
|
|
177
|
+
def setIgnoreCase(self, value):
|
|
178
|
+
"""Sets whether to ignore case in the pattern.
|
|
179
|
+
|
|
180
|
+
Parameters
|
|
181
|
+
----------
|
|
182
|
+
value : bool
|
|
183
|
+
If true, ignores case in the pattern.
|
|
184
|
+
"""
|
|
185
|
+
return self._set(ignoreCase=value)
|
|
186
|
+
|
|
187
|
+
def setStrip(self, value):
|
|
188
|
+
"""Sets whether to remove leading or trailing whitespace from the cleaned string.
|
|
189
|
+
|
|
190
|
+
Parameters
|
|
191
|
+
----------
|
|
192
|
+
value : bool
|
|
193
|
+
If true, removes leading or trailing whitespace from the cleaned string.
|
|
194
|
+
"""
|
|
195
|
+
return self._set(strip=value)
|
|
196
|
+
|
|
197
|
+
@keyword_only
|
|
198
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cleaners.Cleaner", java_model=None):
|
|
199
|
+
super(Cleaner, self).__init__(
|
|
200
|
+
classname=classname,
|
|
201
|
+
java_model=java_model
|
|
202
|
+
)
|