spark-nlp 5.0.2__py2.py3-none-any.whl → 5.1.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/METADATA +52 -45
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/RECORD +20 -13
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/__init__.py +1 -0
- sparknlp/annotator/audio/__init__.py +1 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +250 -0
- sparknlp/annotator/classifier_dl/__init__.py +3 -2
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/embeddings/__init__.py +1 -0
- sparknlp/annotator/embeddings/doc2vec.py +6 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +190 -0
- sparknlp/annotator/embeddings/word2vec.py +6 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +352 -0
- sparknlp/annotator/openai/openai_embeddings.py +132 -0
- sparknlp/common/properties.py +173 -0
- sparknlp/internal/__init__.py +19 -1
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/WHEEL +0 -0
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine):
|
|
25
|
+
"""RoBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
26
|
+
inference) tasks. Equivalent of `RoBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
27
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
28
|
+
flexible.
|
|
29
|
+
|
|
30
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
31
|
+
longer this process will take.
|
|
32
|
+
|
|
33
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
34
|
+
pair and passed to the pretrained model.
|
|
35
|
+
|
|
36
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
37
|
+
object:
|
|
38
|
+
|
|
39
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
40
|
+
... .setInputCols(["token", "document"]) \\
|
|
41
|
+
... .setOutputCol("label")
|
|
42
|
+
|
|
43
|
+
The default model is ``"roberta_base_zero_shot_classifier_nli"``, if no name is
|
|
44
|
+
provided.
|
|
45
|
+
|
|
46
|
+
For available pretrained models please see the `Models Hub
|
|
47
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
48
|
+
|
|
49
|
+
To see which models are compatible and how to import them see
|
|
50
|
+
`Import Transformers into Spark NLP 🚀
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize
|
|
62
|
+
Batch size. Large values allows faster processing but requires more
|
|
63
|
+
memory, by default 8
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
configProtoBytes
|
|
68
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
69
|
+
maxSentenceLength
|
|
70
|
+
Max sentence length to process, by default 128
|
|
71
|
+
coalesceSentences
|
|
72
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
73
|
+
class per document by averaging probabilities in all sentences, by
|
|
74
|
+
default False
|
|
75
|
+
activation
|
|
76
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
77
|
+
`"softmax"`.
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> tokenizer = Tokenizer() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("token")
|
|
91
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
92
|
+
... .setInputCols(["token", "document"]) \\
|
|
93
|
+
... .setOutputCol("label") \\
|
|
94
|
+
... .setCaseSensitive(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... tokenizer,
|
|
98
|
+
... sequenceClassifier
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
101
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
102
|
+
>>> result.select("label.result").show(truncate=False)
|
|
103
|
+
+------+
|
|
104
|
+
|result|
|
|
105
|
+
+------+
|
|
106
|
+
|[pos] |
|
|
107
|
+
|[neg] |
|
|
108
|
+
+------+
|
|
109
|
+
"""
|
|
110
|
+
name = "RoBertaForZeroShotClassification"
|
|
111
|
+
|
|
112
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
113
|
+
|
|
114
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
115
|
+
|
|
116
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
117
|
+
"maxSentenceLength",
|
|
118
|
+
"Max sentence length to process",
|
|
119
|
+
typeConverter=TypeConverters.toInt)
|
|
120
|
+
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
127
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
128
|
+
TypeConverters.toBoolean)
|
|
129
|
+
|
|
130
|
+
def getClasses(self):
|
|
131
|
+
"""
|
|
132
|
+
Returns labels used to train this model
|
|
133
|
+
"""
|
|
134
|
+
return self._call_java("getClasses")
|
|
135
|
+
|
|
136
|
+
def setConfigProtoBytes(self, b):
|
|
137
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
b : List[int]
|
|
142
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
143
|
+
"""
|
|
144
|
+
return self._set(configProtoBytes=b)
|
|
145
|
+
|
|
146
|
+
def setMaxSentenceLength(self, value):
|
|
147
|
+
"""Sets max sentence length to process, by default 128.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : int
|
|
152
|
+
Max sentence length to process
|
|
153
|
+
"""
|
|
154
|
+
return self._set(maxSentenceLength=value)
|
|
155
|
+
|
|
156
|
+
def setCoalesceSentences(self, value):
|
|
157
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
158
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as RoBerta
|
|
159
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
160
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
161
|
+
|
|
162
|
+
Parameters
|
|
163
|
+
----------
|
|
164
|
+
value : bool
|
|
165
|
+
If the output of all sentences will be averaged to one output
|
|
166
|
+
"""
|
|
167
|
+
return self._set(coalesceSentences=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForZeroShotClassification",
|
|
171
|
+
java_model=None):
|
|
172
|
+
super(RoBertaForZeroShotClassification, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
batchSize=8,
|
|
178
|
+
maxSentenceLength=128,
|
|
179
|
+
caseSensitive=True,
|
|
180
|
+
coalesceSentences=False,
|
|
181
|
+
activation="softmax"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def loadSavedModel(folder, spark_session):
|
|
186
|
+
"""Loads a locally saved model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
folder : str
|
|
191
|
+
Folder of the saved model
|
|
192
|
+
spark_session : pyspark.sql.SparkSession
|
|
193
|
+
The current SparkSession
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
RoBertaForZeroShotClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.internal import _RoBertaForZeroShotClassification
|
|
201
|
+
jModel = _RoBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
return RoBertaForZeroShotClassification(java_model=jModel)
|
|
203
|
+
|
|
204
|
+
@staticmethod
|
|
205
|
+
def pretrained(name="roberta_base_zero_shot_classifier_nli", lang="en", remote_loc=None):
|
|
206
|
+
"""Downloads and loads a pretrained model.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
name : str, optional
|
|
211
|
+
Name of the pretrained model, by default
|
|
212
|
+
"roberta_base_zero_shot_classifier_nli"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
RoBertaForZeroShotClassification
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(RoBertaForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -25,6 +25,7 @@ from sparknlp.annotator.embeddings.elmo_embeddings import *
|
|
|
25
25
|
from sparknlp.annotator.embeddings.e5_embeddings import *
|
|
26
26
|
from sparknlp.annotator.embeddings.instructor_embeddings import *
|
|
27
27
|
from sparknlp.annotator.embeddings.longformer_embeddings import *
|
|
28
|
+
from sparknlp.annotator.embeddings.mpnet_embeddings import *
|
|
28
29
|
from sparknlp.annotator.embeddings.roberta_embeddings import *
|
|
29
30
|
from sparknlp.annotator.embeddings.roberta_sentence_embeddings import *
|
|
30
31
|
from sparknlp.annotator.embeddings.sentence_embeddings import *
|
|
@@ -344,3 +344,9 @@ class Doc2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
|
|
|
344
344
|
from sparknlp.pretrained import ResourceDownloader
|
|
345
345
|
return ResourceDownloader.downloadModel(Doc2VecModel, name, lang, remote_loc)
|
|
346
346
|
|
|
347
|
+
def getVectors(self):
|
|
348
|
+
"""
|
|
349
|
+
Returns the vector representation of the words as a dataframe
|
|
350
|
+
with two fields, word and vector.
|
|
351
|
+
"""
|
|
352
|
+
return self._call_java("getVectors")
|
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for E5Embeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class MPNetEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using MPNet.
|
|
26
|
+
|
|
27
|
+
MPNet adopts a novel pre-training method, named masked and permuted language modeling,
|
|
28
|
+
to inherit the advantages of masked language modeling and permuted language modeling for
|
|
29
|
+
natural language understanding.
|
|
30
|
+
|
|
31
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
32
|
+
object:
|
|
33
|
+
|
|
34
|
+
>>> embeddings = MPNetEmbeddings.pretrained() \\
|
|
35
|
+
... .setInputCols(["document"]) \\
|
|
36
|
+
... .setOutputCol("mpnet_embeddings")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
The default model is ``"all_mpnet_base_v2"``, if no name is provided.
|
|
40
|
+
|
|
41
|
+
For available pretrained models please see the
|
|
42
|
+
`Models Hub <https://sparknlp.org/models?q=MPNet>`__.
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
====================== ======================
|
|
46
|
+
Input Annotation types Output Annotation type
|
|
47
|
+
====================== ======================
|
|
48
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
49
|
+
====================== ======================
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
batchSize
|
|
54
|
+
Size of every batch , by default 8
|
|
55
|
+
dimension
|
|
56
|
+
Number of embedding dimensions, by default 768
|
|
57
|
+
caseSensitive
|
|
58
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
59
|
+
maxSentenceLength
|
|
60
|
+
Max sentence length to process, by default 512
|
|
61
|
+
configProtoBytes
|
|
62
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
63
|
+
|
|
64
|
+
References
|
|
65
|
+
----------
|
|
66
|
+
`MPNet: Masked and Permuted Pre-training for Language Understanding <https://arxiv.org/pdf/2004.09297>`__
|
|
67
|
+
|
|
68
|
+
https://github.com/microsoft/MPNet
|
|
69
|
+
|
|
70
|
+
**Paper abstract**
|
|
71
|
+
|
|
72
|
+
*BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
|
|
73
|
+
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for
|
|
74
|
+
pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence
|
|
75
|
+
and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet,
|
|
76
|
+
a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet
|
|
77
|
+
leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes
|
|
78
|
+
auxiliary position information as input to make the model see a full sentence and thus reducing the position
|
|
79
|
+
discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune
|
|
80
|
+
on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and
|
|
81
|
+
PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art
|
|
82
|
+
pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting.*
|
|
83
|
+
|
|
84
|
+
Examples
|
|
85
|
+
--------
|
|
86
|
+
>>> import sparknlp
|
|
87
|
+
>>> from sparknlp.base import *
|
|
88
|
+
>>> from sparknlp.annotator import *
|
|
89
|
+
>>> from pyspark.ml import Pipeline
|
|
90
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
91
|
+
... .setInputCol("text") \\
|
|
92
|
+
... .setOutputCol("document")
|
|
93
|
+
>>> embeddings = MPNetEmbeddings.pretrained() \\
|
|
94
|
+
... .setInputCols(["document"]) \\
|
|
95
|
+
... .setOutputCol("mpnet_embeddings")
|
|
96
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
97
|
+
... .setInputCols(["mpnet_embeddings"]) \\
|
|
98
|
+
... .setOutputCols("finished_embeddings") \\
|
|
99
|
+
... .setOutputAsVector(True)
|
|
100
|
+
>>> pipeline = Pipeline().setStages([
|
|
101
|
+
... documentAssembler,
|
|
102
|
+
... embeddings,
|
|
103
|
+
... embeddingsFinisher
|
|
104
|
+
... ])
|
|
105
|
+
>>> data = spark.createDataFrame([["This is an example sentence", "Each sentence is converted"]]).toDF("text")
|
|
106
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
107
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
108
|
+
+--------------------------------------------------------------------------------+
|
|
109
|
+
| result|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
|[[0.022502584, -0.078291744, -0.023030775, -0.0051000593, -0.080340415, 0.039...|
|
|
112
|
+
|[[0.041702367, 0.0010974605, -0.015534201, 0.07092203, -0.0017729357, 0.04661...|
|
|
113
|
+
+--------------------------------------------------------------------------------+
|
|
114
|
+
"""
|
|
115
|
+
|
|
116
|
+
name = "MPNetEmbeddings"
|
|
117
|
+
|
|
118
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
119
|
+
|
|
120
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def setConfigProtoBytes(self, b):
|
|
128
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
129
|
+
|
|
130
|
+
Parameters
|
|
131
|
+
----------
|
|
132
|
+
b : List[int]
|
|
133
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
134
|
+
"""
|
|
135
|
+
return self._set(configProtoBytes=b)
|
|
136
|
+
|
|
137
|
+
@keyword_only
|
|
138
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.MPNetEmbeddings", java_model=None):
|
|
139
|
+
super(MPNetEmbeddings, self).__init__(
|
|
140
|
+
classname=classname,
|
|
141
|
+
java_model=java_model
|
|
142
|
+
)
|
|
143
|
+
self._setDefault(
|
|
144
|
+
dimension=768,
|
|
145
|
+
batchSize=8,
|
|
146
|
+
maxSentenceLength=512,
|
|
147
|
+
caseSensitive=False,
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
@staticmethod
|
|
151
|
+
def loadSavedModel(folder, spark_session):
|
|
152
|
+
"""Loads a locally saved model.
|
|
153
|
+
|
|
154
|
+
Parameters
|
|
155
|
+
----------
|
|
156
|
+
folder : str
|
|
157
|
+
Folder of the saved model
|
|
158
|
+
spark_session : pyspark.sql.SparkSession
|
|
159
|
+
The current SparkSession
|
|
160
|
+
|
|
161
|
+
Returns
|
|
162
|
+
-------
|
|
163
|
+
MPNetEmbeddings
|
|
164
|
+
The restored model
|
|
165
|
+
"""
|
|
166
|
+
from sparknlp.internal import _MPNetLoader
|
|
167
|
+
jModel = _MPNetLoader(folder, spark_session._jsparkSession)._java_obj
|
|
168
|
+
return MPNetEmbeddings(java_model=jModel)
|
|
169
|
+
|
|
170
|
+
@staticmethod
|
|
171
|
+
def pretrained(name="all_mpnet_base_v2", lang="en", remote_loc=None):
|
|
172
|
+
"""Downloads and loads a pretrained model.
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
name : str, optional
|
|
177
|
+
Name of the pretrained model, by default "all_mpnet_base_v2"
|
|
178
|
+
lang : str, optional
|
|
179
|
+
Language of the pretrained model, by default "en"
|
|
180
|
+
remote_loc : str, optional
|
|
181
|
+
Optional remote address of the resource, by default None. Will use
|
|
182
|
+
Spark NLPs repositories otherwise.
|
|
183
|
+
|
|
184
|
+
Returns
|
|
185
|
+
-------
|
|
186
|
+
MPNetEmbeddings
|
|
187
|
+
The restored model
|
|
188
|
+
"""
|
|
189
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
190
|
+
return ResourceDownloader.downloadModel(MPNetEmbeddings, name, lang, remote_loc)
|
|
@@ -345,3 +345,9 @@ class Word2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
|
|
|
345
345
|
from sparknlp.pretrained import ResourceDownloader
|
|
346
346
|
return ResourceDownloader.downloadModel(Word2VecModel, name, lang, remote_loc)
|
|
347
347
|
|
|
348
|
+
def getVectors(self):
|
|
349
|
+
"""
|
|
350
|
+
Returns the vector representation of the words as a dataframe
|
|
351
|
+
with two fields, word and vector.
|
|
352
|
+
"""
|
|
353
|
+
return self._call_java("getVectors")
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Module of annotators for openai integration."""
|
|
15
|
+
from sparknlp.annotator.openai.openai_completion import *
|
|
16
|
+
from sparknlp.annotator.openai.openai_embeddings import *
|