spark-nlp 5.0.2__py2.py3-none-any.whl → 5.1.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/METADATA +52 -45
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/RECORD +20 -13
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/__init__.py +1 -0
- sparknlp/annotator/audio/__init__.py +1 -0
- sparknlp/annotator/audio/whisper_for_ctc.py +250 -0
- sparknlp/annotator/classifier_dl/__init__.py +3 -2
- sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/classifier_dl/roberta_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/embeddings/__init__.py +1 -0
- sparknlp/annotator/embeddings/doc2vec.py +6 -0
- sparknlp/annotator/embeddings/mpnet_embeddings.py +190 -0
- sparknlp/annotator/embeddings/word2vec.py +6 -0
- sparknlp/annotator/openai/__init__.py +16 -0
- sparknlp/annotator/openai/openai_completion.py +352 -0
- sparknlp/annotator/openai/openai_embeddings.py +132 -0
- sparknlp/common/properties.py +173 -0
- sparknlp/internal/__init__.py +19 -1
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/WHEEL +0 -0
- {spark_nlp-5.0.2.dist-info → spark_nlp-5.1.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,250 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""Contains classes concerning WhisperForCTC."""
|
|
16
|
+
|
|
17
|
+
from sparknlp.common import *
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class WhisperForCTC(AnnotatorModel,
|
|
21
|
+
HasBatchedAnnotateAudio,
|
|
22
|
+
HasAudioFeatureProperties,
|
|
23
|
+
HasEngine, HasGeneratorProperties):
|
|
24
|
+
"""Whisper Model with a language modeling head on top for Connectionist Temporal Classification
|
|
25
|
+
(CTC).
|
|
26
|
+
|
|
27
|
+
Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of
|
|
28
|
+
multilingual and multitask supervised data collected from the web. It transcribe in multiple
|
|
29
|
+
languages, as well as translate from those languages into English.
|
|
30
|
+
|
|
31
|
+
The audio needs to be provided pre-processed an array of floats.
|
|
32
|
+
|
|
33
|
+
Note that at the moment, this annotator only supports greedy search.
|
|
34
|
+
|
|
35
|
+
For multilingual models, the language and the task (transcribe or translate) can be set with
|
|
36
|
+
``setLanguage`` and ``setTask``.
|
|
37
|
+
|
|
38
|
+
Pretrained models can be loaded with ``pretrained`` of the companion object:
|
|
39
|
+
|
|
40
|
+
.. code-block:: python
|
|
41
|
+
|
|
42
|
+
speechToText = WhisperForCTC.pretrained() \\
|
|
43
|
+
.setInputCols(["audio_assembler"]) \\
|
|
44
|
+
.setOutputCol("text")
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
The default model is ``"asr_whisper_tiny_opt"``, if no name is provided.
|
|
48
|
+
|
|
49
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
|
|
50
|
+
|
|
51
|
+
To see which models are compatible and how to import them see
|
|
52
|
+
https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended
|
|
53
|
+
examples, see
|
|
54
|
+
`WhisperForCTCTestSpec <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/audio/WhisperForCTCTest.scala>`__.
|
|
55
|
+
|
|
56
|
+
**References:**
|
|
57
|
+
|
|
58
|
+
`Robust Speech Recognition via Large-Scale Weak Supervision <https://arxiv.org/abs/2212.04356>`__
|
|
59
|
+
|
|
60
|
+
**Paper Abstract:**
|
|
61
|
+
|
|
62
|
+
*We study the capabilities of speech processing systems trained simply to predict large
|
|
63
|
+
amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual
|
|
64
|
+
and multitask supervision, the resulting models generalize well to standard benchmarks and are
|
|
65
|
+
often competitive with prior fully supervised results but in a zero- shot transfer setting
|
|
66
|
+
without the need for any fine- tuning. When compared to humans, the models approach their
|
|
67
|
+
accuracy and robustness. We are releasing models and inference code to serve as a foundation
|
|
68
|
+
for further work on robust speech processing.*
|
|
69
|
+
|
|
70
|
+
====================== ======================
|
|
71
|
+
Input Annotation types Output Annotation type
|
|
72
|
+
====================== ======================
|
|
73
|
+
``AUDIO`` ``DOCUMENT``
|
|
74
|
+
====================== ======================
|
|
75
|
+
|
|
76
|
+
Parameters
|
|
77
|
+
----------
|
|
78
|
+
task
|
|
79
|
+
The formatted task for the audio. Either `<|translate|>` or `<|transcribe|>`.
|
|
80
|
+
language
|
|
81
|
+
The language for the audio, formatted to e.g. `<|en|>`. Check the model description for
|
|
82
|
+
supported languages.
|
|
83
|
+
isMultilingual
|
|
84
|
+
Whether the model is multilingual
|
|
85
|
+
minOutputLength
|
|
86
|
+
Minimum length of the sequence to be generated
|
|
87
|
+
maxOutputLength
|
|
88
|
+
Maximum length of output text
|
|
89
|
+
doSample
|
|
90
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
91
|
+
temperature
|
|
92
|
+
The value used to module the next token probabilities
|
|
93
|
+
topK
|
|
94
|
+
The number of highest probability vocabulary tokens to keep for top-k-filtering
|
|
95
|
+
topP
|
|
96
|
+
If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are
|
|
97
|
+
kept for generation
|
|
98
|
+
repetitionPenalty
|
|
99
|
+
The parameter for repetition penalty. 1.0 means no penalty.
|
|
100
|
+
See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details
|
|
101
|
+
noRepeatNgramSize
|
|
102
|
+
If set to int > 0, all ngrams of that size can only occur once
|
|
103
|
+
beamSize
|
|
104
|
+
The Number of beams for beam search
|
|
105
|
+
|
|
106
|
+
Examples
|
|
107
|
+
--------
|
|
108
|
+
>>> import sparknlp
|
|
109
|
+
>>> from sparknlp.base import *
|
|
110
|
+
>>> from sparknlp.annotator import *
|
|
111
|
+
>>> from pyspark.ml import Pipeline
|
|
112
|
+
>>> audioAssembler = AudioAssembler() \\
|
|
113
|
+
... .setInputCol("audio_content") \\
|
|
114
|
+
... .setOutputCol("audio_assembler")
|
|
115
|
+
>>> speechToText = WhisperForCTC.pretrained() \\
|
|
116
|
+
... .setInputCols(["audio_assembler"]) \\
|
|
117
|
+
... .setOutputCol("text")
|
|
118
|
+
>>> pipeline = Pipeline().setStages([audioAssembler, speechToText])
|
|
119
|
+
>>> processedAudioFloats = spark.createDataFrame([[rawFloats]]).toDF("audio_content")
|
|
120
|
+
>>> result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats)
|
|
121
|
+
>>> result.select("text.result").show(truncate = False)
|
|
122
|
+
+------------------------------------------------------------------------------------------+
|
|
123
|
+
|result |
|
|
124
|
+
+------------------------------------------------------------------------------------------+
|
|
125
|
+
|[ Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.]|
|
|
126
|
+
+------------------------------------------------------------------------------------------+
|
|
127
|
+
"""
|
|
128
|
+
name = "WhisperForCTC"
|
|
129
|
+
|
|
130
|
+
inputAnnotatorTypes = [AnnotatorType.AUDIO]
|
|
131
|
+
|
|
132
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
133
|
+
|
|
134
|
+
configProtoBytes = Param(Params._dummy(),
|
|
135
|
+
"configProtoBytes",
|
|
136
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
137
|
+
"config_proto.SerializeToString()",
|
|
138
|
+
TypeConverters.toListInt)
|
|
139
|
+
|
|
140
|
+
language = Param(Params._dummy(), "language", "Optional parameter to set the language for the transcription.",
|
|
141
|
+
typeConverter=TypeConverters.toString)
|
|
142
|
+
|
|
143
|
+
isMultilingual = Param(Params._dummy(), "isMultilingual", "Whether the model is multilingual.",
|
|
144
|
+
typeConverter=TypeConverters.toBoolean)
|
|
145
|
+
|
|
146
|
+
def setConfigProtoBytes(self, b):
|
|
147
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
b : List[int]
|
|
152
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
153
|
+
"""
|
|
154
|
+
return self._set(configProtoBytes=b)
|
|
155
|
+
|
|
156
|
+
def getLanguage(self):
|
|
157
|
+
"""Gets the langauge for the transcription."""
|
|
158
|
+
return self.getOrDefault(self.language)
|
|
159
|
+
|
|
160
|
+
def getIsMultilingual(self):
|
|
161
|
+
"""Gets whether the model is multilingual."""
|
|
162
|
+
return self.getOrDefault(self.isMultilingual)
|
|
163
|
+
|
|
164
|
+
def setLanguage(self, value):
|
|
165
|
+
"""Sets the language for the audio, formatted to e.g. `<|en|>`. Check the model description for
|
|
166
|
+
supported languages.
|
|
167
|
+
|
|
168
|
+
Parameters
|
|
169
|
+
----------
|
|
170
|
+
value : String
|
|
171
|
+
Formatted language code
|
|
172
|
+
"""
|
|
173
|
+
return self._call_java("setLanguage", value)
|
|
174
|
+
|
|
175
|
+
def setTask(self, value):
|
|
176
|
+
"""Sets the formatted task for the audio. Either `<|translate|>` or `<|transcribe|>`.
|
|
177
|
+
|
|
178
|
+
Only multilingual models can do translation.
|
|
179
|
+
|
|
180
|
+
Parameters
|
|
181
|
+
----------
|
|
182
|
+
value : String
|
|
183
|
+
Formatted task
|
|
184
|
+
"""
|
|
185
|
+
return self._call_java("setTask", value)
|
|
186
|
+
|
|
187
|
+
@keyword_only
|
|
188
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.audio.WhisperForCTC",
|
|
189
|
+
java_model=None):
|
|
190
|
+
super(WhisperForCTC, self).__init__(
|
|
191
|
+
classname=classname,
|
|
192
|
+
java_model=java_model
|
|
193
|
+
)
|
|
194
|
+
self._setDefault(
|
|
195
|
+
minOutputLength=0,
|
|
196
|
+
maxOutputLength=448,
|
|
197
|
+
doSample=False,
|
|
198
|
+
temperature=1.0,
|
|
199
|
+
topK=1,
|
|
200
|
+
topP=1.0,
|
|
201
|
+
repetitionPenalty=1.0,
|
|
202
|
+
noRepeatNgramSize=0,
|
|
203
|
+
batchSize=2,
|
|
204
|
+
beamSize=1,
|
|
205
|
+
nReturnSequences=1,
|
|
206
|
+
isMultilingual=True,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
@staticmethod
|
|
210
|
+
def loadSavedModel(folder, spark_session):
|
|
211
|
+
"""Loads a locally saved model.
|
|
212
|
+
|
|
213
|
+
Parameters
|
|
214
|
+
----------
|
|
215
|
+
folder : str
|
|
216
|
+
Folder of the saved model
|
|
217
|
+
spark_session : pyspark.sql.SparkSession
|
|
218
|
+
The current SparkSession
|
|
219
|
+
|
|
220
|
+
Returns
|
|
221
|
+
-------
|
|
222
|
+
WhisperForCTC
|
|
223
|
+
The restored model
|
|
224
|
+
"""
|
|
225
|
+
from sparknlp.internal import _WhisperForCTC
|
|
226
|
+
jModel = _WhisperForCTC(folder, spark_session._jsparkSession)._java_obj
|
|
227
|
+
return WhisperForCTC(java_model=jModel)
|
|
228
|
+
|
|
229
|
+
@staticmethod
|
|
230
|
+
def pretrained(name="asr_whisper_tiny_opt", lang="xx", remote_loc=None):
|
|
231
|
+
"""Downloads and loads a pretrained model.
|
|
232
|
+
|
|
233
|
+
Parameters
|
|
234
|
+
----------
|
|
235
|
+
name : str, optional
|
|
236
|
+
Name of the pretrained model, by default
|
|
237
|
+
"asr_hubert_large_ls960"
|
|
238
|
+
lang : str, optional
|
|
239
|
+
Language of the pretrained model, by default "en"
|
|
240
|
+
remote_loc : str, optional
|
|
241
|
+
Optional remote address of the resource, by default None. Will use
|
|
242
|
+
Spark NLPs repositories otherwise.
|
|
243
|
+
|
|
244
|
+
Returns
|
|
245
|
+
-------
|
|
246
|
+
WhisperForCTC
|
|
247
|
+
The restored model
|
|
248
|
+
"""
|
|
249
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
250
|
+
return ResourceDownloader.downloadModel(WhisperForCTC, name, lang, remote_loc)
|
|
@@ -45,5 +45,6 @@ from sparknlp.annotator.classifier_dl.camembert_for_sequence_classification impo
|
|
|
45
45
|
from sparknlp.annotator.classifier_dl.camembert_for_question_answering import *
|
|
46
46
|
from sparknlp.annotator.classifier_dl.bert_for_zero_shot_classification import *
|
|
47
47
|
from sparknlp.annotator.classifier_dl.distil_bert_for_zero_shot_classification import *
|
|
48
|
-
from sparknlp.annotator.classifier_dl.
|
|
49
|
-
from sparknlp.annotator.classifier_dl.xlm_roberta_for_zero_shot_classification import *
|
|
48
|
+
from sparknlp.annotator.classifier_dl.roberta_for_zero_shot_classification import *
|
|
49
|
+
from sparknlp.annotator.classifier_dl.xlm_roberta_for_zero_shot_classification import *
|
|
50
|
+
from sparknlp.annotator.classifier_dl.bart_for_zero_shot_classification import *
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for BartForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class BartForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine):
|
|
25
|
+
"""BartForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
26
|
+
inference) tasks. Equivalent of `BartForSequenceClassification` models, but these models don't require a hardcoded
|
|
27
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
28
|
+
flexible.
|
|
29
|
+
|
|
30
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
31
|
+
longer this process will take.
|
|
32
|
+
|
|
33
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
34
|
+
pair and passed to the pretrained model.
|
|
35
|
+
|
|
36
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
37
|
+
object:
|
|
38
|
+
|
|
39
|
+
>>> sequenceClassifier = BartForZeroShotClassification.pretrained() \\
|
|
40
|
+
... .setInputCols(["token", "document"]) \\
|
|
41
|
+
... .setOutputCol("label")
|
|
42
|
+
|
|
43
|
+
The default model is ``"bart_large_zero_shot_classifier_mnli"``, if no name is
|
|
44
|
+
provided.
|
|
45
|
+
|
|
46
|
+
For available pretrained models please see the `Models Hub
|
|
47
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
48
|
+
|
|
49
|
+
To see which models are compatible and how to import them see
|
|
50
|
+
`Import Transformers into Spark NLP 🚀
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize
|
|
62
|
+
Batch size. Large values allows faster processing but requires more
|
|
63
|
+
memory, by default 8
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
configProtoBytes
|
|
68
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
69
|
+
maxSentenceLength
|
|
70
|
+
Max sentence length to process, by default 128
|
|
71
|
+
coalesceSentences
|
|
72
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
73
|
+
class per document by averaging probabilities in all sentences, by
|
|
74
|
+
default False
|
|
75
|
+
activation
|
|
76
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
77
|
+
`"softmax"`.
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> tokenizer = Tokenizer() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("token")
|
|
91
|
+
>>> sequenceClassifier = BartForZeroShotClassification.pretrained() \\
|
|
92
|
+
... .setInputCols(["token", "document"]) \\
|
|
93
|
+
... .setOutputCol("label") \\
|
|
94
|
+
... .setCaseSensitive(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... tokenizer,
|
|
98
|
+
... sequenceClassifier
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
101
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
102
|
+
>>> result.select("label.result").show(truncate=False)
|
|
103
|
+
+------+
|
|
104
|
+
|result|
|
|
105
|
+
+------+
|
|
106
|
+
|[pos] |
|
|
107
|
+
|[neg] |
|
|
108
|
+
+------+
|
|
109
|
+
"""
|
|
110
|
+
name = "BartForZeroShotClassification"
|
|
111
|
+
|
|
112
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
113
|
+
|
|
114
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
115
|
+
|
|
116
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
117
|
+
"maxSentenceLength",
|
|
118
|
+
"Max sentence length to process",
|
|
119
|
+
typeConverter=TypeConverters.toInt)
|
|
120
|
+
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
127
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
128
|
+
TypeConverters.toBoolean)
|
|
129
|
+
|
|
130
|
+
def getClasses(self):
|
|
131
|
+
"""
|
|
132
|
+
Returns labels used to train this model
|
|
133
|
+
"""
|
|
134
|
+
return self._call_java("getClasses")
|
|
135
|
+
|
|
136
|
+
def setConfigProtoBytes(self, b):
|
|
137
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
b : List[int]
|
|
142
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
143
|
+
"""
|
|
144
|
+
return self._set(configProtoBytes=b)
|
|
145
|
+
|
|
146
|
+
def setMaxSentenceLength(self, value):
|
|
147
|
+
"""Sets max sentence length to process, by default 128.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : int
|
|
152
|
+
Max sentence length to process
|
|
153
|
+
"""
|
|
154
|
+
return self._set(maxSentenceLength=value)
|
|
155
|
+
|
|
156
|
+
def setCoalesceSentences(self, value):
|
|
157
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
158
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as Bart
|
|
159
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
160
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
161
|
+
|
|
162
|
+
Parameters
|
|
163
|
+
----------
|
|
164
|
+
value : bool
|
|
165
|
+
If the output of all sentences will be averaged to one output
|
|
166
|
+
"""
|
|
167
|
+
return self._set(coalesceSentences=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.BartForZeroShotClassification",
|
|
171
|
+
java_model=None):
|
|
172
|
+
super(BartForZeroShotClassification, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
batchSize=8,
|
|
178
|
+
maxSentenceLength=128,
|
|
179
|
+
caseSensitive=True,
|
|
180
|
+
coalesceSentences=False,
|
|
181
|
+
activation="softmax"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def loadSavedModel(folder, spark_session):
|
|
186
|
+
"""Loads a locally saved model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
folder : str
|
|
191
|
+
Folder of the saved model
|
|
192
|
+
spark_session : pyspark.sql.SparkSession
|
|
193
|
+
The current SparkSession
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
BartForZeroShotClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.internal import _BartForZeroShotClassification
|
|
201
|
+
jModel = _BartForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
return BartForZeroShotClassification(java_model=jModel)
|
|
203
|
+
|
|
204
|
+
@staticmethod
|
|
205
|
+
def pretrained(name="bart_large_zero_shot_classifier_mnli", lang="en", remote_loc=None):
|
|
206
|
+
"""Downloads and loads a pretrained model.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
name : str, optional
|
|
211
|
+
Name of the pretrained model, by default
|
|
212
|
+
"bart_large_zero_shot_classifier_mnli"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
BartForZeroShotClassification
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(BartForZeroShotClassification, name, lang, remote_loc)
|