spacr 0.0.2__py3-none-any.whl → 0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.2
3
+ Version: 0.0.6
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -9,6 +9,7 @@ Classifier: Programming Language :: Python :: 3
9
9
  Classifier: License :: OSI Approved :: MIT License
10
10
  Classifier: Operating System :: OS Independent
11
11
  License-File: LICENSE
12
+ Requires-Dist: dgl
12
13
  Requires-Dist: torch >=2.2.1
13
14
  Requires-Dist: torchvision >=0.17.1
14
15
  Requires-Dist: torch-geometric >=2.5.1
@@ -19,6 +20,7 @@ Requires-Dist: scikit-image >=0.22.0
19
20
  Requires-Dist: scikit-learn >=1.4.1
20
21
  Requires-Dist: seaborn >=0.13.2
21
22
  Requires-Dist: matplotlib >=3.8.3
23
+ Requires-Dist: shap >=0.45.0
22
24
  Requires-Dist: pillow >=10.2.0
23
25
  Requires-Dist: imageio >=2.34.0
24
26
  Requires-Dist: scipy >=1.12.0
@@ -29,8 +31,13 @@ Requires-Dist: trackpy >=0.6.2
29
31
  Requires-Dist: cellpose >=3.0.6
30
32
  Requires-Dist: IPython >=8.18.1
31
33
  Requires-Dist: opencv-python-headless >=4.9.0.80
32
- Requires-Dist: umap >=0.1.1
34
+ Requires-Dist: umap-learn >=0.5.6
33
35
  Requires-Dist: ttkthemes >=3.2.2
36
+ Requires-Dist: xgboost >=2.0.3
37
+ Requires-Dist: PyWavelets >=1.6.0
38
+ Requires-Dist: torchcam >=0.4.0
39
+ Requires-Dist: ttf-opensans >=2020.10.30
40
+ Requires-Dist: customtkinter >=5.2.2
34
41
  Requires-Dist: lxml >=5.1.0
35
42
  Provides-Extra: dev
36
43
  Requires-Dist: pytest >=3.9 ; extra == 'dev'
@@ -49,7 +56,7 @@ Requires-Dist: opencv-python-headless ; extra == 'headless'
49
56
  <tr>
50
57
  <td>
51
58
 
52
- Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions for generating cellpose masks -> single object images and measurements -> annotation and classification of single object images. Spacr uses batch normalization to facilitate accurate segmentation of objects with low foreground representation.
59
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
53
60
 
54
61
  </td>
55
62
  <td>
@@ -62,9 +69,9 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
62
69
 
63
70
  ## Features
64
71
 
65
- - **Generate Masks:** Generate cellpose masks for cells, nuclei and pathogen images.
72
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
66
73
 
67
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity quantiles, shannon-entropy, pearsons and manders correlation, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
74
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
68
75
 
69
76
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
70
77
 
@@ -78,11 +85,13 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
78
85
 
79
86
  - **Simulations:** Simulate spatial phenotype screens.
80
87
 
88
+ - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
89
+
81
90
  - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
82
91
 
83
92
  ## Installation
84
93
 
85
- spacr requires Tkinter for its graphical user interface features.
94
+ Requires Tkinter for graphical user interface features.
86
95
 
87
96
  ### Ubuntu
88
97
 
@@ -102,29 +111,8 @@ install spacr with pip
102
111
  pip install spacr
103
112
  ```
104
113
 
105
- To run spacr GUIs after installing spacr:
114
+ Run spacr GUI:
106
115
 
107
- To generate masks:
108
- ```
109
- gui_mask
110
- ```
111
- To generate measurements and cropped images:
112
- ```
113
- gui_measure
114
- ```
115
- To curate masks for finetuning cellpose models:
116
- ```
117
- gui_make_masks
118
- ```
119
- To annotate paths to images in sql database created in gui_measure:
120
- ```
121
- gui_annotate
122
- ```
123
- Train torch CNNs/Transformers to classify single object images.
124
- ```
125
- gui_classify
126
- ```
127
- Simulate spatial phenotype screens.
128
116
  ```
129
- gui_sim
117
+ gui
130
118
  ```
@@ -0,0 +1,39 @@
1
+ spacr/__init__.py,sha256=xN6y7zYr7wqDxqYQNVFPJqwuqs7heANFktXmwzzBPFw,889
2
+ spacr/__main__.py,sha256=L3Dnk-YG3lULeaMxD1mS-_t89g4qWrJ7bnpBvNiQhUE,283
3
+ spacr/alpha.py,sha256=Y95sLEfpK2OSYKRn3M8eUOU33JJeXfV8zhrC4KnwSTY,35244
4
+ spacr/annotate_app.py,sha256=_KlDYbnaKr_VvghMWSr6gWbP_lByPghGLiCfEIJ48so,19500
5
+ spacr/chris.py,sha256=YlBjSgeZaY8HPy6jkrT_ISAnCMAKVfvCxF0I9eAZLFM,2418
6
+ spacr/cli.py,sha256=507jfOOEV8BoL4eeUcblvH-iiDHdBrEVJLu1ghAAPSc,1800
7
+ spacr/core.py,sha256=EIhsuSyJQPxq1UfH3VNh3ubt403W1Ahvnz44pX35BCc,166307
8
+ spacr/deep_spacr.py,sha256=ljIakns6q74an5QwDU7j0xoj6jRCAz-ejY0QHj9X0d8,33193
9
+ spacr/foldseek.py,sha256=w7M7qRYvP5syJlPErQkHzPLOkiyLN77E0XyL3NiFZwI,33540
10
+ spacr/get_alfafold_structures.py,sha256=n0g8gne-oyAV3Uo6qxZoJq5X1cUUyD8u0pOC_W2PX40,3541
11
+ spacr/graph_learning.py,sha256=M7KW1J72LA4hLfVNVBOqxf_4z9tXi-UyoZfhaLJXqSE,11986
12
+ spacr/graph_learning_lap.py,sha256=MyNRLb63gsjBlui-ByZ0anHugYulL6M-OsGm8rnGBmE,3385
13
+ spacr/gui.py,sha256=zu-i8ezLJ03jNRACK7CRgNhkM8g8-pJFwZ-OSDFzsPg,6498
14
+ spacr/gui_2.py,sha256=FPlmvGm1VIood_YBnG44IafgjjaVfagybTnjVEOs5Ig,3299
15
+ spacr/gui_classify_app.py,sha256=LY33wott1mR7AFYwBI9ZQZYY16lBB-wuaY4pL_poaQ0,7884
16
+ spacr/gui_mask_app.py,sha256=WKkAH0jv-SnfaZdJ8MkC7mkUIVSSrNE8lUfH3QBvUak,9747
17
+ spacr/gui_measure_app.py,sha256=5vjjds5NFaOcE8XeuWDug9k-NI4jbTrwp54sJ7DNaNI,9625
18
+ spacr/gui_sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ spacr/gui_utils.py,sha256=JRWwmGEEVSPgs0UtZRukdNwIUJepbP675_Fvs5qocPk,49718
20
+ spacr/io.py,sha256=8jpnsUOZMxfhGamduiq4BXgUtfh80kF4R_S-8N3EIrw,109305
21
+ spacr/logger.py,sha256=7Zqr3TuuOQLWT32gYr2q1qvv7x0a2JhLANmZcnBXAW8,670
22
+ spacr/mask_app.py,sha256=jlKmj_evveIkkyH3PYEcAshcLXN0DOPWB1oc4hAwq9E,44201
23
+ spacr/measure.py,sha256=KOBmrVE9nrKwIoXG16wV1sy5nSj9EOa_FhK7i431V-A,55325
24
+ spacr/old_code.py,sha256=jw67DAGoLBd7mWofVzRJSEmCI1Qrff26zIo65SEkV00,13817
25
+ spacr/plot.py,sha256=9tQEDDIHzex-T90VaS_PfcHwbWfYEYfMeKkgEdlK6ko,62045
26
+ spacr/sequencing.py,sha256=OiRK6gpEkuEhKoUJcU-BXWDmz4RkDxKeJCE_C6w1zJc,50503
27
+ spacr/sim.py,sha256=fpkOs-VBU40xBFuSoO97aTewQWPSYolg5C_PkjeQm_Y,71344
28
+ spacr/timelapse.py,sha256=5TNmkzR_urMxy0eVB4quGdjNj2QduyiwrLL2I-udlAg,39614
29
+ spacr/train.py,sha256=rpOJBu3ho0Oec37I1mO4_3eQ480y_4bgFiKCOgiyN8s,31741
30
+ spacr/umap.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ spacr/utils.py,sha256=zX6zhS7UmCOA2JzBw4uDb-p0SPq5igaeYjzJ56d7hG8,171627
32
+ spacr/version.py,sha256=axH5tnGwtgSnJHb5IDhiu4Zjk5GhLyAEDRe-rnaoFOA,409
33
+ spacr/models/cp/toxo_pv_lumen.CP_model,sha256=2y_CindYhmTvVwBH39SNILF3rI3x9SsRn6qrMxHy3l0,26562451
34
+ spacr-0.0.6.dist-info/LICENSE,sha256=SR-2MeGc6SCM1UORJYyarSWY_A-JaOMFDj7ReSs9tRM,1083
35
+ spacr-0.0.6.dist-info/METADATA,sha256=Fty3r7xtek-0XdpoujHVKPqIWQSWkVL7AYNiJBGI3wA,4761
36
+ spacr-0.0.6.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
37
+ spacr-0.0.6.dist-info/entry_points.txt,sha256=xncHsqD9MI5wj0_p4mgZlrB8dHm_g_qF0Ggo1c78LqY,315
38
+ spacr-0.0.6.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
39
+ spacr-0.0.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,9 @@
1
+ [console_scripts]
2
+ annotate = spacr.annotate_app:gui_annotation
3
+ classify = spacr.gui_classify_app:gui_classify
4
+ gui = spacr.gui:gui_app
5
+ gui2 = spacr.gui_2:gui_app
6
+ make_masks = spacr.mask_app:gui_make_masks
7
+ mask = spacr.gui_mask_app:gui_mask
8
+ measure = spacr.gui_measure_app:gui_measure
9
+ sim = spacr.gui_sim_app:gui_sim
@@ -1,31 +0,0 @@
1
- spacr/__init__.py,sha256=mDi-Qu5r1vZnqIbUBV1JAoSq-mxmMEOmni1JSG2e4Wo,879
2
- spacr/__main__.py,sha256=_qRkhbFrH_cXr7AZs6KHL8Hh4VApqNdpNCtiKn2ePTo,285
3
- spacr/alpha.py,sha256=Q1vnqO0hvU1G7QP26amFwJY2RjZ68zIc3jYoqQSBMrw,462
4
- spacr/annotate_app.py,sha256=IPgZfS4TrSqbJr81P1FWUNOgCPPcS6EdQjUsXRwY-4E,19932
5
- spacr/cli.py,sha256=507jfOOEV8BoL4eeUcblvH-iiDHdBrEVJLu1ghAAPSc,1800
6
- spacr/core.py,sha256=VTk81S80PKq5pGeUEdduubjbsAyPWKDyRu11EWDO2ms,120307
7
- spacr/graph_learning.py,sha256=sD4eOC7Q16rr7WO20mCi_E16_LqioGUUgPamAHIIeNI,12568
8
- spacr/graph_learning_lap.py,sha256=MyNRLb63gsjBlui-ByZ0anHugYulL6M-OsGm8rnGBmE,3385
9
- spacr/gui_classify_app.py,sha256=-I06tVoA3U0jaAoTs32H1Y5ACMz6QBaEM1NEfg5w-9c,7965
10
- spacr/gui_mask_app.py,sha256=xpQ_kh-8lTb9xnyKNrZGtf9JnKqutBFu2-LdYzQShh0,8079
11
- spacr/gui_measure_app.py,sha256=9mAw3Tiuq61uKTzMVslr0MgD8m1Lv5PNI0K4-gQiuXE,8061
12
- spacr/gui_sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- spacr/gui_utils.py,sha256=dpbrsDVebjm8ZmkYYOmIZCbkQYyc6JyMIPA7C0r4Xxw,29631
14
- spacr/io.py,sha256=bCe40kli7jx7hKQyDNuZYCpZ44-Brj4TZVl9r02cFHo,102042
15
- spacr/logger.py,sha256=7Zqr3TuuOQLWT32gYr2q1qvv7x0a2JhLANmZcnBXAW8,670
16
- spacr/mask_app.py,sha256=B6-zYXVFg-cc58gLcz-Ry6LClO2jxLitL6B2ACb0HTw,39278
17
- spacr/measure.py,sha256=LvF6D-TydhXPwKkeAKuIvzHn14qVlqsn6h7ENnoKn5s,50795
18
- spacr/old_code.py,sha256=KxljHpKNsV5EfX9ifN2xJTnUeqAhyabZyfDWd5THOOc,11226
19
- spacr/plot.py,sha256=qSM0NzVQYqMYioRc_BPCkUipLRZH7_GaHKGpLXGL8oI,55040
20
- spacr/sim.py,sha256=tl40lgTMeeJSyBq_c-Rn54C9Ri0FJ2zLkLLLPLSjz3o,51534
21
- spacr/timelapse.py,sha256=wAEMv7oPyusLph3RPmF4F6UGmLfMZmrupYfsuaeJ9vI,34003
22
- spacr/train.py,sha256=r77zLvLFMzx6MJxXG3JjynD8qTWYM9pNgrChEXYQhtY,25631
23
- spacr/umap.py,sha256=4QSrQ16Og-Ijq-SwguMQT2f20UWz1LE5HQeSLmzSl8c,29370
24
- spacr/utils.py,sha256=kEQxucklUdogxjOSQxKdA1R_NU5qYj6dJPiQKIB8un4,120992
25
- spacr/version.py,sha256=axH5tnGwtgSnJHb5IDhiu4Zjk5GhLyAEDRe-rnaoFOA,409
26
- spacr-0.0.2.dist-info/LICENSE,sha256=SR-2MeGc6SCM1UORJYyarSWY_A-JaOMFDj7ReSs9tRM,1083
27
- spacr-0.0.2.dist-info/METADATA,sha256=koqEfNTcp_SBN7cZYfcY8jY_gDyuvegdlb98o8NYm3w,4380
28
- spacr-0.0.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
29
- spacr-0.0.2.dist-info/entry_points.txt,sha256=5uyJaAxWCbjWYwP15InAKU1yFxTwyuvCGtIGceso1es,290
30
- spacr-0.0.2.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
31
- spacr-0.0.2.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- [console_scripts]
2
- gui_annotation = spacr.annotate_app:gui_annotation
3
- gui_classify = spacr.gui_classify_app:gui_classify
4
- gui_make_masks = spacr.mask_app:gui_make_masks
5
- gui_mask = spacr.gui_mask_app:gui_mask
6
- gui_measure = spacr.gui_measure_app:gui_measure
7
- gui_sim = spacr.gui_sim_app:gui_sim
File without changes