spacr 0.0.1__py3-none-any.whl → 0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,72 @@
1
+ import csv
2
+ import os
3
+ import requests
4
+
5
+ def download_alphafold_structures(tsv_location, dst, version="4"):
6
+ # Create the destination directory if it does not exist
7
+ dst_pdb = os.path.join(dst,'pdb')
8
+ dst_cif = os.path.join(dst,'cif')
9
+ dst_pae = os.path.join(dst,'pae')
10
+
11
+ if not os.path.exists(dst):
12
+ os.makedirs(dst)
13
+ if not os.path.exists(dst_pdb):
14
+ os.makedirs(dst_pdb)
15
+ if not os.path.exists(dst_cif):
16
+ os.makedirs(dst_cif)
17
+ if not os.path.exists(dst_pae):
18
+ os.makedirs(dst_pae)
19
+
20
+ failed_downloads = [] # List to keep track of failed downloads
21
+
22
+ # Open the TSV file and read entries
23
+ with open(tsv_location, 'r') as tsv_file:
24
+ reader = csv.DictReader(tsv_file, delimiter='\t')
25
+ for row in reader:
26
+ entry = row['Entry']
27
+ af_link = f"https://alphafold.ebi.ac.uk/files/AF-{entry}-F1-model_v{version}.pdb"
28
+ cif_link = f"https://alphafold.ebi.ac.uk/files/AF-{entry}-F1-model_v{version}.cif"
29
+ pae_link = f"https://alphafold.ebi.ac.uk/files/AF-{entry}-F1-predicted_aligned_error_v{version}.json"
30
+
31
+ try:
32
+ response_pdb = requests.get(af_link, stream=True)
33
+ response_cif = requests.get(cif_link, stream=True)
34
+ response_pae = requests.get(pae_link, stream=True)
35
+ if response_pdb.status_code == 200:
36
+
37
+ # Save the PDB file
38
+ with open(os.path.join(dst_pdb, f"AF-{entry}-F1-model_v{version}.pdb"), 'wb') as pdb_file:
39
+ pdb_file.write(response_pdb.content)
40
+ print(f"Downloaded: AF-{entry}-F1-model_v{version}.pdb")
41
+
42
+ # Save the CIF file
43
+ with open(os.path.join(dst_cif, f"AF-{entry}-F1-model_v{version}.cif"), 'wb') as cif_file:
44
+ cif_file.write(response_cif.content)
45
+ print(f"Downloaded: AF-{entry}-F1-model_v{version}.cif")
46
+
47
+ # Save the PAE file
48
+ with open(os.path.join(dst_pae, f"AF-{entry}-F1-predicted_aligned_error_v{version}.json"), 'wb') as pdb_file:
49
+ pdb_file.write(response_pae.content)
50
+ print(f"Downloaded: AF-{entry}-F1-predicted_aligned_error_v{version}.json")
51
+
52
+ else:
53
+ # If the file could not be downloaded, record the entry
54
+ failed_downloads.append(entry)
55
+ print(f"Failed to download structure for: {entry}")
56
+ except Exception as e:
57
+ print(f"Error downloading structure for {entry}: {e}")
58
+ failed_downloads.append(entry)
59
+
60
+ # Save the list of failed downloads to a CSV file in the destination folder
61
+ if failed_downloads:
62
+ with open(os.path.join(dst, 'failed_downloads.csv'), 'w', newline='') as failed_file:
63
+ writer = csv.writer(failed_file)
64
+ writer.writerow(['Entry'])
65
+ for entry in failed_downloads:
66
+ writer.writerow([entry])
67
+ print(f"Failed download entries saved to: {os.path.join(dst, 'failed_downloads.csv')}")
68
+
69
+ # Example usage:
70
+ tsv_location = '/home/carruthers/Downloads/GT1_proteome/GT1_proteins_uniprot.tsv' # Replace with the path to your TSV file containing a list of UniProt entries
71
+ dst_folder = '/home/carruthers/Downloads/GT1_proteome' # Replace with your destination folder
72
+ download_alphafold_structures(tsv_location, dst_folder)
@@ -0,0 +1,320 @@
1
+ import os
2
+ os.environ['DGLBACKEND'] = 'pytorch'
3
+ import torch, dgl
4
+ import pandas as pd
5
+ import torch.nn as nn
6
+ from torchvision import datasets, transforms
7
+ from sklearn.preprocessing import StandardScaler
8
+ from PIL import Image
9
+ import dgl.nn.pytorch as dglnn
10
+ from sklearn.datasets import make_classification
11
+ from .utils import SelectChannels
12
+
13
+ # approach outline
14
+ #
15
+ # 1. Data Preparation:
16
+ # Test Mode: Load MNIST data and generate synthetic gRNA data.
17
+ # Real Data: Load image paths and sequencing data as fractions.
18
+ #
19
+ # 2. Graph Construction:
20
+ # Each well is represented as a graph.
21
+ # Each graph has cell nodes (with image features) and gRNA nodes (with gRNA fraction features).
22
+ # Each cell node is connected to each gRNA node within the same well.
23
+ #
24
+ # 3. Model Training:
25
+ # Use an encoder-decoder architecture with the Graph Transformer model.
26
+ # The encoder processes the cell and gRNA nodes.
27
+ # The decoder outputs the phenotype score for each cell node.
28
+ # The model is trained on all wells (including positive and negative controls).
29
+ # The model learns to score the gRNA in column 1 (negative control) as 0 and the gRNA in column 2 (positive control) as 1 based on the cell features.
30
+ #
31
+ # 4. Model Application:
32
+ # Apply the trained model to all wells to get classification probabilities.
33
+ #
34
+ # 5. Evaluation:
35
+ # Evaluate the model's performance using the control wells.
36
+ #
37
+ # 6. Association Analysis:
38
+ # Analyze the association between gRNAs and the classification scores.
39
+ #
40
+ # The model learns the associations between cell features and phenotype scores based on the controls and then generalizes this learning to the screening wells.
41
+
42
+ # Load MNIST data for testing
43
+ def load_mnist_data():
44
+ transform = transforms.Compose([
45
+ transforms.Resize((28, 28)),
46
+ transforms.ToTensor(),
47
+ transforms.Normalize((0.1307,), (0.3081,))
48
+ ])
49
+ mnist_train = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
50
+ mnist_test = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
51
+ return mnist_train, mnist_test
52
+
53
+ # Generate synthetic gRNA data
54
+ def generate_synthetic_grna_data(n_samples, n_features):
55
+ X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, n_redundant=0, n_classes=2, random_state=42)
56
+ synthetic_data = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(n_features)])
57
+ synthetic_data['label'] = y
58
+ return synthetic_data
59
+
60
+ # Preprocess image
61
+ def preprocess_image(image_path, image_size=224, channels=[1,2,3], normalize=True):
62
+
63
+ if normalize:
64
+ preprocess = transforms.Compose([
65
+ transforms.ToTensor(),
66
+ transforms.CenterCrop(size=(image_size, image_size)),
67
+ SelectChannels(channels),
68
+ transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
69
+ else:
70
+ preprocess = transforms.Compose([
71
+ transforms.ToTensor(),
72
+ transforms.CenterCrop(size=(image_size, image_size)),
73
+ SelectChannels(channels)])
74
+
75
+ image = Image.open(image_path).convert('RGB')
76
+ return preprocess(image)
77
+
78
+ def extract_metadata_from_path(path):
79
+ """
80
+ Extract metadata from the image path.
81
+ The path format is expected to be plate_well_field_objectnumber.png
82
+
83
+ Parameters:
84
+ path (str): The path to the image file.
85
+
86
+ Returns:
87
+ dict: A dictionary with the extracted metadata.
88
+ """
89
+ filename = os.path.basename(path)
90
+ name, ext = os.path.splitext(filename)
91
+
92
+ # Ensure the file has the correct extension
93
+ if ext.lower() != '.png':
94
+ raise ValueError("Expected a .png file")
95
+
96
+ # Split the name by underscores
97
+ parts = name.split('_')
98
+ if len(parts) != 4:
99
+ raise ValueError("Expected filename format: plate_well_field_objectnumber.png")
100
+
101
+ plate, well, field, object_number = parts
102
+
103
+ return {'plate': plate, 'well': well,'field': field, 'object_number': object_number}
104
+
105
+ # Load images
106
+ def load_images(image_paths, image_size=224, channels=[1,2,3], normalize=True):
107
+ images = []
108
+ metadata_list = []
109
+ for path in image_paths:
110
+ image = preprocess_image(path, image_size, channels, normalize)
111
+ images.append(image)
112
+ metadata = extract_metadata_from_path(path) # Extract metadata from image path or database
113
+ metadata_list.append(metadata)
114
+ return torch.stack(images), metadata_list
115
+
116
+ # Normalize sequencing data
117
+ def normalize_sequencing_data(sequencing_data):
118
+ scaler = StandardScaler()
119
+ sequencing_data.iloc[:, 2:] = scaler.fit_transform(sequencing_data.iloc[:, 2:])
120
+ return sequencing_data
121
+
122
+ # Construct graph for each well
123
+ def construct_well_graph(images, image_metadata, grna_data):
124
+ cell_nodes = len(images)
125
+ grna_nodes = grna_data.shape[0]
126
+
127
+ graph = dgl.DGLGraph()
128
+ graph.add_nodes(cell_nodes + grna_nodes)
129
+
130
+ cell_features = torch.stack(images)
131
+ grna_features = torch.tensor(grna_data).float()
132
+
133
+ features = torch.cat([cell_features, grna_features], dim=0)
134
+ graph.ndata['features'] = features
135
+
136
+ for i in range(cell_nodes):
137
+ for j in range(cell_nodes, cell_nodes + grna_nodes):
138
+ graph.add_edge(i, j)
139
+ graph.add_edge(j, i)
140
+
141
+ return graph
142
+
143
+ def create_graphs_for_wells(images, metadata_list, sequencing_data):
144
+ graphs = []
145
+ labels = []
146
+
147
+ for well in sequencing_data['well'].unique():
148
+ well_images = [img for img, meta in zip(images, metadata_list) if meta['well'] == well]
149
+ well_metadata = [meta for meta in metadata_list if meta['well'] == well]
150
+ well_grna_data = sequencing_data[sequencing_data['well'] == well].iloc[:, 2:].values
151
+
152
+ graph = construct_well_graph(well_images, well_metadata, well_grna_data)
153
+ graphs.append(graph)
154
+
155
+ if well_metadata[0]['column'] == 1: # Negative control
156
+ labels.append(0)
157
+ elif well_metadata[0]['column'] == 2: # Positive control
158
+ labels.append(1)
159
+ else:
160
+ labels.append(-1) # Screen wells, will be used for evaluation
161
+
162
+ return graphs, labels
163
+
164
+ # Define Encoder-Decoder Transformer Model
165
+ class Encoder(nn.Module):
166
+ def __init__(self, in_feats, hidden_feats):
167
+ super(Encoder, self).__init__()
168
+ self.conv1 = dglnn.GraphConv(in_feats, hidden_feats)
169
+ self.conv2 = dglnn.GraphConv(hidden_feats, hidden_feats)
170
+
171
+ def forward(self, g, features):
172
+ x = self.conv1(g, features)
173
+ x = torch.relu(x)
174
+ x = self.conv2(g, x)
175
+ x = torch.relu(x)
176
+ return x
177
+
178
+ class Decoder(nn.Module):
179
+ def __init__(self, hidden_feats, out_feats):
180
+ super(Decoder, self).__init__()
181
+ self.linear = nn.Linear(hidden_feats, out_feats)
182
+
183
+ def forward(self, x):
184
+ return self.linear(x)
185
+
186
+ class GraphTransformer(nn.Module):
187
+ def __init__(self, in_feats, hidden_feats, out_feats):
188
+ super(GraphTransformer, self).__init__()
189
+ self.encoder = Encoder(in_feats, hidden_feats)
190
+ self.decoder = Decoder(hidden_feats, out_feats)
191
+
192
+ def forward(self, g, features):
193
+ x = self.encoder(g, features)
194
+ with g.local_scope():
195
+ g.ndata['h'] = x
196
+ hg = dgl.mean_nodes(g, 'h')
197
+ return self.decoder(hg)
198
+
199
+ def train(graphs, labels, model, loss_fn, optimizer, epochs=100):
200
+ for epoch in range(epochs):
201
+ model.train()
202
+ total_loss = 0
203
+ correct = 0
204
+ total = 0
205
+
206
+ for graph, label in zip(graphs, labels):
207
+ if label == -1:
208
+ continue # Skip screen wells for training
209
+
210
+ features = graph.ndata['features']
211
+ logits = model(graph, features)
212
+ loss = loss_fn(logits, torch.tensor([label]))
213
+
214
+ optimizer.zero_grad()
215
+ loss.backward()
216
+ optimizer.step()
217
+
218
+ total_loss += loss.item()
219
+ _, predicted = torch.max(logits, 1)
220
+ correct += (predicted == label).sum().item()
221
+ total += 1
222
+
223
+ accuracy = correct / total if total > 0 else 0
224
+ print(f'Epoch {epoch}, Loss: {total_loss / total:.4f}, Accuracy: {accuracy * 100:.2f}%')
225
+
226
+ def apply_model(graphs, model):
227
+ model.eval()
228
+ results = []
229
+
230
+ with torch.no_grad():
231
+ for graph in graphs:
232
+ features = graph.ndata['features']
233
+ logits = model(graph, features)
234
+ probabilities = torch.softmax(logits, dim=1)
235
+ results.append(probabilities[:, 1].item())
236
+
237
+ return results
238
+
239
+ def analyze_associations(probabilities, sequencing_data):
240
+ # Analyze associations between gRNAs and classification scores
241
+ sequencing_data['positive_prob'] = probabilities
242
+ return sequencing_data.groupby('gRNA').positive_prob.mean().sort_values(ascending=False)
243
+
244
+ def train_graph_transformer(src, lr=0.01, epochs=100, hidden_feats=128, n_classes=2, row_limit=None, image_size=224, channels=[1,2,3], normalize=True, test_mode=False):
245
+ if test_mode:
246
+ # Load MNIST data
247
+ mnist_train, mnist_test = load_mnist_data()
248
+
249
+ # Generate synthetic gRNA data
250
+ synthetic_grna_data = generate_synthetic_grna_data(len(mnist_train), 10) # 10 synthetic features
251
+ sequencing_data = synthetic_grna_data
252
+
253
+ # Load MNIST images and metadata
254
+ images = []
255
+ metadata_list = []
256
+ for idx, (img, label) in enumerate(mnist_train):
257
+ images.append(img)
258
+ metadata_list.append({'index': idx, 'plate': 'plate1', 'well': idx, 'column': label})
259
+ images = torch.stack(images)
260
+
261
+ # Normalize synthetic sequencing data
262
+ sequencing_data = normalize_sequencing_data(sequencing_data)
263
+
264
+ else:
265
+ from .io import _read_and_join_tables
266
+ from .utils import get_db_paths, get_sequencing_paths, correct_paths
267
+
268
+ db_paths = get_db_paths(src)
269
+ seq_paths = get_sequencing_paths(src)
270
+
271
+ if isinstance(src, str):
272
+ src = [src]
273
+
274
+ sequencing_data = pd.DataFrame()
275
+ for seq in seq_paths:
276
+ sequencing_df = pd.read_csv(seq)
277
+ sequencing_data = pd.concat([sequencing_data, sequencing_df], axis=0)
278
+
279
+ all_df = pd.DataFrame()
280
+ for db_path in db_paths:
281
+ df = _read_and_join_tables(db_path, table_names=['png_list'])
282
+ all_df = pd.concat([all_df, df], axis=0)
283
+
284
+ tables = ['png_list']
285
+ all_df = pd.DataFrame()
286
+ image_paths = []
287
+ for i, db_path in enumerate(db_paths):
288
+ df = _read_and_join_tables(db_path, table_names=tables)
289
+ df, image_paths_tmp = correct_paths(df, src[i])
290
+ all_df = pd.concat([all_df, df], axis=0)
291
+ image_paths.extend(image_paths_tmp)
292
+
293
+ if row_limit is not None:
294
+ all_df = all_df.sample(n=row_limit, random_state=42)
295
+
296
+ images, metadata_list = load_images(image_paths, image_size, channels, normalize)
297
+ sequencing_data = normalize_sequencing_data(sequencing_data)
298
+
299
+ # Step 1: Create graphs for each well
300
+ graphs, labels = create_graphs_for_wells(images, metadata_list, sequencing_data)
301
+
302
+ # Step 2: Train Graph Transformer Model
303
+ in_feats = graphs[0].ndata['features'].shape[1]
304
+ model = GraphTransformer(in_feats, hidden_feats, n_classes)
305
+ loss_fn = nn.CrossEntropyLoss()
306
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
307
+
308
+ # Train the model
309
+ train(graphs, labels, model, loss_fn, optimizer, epochs)
310
+
311
+ # Step 3: Apply the model to all wells (including screen wells)
312
+ screen_graphs = [graph for graph, label in zip(graphs, labels) if label == -1]
313
+ probabilities = apply_model(screen_graphs, model)
314
+
315
+ # Step 4: Analyze associations between gRNAs and classification scores
316
+ associations = analyze_associations(probabilities, sequencing_data)
317
+ print("Top associated gRNAs with positive control phenotype:")
318
+ print(associations.head())
319
+
320
+ return model, associations
@@ -0,0 +1,84 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.utils.data import Dataset, DataLoader, TensorDataset
5
+
6
+ # Let's assume that the feature embedding part and the dataset loading part
7
+ # has already been taken care of, and your data is already in the format
8
+ # suitable for PyTorch (i.e., Tensors).
9
+
10
+ class FeatureEmbedder(nn.Module):
11
+ def __init__(self, vocab_sizes, embedding_size):
12
+ super(FeatureEmbedder, self).__init__()
13
+ self.embeddings = nn.ModuleDict({
14
+ key: nn.Embedding(num_embeddings=vocab_size+1,
15
+ embedding_dim=embedding_size,
16
+ padding_idx=vocab_size)
17
+ for key, vocab_size in vocab_sizes.items()
18
+ })
19
+ # Adding the 'visit' embedding
20
+ self.embeddings['visit'] = nn.Parameter(torch.zeros(1, embedding_size))
21
+
22
+ def forward(self, feature_map, max_num_codes):
23
+ # Implementation will depend on how you want to handle sparse data
24
+ # This is just a placeholder
25
+ embeddings = {}
26
+ masks = {}
27
+ for key, tensor in feature_map.items():
28
+ embeddings[key] = self.embeddings[key](tensor.long())
29
+ mask = torch.ones_like(tensor, dtype=torch.float32)
30
+ masks[key] = mask.unsqueeze(-1)
31
+
32
+ # Batch size hardcoded for simplicity in example
33
+ batch_size = 1 # Replace with actual batch size
34
+ embeddings['visit'] = self.embeddings['visit'].expand(batch_size, -1, -1)
35
+ masks['visit'] = torch.ones(batch_size, 1)
36
+
37
+ return embeddings, masks
38
+
39
+ class GraphConvolutionalTransformer(nn.Module):
40
+ def __init__(self, embedding_size=128, num_attention_heads=1, **kwargs):
41
+ super(GraphConvolutionalTransformer, self).__init__()
42
+ # Transformer Blocks
43
+ self.layers = nn.ModuleList([
44
+ nn.TransformerEncoderLayer(
45
+ d_model=embedding_size,
46
+ nhead=num_attention_heads,
47
+ batch_first=True)
48
+ for _ in range(kwargs.get('num_transformer_stack', 3))
49
+ ])
50
+ # Output Layer for Classification
51
+ self.output_layer = nn.Linear(embedding_size, 1)
52
+
53
+ def feedforward(self, features, mask=None, training=None):
54
+ # Implement feedforward logic (placeholder)
55
+ pass
56
+
57
+ def forward(self, embeddings, masks, mask=None, training=False):
58
+ features = embeddings
59
+ attentions = [] # Storing attentions if needed
60
+
61
+ # Pass through each Transformer block
62
+ for layer in self.layers:
63
+ features = layer(features) # Apply transformer encoding here
64
+
65
+ if mask is not None:
66
+ features = features * mask
67
+
68
+ logits = self.output_layer(features[:, 0, :]) # Using the 'visit' embedding for classification
69
+ return logits, attentions
70
+
71
+ # Usage Example
72
+ vocab_sizes = {'dx_ints':3249, 'proc_ints':2210}
73
+ embedding_size = 128
74
+ gct_params = {
75
+ 'embedding_size': embedding_size,
76
+ 'num_transformer_stack': 3,
77
+ 'num_attention_heads': 1
78
+ }
79
+ feature_embedder = FeatureEmbedder(vocab_sizes, embedding_size)
80
+ gct_model = GraphConvolutionalTransformer(**gct_params)
81
+
82
+ # Assume `feature_map` is a dictionary of tensors, and `max_num_codes` is provided
83
+ embeddings, masks = feature_embedder(feature_map, max_num_codes)
84
+ logits, attentions = gct_model(embeddings, masks)
spacr/gui.py ADDED
@@ -0,0 +1,145 @@
1
+ import tkinter as tk
2
+ from tkinter import ttk
3
+ from tkinter import font as tkFont
4
+ from PIL import Image, ImageTk
5
+ import os
6
+ import requests
7
+
8
+ # Import your GUI apps
9
+ from .gui_mask_app import initiate_mask_root
10
+ from .gui_measure_app import initiate_measure_root
11
+ from .annotate_app import initiate_annotation_app_root
12
+ from .mask_app import initiate_mask_app_root
13
+ from .gui_classify_app import initiate_classify_root
14
+
15
+ from .gui_utils import CustomButton, style_text_boxes
16
+
17
+ class MainApp(tk.Tk):
18
+ def __init__(self):
19
+ super().__init__()
20
+ self.title("SpaCr GUI Collection")
21
+ self.geometry("1100x1500")
22
+ self.configure(bg="black")
23
+ #self.attributes('-fullscreen', True)
24
+
25
+ style = ttk.Style()
26
+ style_text_boxes(style)
27
+
28
+ self.gui_apps = {
29
+ "Mask": (initiate_mask_root, "Generate cellpose masks for cells, nuclei and pathogen images."),
30
+ "Measure": (initiate_measure_root, "Measure single object intensity and morphological feature. Crop and save single object image"),
31
+ "Annotate": (initiate_annotation_app_root, "Annotation single object images on a grid. Annotations are saved to database."),
32
+ "Make Masks": (initiate_mask_app_root, "Adjust pre-existing Cellpose models to your specific dataset for improved performance"),
33
+ "Classify": (initiate_classify_root, "Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images.")
34
+ }
35
+
36
+ self.selected_app = tk.StringVar()
37
+ self.create_widgets()
38
+
39
+ def create_widgets(self):
40
+ # Create the menu bar
41
+ #create_menu_bar(self)
42
+ # Create a canvas to hold the selected app and other elements
43
+ self.canvas = tk.Canvas(self, bg="black", highlightthickness=0, width=4000, height=4000)
44
+ self.canvas.grid(row=0, column=0, sticky="nsew")
45
+ self.grid_rowconfigure(0, weight=1)
46
+ self.grid_columnconfigure(0, weight=1)
47
+ # Create a frame inside the canvas to hold the main content
48
+ self.content_frame = tk.Frame(self.canvas, bg="black")
49
+ self.content_frame.pack(fill=tk.BOTH, expand=True)
50
+ # Create startup screen with buttons for each GUI app
51
+ self.create_startup_screen()
52
+
53
+ def create_startup_screen(self):
54
+ self.clear_frame(self.content_frame)
55
+
56
+ # Create a frame for the logo and description
57
+ logo_frame = tk.Frame(self.content_frame, bg="black")
58
+ logo_frame.pack(pady=20, expand=True)
59
+
60
+ # Load the logo image
61
+ if not self.load_logo(logo_frame):
62
+ tk.Label(logo_frame, text="Logo not found", bg="black", fg="white", font=('Arial', 24, tkFont.NORMAL)).pack(padx=10, pady=10)
63
+
64
+ # Add SpaCr text below the logo with padding for sharper text
65
+ tk.Label(logo_frame, text="SpaCr", bg="black", fg="#008080", font=('Arial', 24, tkFont.NORMAL)).pack(padx=10, pady=10)
66
+
67
+ # Create a frame for the buttons and descriptions
68
+ buttons_frame = tk.Frame(self.content_frame, bg="black")
69
+ buttons_frame.pack(pady=10, expand=True, padx=10)
70
+
71
+ for i, (app_name, app_data) in enumerate(self.gui_apps.items()):
72
+ app_func, app_desc = app_data
73
+
74
+ # Create custom button with text
75
+ button = CustomButton(buttons_frame, text=app_name, command=lambda app_name=app_name: self.load_app(app_name))
76
+ button.grid(row=i, column=0, pady=10, padx=10, sticky="w")
77
+
78
+ description_label = tk.Label(buttons_frame, text=app_desc, bg="black", fg="white", wraplength=800, justify="left", font=('Arial', 10, tkFont.NORMAL))
79
+ description_label.grid(row=i, column=1, pady=10, padx=10, sticky="w")
80
+
81
+ # Ensure buttons have a fixed width
82
+ buttons_frame.grid_columnconfigure(0, minsize=150)
83
+ # Ensure descriptions expand as needed
84
+ buttons_frame.grid_columnconfigure(1, weight=1)
85
+
86
+ def load_logo(self, frame):
87
+ def download_image(url, save_path):
88
+ try:
89
+ response = requests.get(url, stream=True)
90
+ response.raise_for_status() # Raise an HTTPError for bad responses
91
+ with open(save_path, 'wb') as f:
92
+ for chunk in response.iter_content(chunk_size=8192):
93
+ f.write(chunk)
94
+ return True
95
+ except requests.exceptions.RequestException as e:
96
+ print(f"Failed to download image from {url}: {e}")
97
+ return False
98
+
99
+ try:
100
+ img_path = os.path.join(os.path.dirname(__file__), 'logo_spacr.png')
101
+ print(f"Trying to load logo from {img_path}")
102
+ logo_image = Image.open(img_path)
103
+ except (FileNotFoundError, Image.UnidentifiedImageError):
104
+ print(f"File {img_path} not found or is not a valid image. Attempting to download from GitHub.")
105
+ if download_image('https://raw.githubusercontent.com/EinarOlafsson/spacr/main/spacr/logo_spacr.png', img_path):
106
+ try:
107
+ print(f"Downloaded file size: {os.path.getsize(img_path)} bytes")
108
+ logo_image = Image.open(img_path)
109
+ except Image.UnidentifiedImageError as e:
110
+ print(f"Downloaded file is not a valid image: {e}")
111
+ return False
112
+ else:
113
+ return False
114
+ except Exception as e:
115
+ print(f"An error occurred while loading the logo: {e}")
116
+ return False
117
+ try:
118
+ logo_image = logo_image.resize((800, 800), Image.Resampling.LANCZOS)
119
+ logo_photo = ImageTk.PhotoImage(logo_image)
120
+ logo_label = tk.Label(frame, image=logo_photo, bg="black")
121
+ logo_label.image = logo_photo # Keep a reference to avoid garbage collection
122
+ logo_label.pack()
123
+ return True
124
+ except Exception as e:
125
+ print(f"An error occurred while processing the logo image: {e}")
126
+ return False
127
+
128
+ def load_app(self, app_name):
129
+ selected_app_func, _ = self.gui_apps[app_name]
130
+ self.clear_frame(self.content_frame)
131
+
132
+ app_frame = tk.Frame(self.content_frame, bg="black")
133
+ app_frame.pack(fill=tk.BOTH, expand=True)
134
+ selected_app_func(app_frame, self.winfo_width(), self.winfo_height())
135
+
136
+ def clear_frame(self, frame):
137
+ for widget in frame.winfo_children():
138
+ widget.destroy()
139
+
140
+ def gui_app():
141
+ app = MainApp()
142
+ app.mainloop()
143
+
144
+ if __name__ == "__main__":
145
+ gui_app()