spacr 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,276 @@
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from collections import defaultdict
6
+ from torch.utils.data import Dataset, DataLoader
7
+ import pandas as pd
8
+ import numpy as np
9
+ import torch.optim as optim
10
+
11
+ def generate_graphs(sequencing, scores, cell_min, gene_min_read):
12
+ # Load and preprocess sequencing (gene) data
13
+ gene_df = pd.read_csv(sequencing)
14
+ gene_df = gene_df.rename(columns={'prc': 'well_id', 'grna': 'gene_id', 'count': 'read_count'})
15
+ # Filter out genes with read counts less than gene_min_read
16
+ gene_df = gene_df[gene_df['read_count'] >= gene_min_read]
17
+ total_reads_per_well = gene_df.groupby('well_id')['read_count'].sum().reset_index(name='total_reads')
18
+ gene_df = gene_df.merge(total_reads_per_well, on='well_id')
19
+ gene_df['well_read_fraction'] = gene_df['read_count'] / gene_df['total_reads']
20
+
21
+ # Load and preprocess cell score data
22
+ cell_df = pd.read_csv(scores)
23
+ cell_df = cell_df[['prcfo', 'prc', 'pred']].rename(columns={'prcfo': 'cell_id', 'prc': 'well_id', 'pred': 'score'})
24
+
25
+ # Create a global mapping of gene IDs to indices
26
+ unique_genes = gene_df['gene_id'].unique()
27
+ gene_id_to_index = {gene_id: index for index, gene_id in enumerate(unique_genes)}
28
+
29
+ graphs = []
30
+ for well_id in pd.unique(gene_df['well_id']):
31
+ well_genes = gene_df[gene_df['well_id'] == well_id]
32
+ well_cells = cell_df[cell_df['well_id'] == well_id]
33
+
34
+ # Skip wells with no cells or genes or with fewer cells than threshold
35
+ if well_cells.empty or well_genes.empty or len(well_cells) < cell_min:
36
+ continue
37
+
38
+ # Initialize gene features tensor with zeros for all unique genes
39
+ gene_features = torch.zeros((len(gene_id_to_index), 1), dtype=torch.float)
40
+
41
+ # Update gene features tensor with well_read_fraction for genes present in this well
42
+ for _, row in well_genes.iterrows():
43
+ gene_index = gene_id_to_index[row['gene_id']]
44
+ gene_features[gene_index] = torch.tensor([[row['well_read_fraction']]])
45
+
46
+ # Prepare cell features (scores)
47
+ cell_features = torch.tensor(well_cells['score'].values, dtype=torch.float).view(-1, 1)
48
+
49
+ num_genes = len(gene_id_to_index)
50
+ num_cells = cell_features.size(0)
51
+ num_nodes = num_genes + num_cells
52
+
53
+ # Create adjacency matrix connecting each cell to all genes in the well
54
+ adj = torch.zeros((num_nodes, num_nodes), dtype=torch.float)
55
+ for _, row in well_genes.iterrows():
56
+ gene_index = gene_id_to_index[row['gene_id']]
57
+ adj[num_genes:, gene_index] = 1
58
+
59
+ graph = {
60
+ 'adjacency_matrix': adj,
61
+ 'gene_features': gene_features,
62
+ 'cell_features': cell_features,
63
+ 'num_cells': num_cells,
64
+ 'num_genes': num_genes
65
+ }
66
+ graphs.append(graph)
67
+
68
+ print(f'Generated dataset with {len(graphs)} graphs')
69
+ return graphs, gene_id_to_index
70
+
71
+ def print_graphs_info(graphs, gene_id_to_index):
72
+ # Invert the gene_id_to_index mapping for easy lookup
73
+ index_to_gene_id = {v: k for k, v in gene_id_to_index.items()}
74
+
75
+ for i, graph in enumerate(graphs, start=1):
76
+ print(f"Graph {i}:")
77
+ num_genes = graph['num_genes']
78
+ num_cells = graph['num_cells']
79
+ gene_features = graph['gene_features']
80
+ cell_features = graph['cell_features']
81
+
82
+ print(f" Number of Genes: {num_genes}")
83
+ print(f" Number of Cells: {num_cells}")
84
+
85
+ # Identify genes present in the graph based on non-zero feature values
86
+ present_genes = [index_to_gene_id[idx] for idx, feature in enumerate(gene_features) if feature.item() > 0]
87
+ print(" Genes present in this Graph:", present_genes)
88
+
89
+ # Display gene features for genes present in the graph
90
+ print(" Gene Features:")
91
+ for gene_id in present_genes:
92
+ idx = gene_id_to_index[gene_id]
93
+ print(f" {gene_id}: {gene_features[idx].item()}")
94
+
95
+ # Display a sample of cell features, for brevity
96
+ print(" Cell Features (sample):")
97
+ for idx, feature in enumerate(cell_features[:min(5, len(cell_features))]):
98
+ print(f" Cell {idx+1}: {feature.item()}")
99
+
100
+ print("-" * 40)
101
+
102
+ class Attention(nn.Module):
103
+ def __init__(self, feature_dim, attn_dim, dropout_rate=0.1):
104
+ super(Attention, self).__init__()
105
+ self.query = nn.Linear(feature_dim, attn_dim)
106
+ self.key = nn.Linear(feature_dim, attn_dim)
107
+ self.value = nn.Linear(feature_dim, feature_dim)
108
+ self.scale = 1.0 / (attn_dim ** 0.5)
109
+ self.dropout = nn.Dropout(dropout_rate)
110
+
111
+ def forward(self, gene_features, cell_features):
112
+ # Queries come from the cell features
113
+ q = self.query(cell_features)
114
+ # Keys and values come from the gene features
115
+ k = self.key(gene_features)
116
+ v = self.value(gene_features)
117
+
118
+ # Compute attention weights
119
+ attn_weights = torch.matmul(q, k.transpose(-2, -1)) * self.scale
120
+ attn_weights = F.softmax(attn_weights, dim=-1)
121
+ # Apply dropout to attention weights
122
+ attn_weights = self.dropout(attn_weights)
123
+
124
+ # Apply attention weights to the values
125
+ attn_output = torch.matmul(attn_weights, v)
126
+
127
+ return attn_output, attn_weights
128
+
129
+ class GraphTransformer(nn.Module):
130
+ def __init__(self, gene_feature_size, cell_feature_size, hidden_dim, output_dim, attn_dim, dropout_rate=0.1):
131
+ super(GraphTransformer, self).__init__()
132
+ self.gene_transform = nn.Linear(gene_feature_size, hidden_dim)
133
+ self.cell_transform = nn.Linear(cell_feature_size, hidden_dim)
134
+ self.dropout = nn.Dropout(dropout_rate)
135
+
136
+ # Attention layer to let each cell attend to all genes
137
+ self.attention = Attention(hidden_dim, attn_dim)
138
+
139
+ # This layer is used to transform the combined features after attention
140
+ self.combine_transform = nn.Linear(2 * hidden_dim, hidden_dim)
141
+
142
+ # Output layer for predicting cell scores, ensuring it matches the number of cells
143
+ self.cell_output = nn.Linear(hidden_dim, output_dim)
144
+
145
+ def forward(self, adjacency_matrix, gene_features, cell_features):
146
+ # Apply initial transformation to gene and cell features
147
+ transformed_gene_features = F.relu(self.gene_transform(gene_features))
148
+ transformed_cell_features = F.relu(self.cell_transform(cell_features))
149
+
150
+ # Incorporate attention mechanism
151
+ attn_output, attn_weights = self.attention(transformed_gene_features, transformed_cell_features)
152
+
153
+ # Combine the transformed cell features with the attention output features
154
+ combined_cell_features = torch.cat((transformed_cell_features, attn_output), dim=1)
155
+
156
+ # Apply dropout here as well
157
+ combined_cell_features = self.dropout(combined_cell_features)
158
+
159
+ combined_cell_features = F.relu(self.combine_transform(combined_cell_features))
160
+
161
+ # Combine gene and cell features for message passing
162
+ combined_features = torch.cat((transformed_gene_features, combined_cell_features), dim=0)
163
+
164
+ # Apply message passing via adjacency matrix multiplication
165
+ message_passed_features = torch.matmul(adjacency_matrix, combined_features)
166
+
167
+ # Predict cell scores from the post-message passed cell features
168
+ cell_scores = self.cell_output(message_passed_features[-cell_features.size(0):])
169
+
170
+ return cell_scores, attn_weights
171
+
172
+ def train_graph_transformer(graphs, lr=0.01, dropout_rate=0.1, weight_decay=0.00001, epochs=100, save_fldr='', acc_threshold = 0.1):
173
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
174
+ model = GraphTransformer(gene_feature_size=1, cell_feature_size=1, hidden_dim=256, output_dim=1, attn_dim=128, dropout_rate=dropout_rate).to(device)
175
+
176
+ criterion = nn.MSELoss()
177
+ #optimizer = torch.optim.Adam(model.parameters(), lr=lr)
178
+ optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
179
+
180
+ training_log = []
181
+
182
+ accumulate_grad_batches=1
183
+ threshold=acc_threshold
184
+
185
+ for epoch in range(epochs):
186
+ model.train()
187
+ total_loss = 0
188
+ total_correct = 0
189
+ total_samples = 0
190
+ optimizer.zero_grad()
191
+ batch_count = 0 # Initialize batch_count
192
+
193
+ for graph in graphs:
194
+ adjacency_matrix = graph['adjacency_matrix'].to(device)
195
+ gene_features = graph['gene_features'].to(device)
196
+ cell_features = graph['cell_features'].to(device)
197
+ num_cells = graph['num_cells']
198
+ predictions, attn_weights = model(adjacency_matrix, gene_features, cell_features)
199
+ predictions = predictions.squeeze()
200
+ true_scores = cell_features[:num_cells, 0]
201
+ loss = criterion(predictions, true_scores) / accumulate_grad_batches
202
+ loss.backward()
203
+
204
+ # Calculate "accuracy"
205
+ with torch.no_grad():
206
+ correct_predictions = (torch.abs(predictions - true_scores) / true_scores <= threshold).sum().item()
207
+ total_correct += correct_predictions
208
+ total_samples += num_cells
209
+
210
+ batch_count += 1 # Increment batch_count
211
+ if batch_count % accumulate_grad_batches == 0 or batch_count == len(graphs):
212
+ optimizer.step()
213
+ optimizer.zero_grad()
214
+
215
+ total_loss += loss.item() * accumulate_grad_batches
216
+
217
+ accuracy = total_correct / total_samples
218
+ training_log.append({"Epoch": epoch+1, "Average Loss": total_loss / len(graphs), "Accuracy": accuracy})
219
+ print(f"Epoch {epoch+1}, Loss: {total_loss / len(graphs)}, Accuracy: {accuracy}", end="\r", flush=True)
220
+
221
+ # Save the training log and model as before
222
+ os.makedirs(save_fldr, exist_ok=True)
223
+ log_path = os.path.join(save_fldr, 'training_log.csv')
224
+ training_log_df = pd.DataFrame(training_log)
225
+ training_log_df.to_csv(log_path, index=False)
226
+ print(f"Training log saved to {log_path}")
227
+
228
+ model_path = os.path.join(save_fldr, 'model.pth')
229
+ torch.save(model.state_dict(), model_path)
230
+ print(f"Model saved to {model_path}")
231
+
232
+ return model
233
+
234
+ def annotate_cells_with_genes(graphs, model, gene_id_to_index):
235
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
236
+ model.to(device)
237
+ model.eval()
238
+ annotated_data = []
239
+
240
+ with torch.no_grad():
241
+ for graph in graphs:
242
+ adjacency_matrix = graph['adjacency_matrix'].to(device)
243
+ gene_features = graph['gene_features'].to(device)
244
+ cell_features = graph['cell_features'].to(device)
245
+
246
+ predictions, attn_weights = model(adjacency_matrix, gene_features, cell_features)
247
+ predictions = np.atleast_1d(predictions.squeeze().cpu().numpy())
248
+ attn_weights = np.atleast_2d(attn_weights.squeeze().cpu().numpy())
249
+
250
+ # This approach assumes all genes in gene_id_to_index are used in the model.
251
+ # Create a list of gene IDs present in this specific graph.
252
+ present_gene_ids = [key for key, value in gene_id_to_index.items() if value < gene_features.size(0)]
253
+
254
+ for cell_idx in range(cell_features.size(0)):
255
+ true_score = cell_features[cell_idx, 0].item()
256
+ predicted_score = predictions[cell_idx]
257
+
258
+ # Find the index of the most probable gene.
259
+ most_probable_gene_idx = attn_weights[cell_idx].argmax()
260
+
261
+ if len(present_gene_ids) > most_probable_gene_idx: # Ensure index is within the range
262
+ most_probable_gene_id = present_gene_ids[most_probable_gene_idx]
263
+ most_probable_gene_score = attn_weights[cell_idx, most_probable_gene_idx] if attn_weights.ndim > 1 else attn_weights[most_probable_gene_idx]
264
+
265
+ annotated_data.append({
266
+ "Cell ID": cell_idx,
267
+ "Most Probable Gene": most_probable_gene_id,
268
+ "Cell Score": true_score,
269
+ "Predicted Cell Score": predicted_score,
270
+ "Probability Score for Highest Gene": most_probable_gene_score
271
+ })
272
+ else:
273
+ # Handle the case where the index is out of bounds - this should not happen but is here for robustness
274
+ print("Error: Gene index out of bounds. This might indicate a mismatch in the model's output.")
275
+
276
+ return pd.DataFrame(annotated_data)
@@ -0,0 +1,84 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.utils.data import Dataset, DataLoader, TensorDataset
5
+
6
+ # Let's assume that the feature embedding part and the dataset loading part
7
+ # has already been taken care of, and your data is already in the format
8
+ # suitable for PyTorch (i.e., Tensors).
9
+
10
+ class FeatureEmbedder(nn.Module):
11
+ def __init__(self, vocab_sizes, embedding_size):
12
+ super(FeatureEmbedder, self).__init__()
13
+ self.embeddings = nn.ModuleDict({
14
+ key: nn.Embedding(num_embeddings=vocab_size+1,
15
+ embedding_dim=embedding_size,
16
+ padding_idx=vocab_size)
17
+ for key, vocab_size in vocab_sizes.items()
18
+ })
19
+ # Adding the 'visit' embedding
20
+ self.embeddings['visit'] = nn.Parameter(torch.zeros(1, embedding_size))
21
+
22
+ def forward(self, feature_map, max_num_codes):
23
+ # Implementation will depend on how you want to handle sparse data
24
+ # This is just a placeholder
25
+ embeddings = {}
26
+ masks = {}
27
+ for key, tensor in feature_map.items():
28
+ embeddings[key] = self.embeddings[key](tensor.long())
29
+ mask = torch.ones_like(tensor, dtype=torch.float32)
30
+ masks[key] = mask.unsqueeze(-1)
31
+
32
+ # Batch size hardcoded for simplicity in example
33
+ batch_size = 1 # Replace with actual batch size
34
+ embeddings['visit'] = self.embeddings['visit'].expand(batch_size, -1, -1)
35
+ masks['visit'] = torch.ones(batch_size, 1)
36
+
37
+ return embeddings, masks
38
+
39
+ class GraphConvolutionalTransformer(nn.Module):
40
+ def __init__(self, embedding_size=128, num_attention_heads=1, **kwargs):
41
+ super(GraphConvolutionalTransformer, self).__init__()
42
+ # Transformer Blocks
43
+ self.layers = nn.ModuleList([
44
+ nn.TransformerEncoderLayer(
45
+ d_model=embedding_size,
46
+ nhead=num_attention_heads,
47
+ batch_first=True)
48
+ for _ in range(kwargs.get('num_transformer_stack', 3))
49
+ ])
50
+ # Output Layer for Classification
51
+ self.output_layer = nn.Linear(embedding_size, 1)
52
+
53
+ def feedforward(self, features, mask=None, training=None):
54
+ # Implement feedforward logic (placeholder)
55
+ pass
56
+
57
+ def forward(self, embeddings, masks, mask=None, training=False):
58
+ features = embeddings
59
+ attentions = [] # Storing attentions if needed
60
+
61
+ # Pass through each Transformer block
62
+ for layer in self.layers:
63
+ features = layer(features) # Apply transformer encoding here
64
+
65
+ if mask is not None:
66
+ features = features * mask
67
+
68
+ logits = self.output_layer(features[:, 0, :]) # Using the 'visit' embedding for classification
69
+ return logits, attentions
70
+
71
+ # Usage Example
72
+ vocab_sizes = {'dx_ints':3249, 'proc_ints':2210}
73
+ embedding_size = 128
74
+ gct_params = {
75
+ 'embedding_size': embedding_size,
76
+ 'num_transformer_stack': 3,
77
+ 'num_attention_heads': 1
78
+ }
79
+ feature_embedder = FeatureEmbedder(vocab_sizes, embedding_size)
80
+ gct_model = GraphConvolutionalTransformer(**gct_params)
81
+
82
+ # Assume `feature_map` is a dictionary of tensors, and `max_num_codes` is provided
83
+ embeddings, masks = feature_embedder(feature_map, max_num_codes)
84
+ logits, attentions = gct_model(embeddings, masks)
@@ -0,0 +1,197 @@
1
+ import sys, ctypes, csv, matplotlib
2
+ import tkinter as tk
3
+ from tkinter import ttk, scrolledtext
4
+ from ttkthemes import ThemedTk
5
+ from matplotlib.figure import Figure
6
+ from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
7
+ from matplotlib.figure import Figure
8
+ matplotlib.use('Agg')
9
+ from tkinter import filedialog
10
+ from multiprocessing import Process, Queue, Value
11
+ import traceback
12
+
13
+ try:
14
+ ctypes.windll.shcore.SetProcessDpiAwareness(True)
15
+ except AttributeError:
16
+ pass
17
+
18
+ from .logger import log_function_call
19
+ from .gui_utils import ScrollableFrame, StdoutRedirector, create_dark_mode, set_dark_style, set_default_font, generate_fields, process_stdout_stderr, safe_literal_eval, clear_canvas, main_thread_update_function
20
+ from .gui_utils import classify_variables, check_classify_gui_settings, train_test_model_wrapper, read_settings_from_csv, update_settings_from_csv
21
+
22
+ thread_control = {"run_thread": None, "stop_requested": False}
23
+
24
+ @log_function_call
25
+ def initiate_abort():
26
+ global thread_control
27
+ if thread_control.get("stop_requested") is not None:
28
+ thread_control["stop_requested"].value = 1
29
+
30
+ if thread_control.get("run_thread") is not None:
31
+ thread_control["run_thread"].join(timeout=5)
32
+ if thread_control["run_thread"].is_alive():
33
+ thread_control["run_thread"].terminate()
34
+ thread_control["run_thread"] = None
35
+
36
+ @log_function_call
37
+ def run_classify_gui(q, fig_queue, stop_requested):
38
+ global vars_dict
39
+ process_stdout_stderr(q)
40
+ try:
41
+ settings = check_classify_gui_settings(vars_dict)
42
+ for key in settings:
43
+ value = settings[key]
44
+ print(key, value, type(value))
45
+ train_test_model_wrapper(settings['src'], settings)
46
+ except Exception as e:
47
+ q.put(f"Error during processing: {e}")
48
+ traceback.print_exc()
49
+ finally:
50
+ stop_requested.value = 1
51
+
52
+ @log_function_call
53
+ def start_process(q, fig_queue):
54
+ global thread_control
55
+ if thread_control.get("run_thread") is not None:
56
+ initiate_abort()
57
+
58
+ stop_requested = Value('i', 0) # multiprocessing shared value for inter-process communication
59
+ thread_control["stop_requested"] = stop_requested
60
+ thread_control["run_thread"] = Process(target=run_classify_gui, args=(q, fig_queue, stop_requested))
61
+ thread_control["run_thread"].start()
62
+
63
+ def import_settings(scrollable_frame):
64
+ global vars_dict
65
+
66
+ csv_file_path = filedialog.askopenfilename(filetypes=[("CSV files", "*.csv")])
67
+ csv_settings = read_settings_from_csv(csv_file_path)
68
+ variables = classify_variables()
69
+ new_settings = update_settings_from_csv(variables, csv_settings)
70
+ vars_dict = generate_fields(new_settings, scrollable_frame)
71
+
72
+ @log_function_call
73
+ def initiate_classify_root(width, height):
74
+ global root, vars_dict, q, canvas, fig_queue, canvas_widget, thread_control
75
+
76
+ theme = 'breeze'
77
+
78
+ if theme in ['clam']:
79
+ root = tk.Tk()
80
+ style = ttk.Style(root)
81
+ style.theme_use(theme) #plastik, clearlooks, elegance, default was clam #alt, breeze, arc
82
+ set_dark_style(style)
83
+ elif theme in ['breeze']:
84
+ root = ThemedTk(theme="breeze")
85
+ style = ttk.Style(root)
86
+ set_dark_style(style)
87
+
88
+ set_default_font(root, font_name="Arial", size=10)
89
+ #root.state('zoomed') # For Windows to maximize the window
90
+ root.attributes('-fullscreen', True)
91
+ root.geometry(f"{width}x{height}")
92
+ root.title("SpaCer: generate masks")
93
+ fig_queue = Queue()
94
+
95
+ def _process_fig_queue():
96
+ global canvas
97
+ try:
98
+ while not fig_queue.empty():
99
+ clear_canvas(canvas)
100
+ fig = fig_queue.get_nowait()
101
+ #set_fig_text_properties(fig, font_size=8)
102
+ for ax in fig.get_axes():
103
+ ax.set_xticks([]) # Remove x-axis ticks
104
+ ax.set_yticks([]) # Remove y-axis ticks
105
+ ax.xaxis.set_visible(False) # Hide the x-axis
106
+ ax.yaxis.set_visible(False) # Hide the y-axis
107
+ #ax.title.set_fontsize(14)
108
+ #disable_interactivity(fig)
109
+ fig.tight_layout()
110
+ fig.set_facecolor('#333333')
111
+ canvas.figure = fig
112
+ fig_width, fig_height = canvas_widget.winfo_width(), canvas_widget.winfo_height()
113
+ fig.set_size_inches(fig_width / fig.dpi, fig_height / fig.dpi, forward=True)
114
+ canvas.draw_idle()
115
+ except Exception as e:
116
+ traceback.print_exc()
117
+ #pass
118
+ finally:
119
+ canvas_widget.after(100, _process_fig_queue)
120
+
121
+ # Process queue for console output
122
+ def _process_console_queue():
123
+ while not q.empty():
124
+ message = q.get_nowait()
125
+ console_output.insert(tk.END, message)
126
+ console_output.see(tk.END)
127
+ console_output.after(100, _process_console_queue)
128
+
129
+ # Vertical container for settings and console
130
+ vertical_container = tk.PanedWindow(root, orient=tk.HORIZONTAL) #VERTICAL
131
+ vertical_container.pack(fill=tk.BOTH, expand=True)
132
+
133
+ # Scrollable Frame for user settings
134
+ scrollable_frame = ScrollableFrame(vertical_container, bg='#333333')
135
+ vertical_container.add(scrollable_frame, stretch="always")
136
+
137
+ # Setup for user input fields (variables)
138
+ variables = classify_variables()
139
+ vars_dict = generate_fields(variables, scrollable_frame)
140
+
141
+ # Horizontal container for Matplotlib figure and the vertical pane (for settings and console)
142
+ horizontal_container = tk.PanedWindow(vertical_container, orient=tk.VERTICAL) #HORIZONTAL
143
+ vertical_container.add(horizontal_container, stretch="always")
144
+
145
+ # Matplotlib figure setup
146
+ figure = Figure(figsize=(30, 4), dpi=100, facecolor='#333333')
147
+ plot = figure.add_subplot(111)
148
+ plot.plot([], []) # This creates an empty plot.
149
+ plot.axis('off')
150
+
151
+ # Embedding the Matplotlib figure in the Tkinter window
152
+ canvas = FigureCanvasTkAgg(figure, master=horizontal_container)
153
+ canvas.get_tk_widget().configure(cursor='arrow', background='#333333', highlightthickness=0)
154
+ #canvas.get_tk_widget().configure(cursor='arrow')
155
+ canvas_widget = canvas.get_tk_widget()
156
+ horizontal_container.add(canvas_widget, stretch="always")
157
+ canvas.draw()
158
+ canvas.figure = figure
159
+
160
+ # Console output setup below the settings
161
+ console_output = scrolledtext.ScrolledText(vertical_container, height=10)
162
+ vertical_container.add(console_output, stretch="always")
163
+
164
+ # Queue and redirection setup for updating console output safely
165
+ q = Queue()
166
+ sys.stdout = StdoutRedirector(console_output)
167
+ sys.stderr = StdoutRedirector(console_output)
168
+
169
+ # This is your GUI setup where you create the Run button
170
+ run_button = ttk.Button(scrollable_frame.scrollable_frame, text="Run",command=lambda: start_process(q, fig_queue))
171
+ run_button.grid(row=40, column=0, pady=10)
172
+
173
+ abort_button = ttk.Button(scrollable_frame.scrollable_frame, text="Abort", command=initiate_abort)
174
+ abort_button.grid(row=40, column=1, pady=10)
175
+
176
+ progress_label = ttk.Label(scrollable_frame.scrollable_frame, text="Processing: 0%", background="#333333", foreground="white")
177
+ progress_label.grid(row=41, column=0, columnspan=2, sticky="ew", pady=(5, 0))
178
+
179
+ # Create the Import Settings button
180
+ import_btn = tk.Button(root, text="Import Settings", command=lambda: import_settings(scrollable_frame))
181
+ import_btn.pack(pady=20)
182
+
183
+ _process_console_queue()
184
+ _process_fig_queue()
185
+ create_dark_mode(root, style, console_output)
186
+
187
+ root.after(100, lambda: main_thread_update_function(root, q, fig_queue, canvas_widget, progress_label))
188
+
189
+ return root, vars_dict
190
+
191
+ def gui_classify():
192
+ global vars_dict, root
193
+ root, vars_dict = initiate_classify_root(1000, 1500)
194
+ root.mainloop()
195
+
196
+ if __name__ == "__main__":
197
+ gui_classify()