snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (208) hide show
  1. snowflake/cortex/_complete.py +19 -0
  2. snowflake/ml/_internal/env_utils.py +64 -21
  3. snowflake/ml/_internal/platform_capabilities.py +87 -0
  4. snowflake/ml/_internal/relax_version_strategy.py +16 -0
  5. snowflake/ml/_internal/telemetry.py +21 -0
  6. snowflake/ml/data/_internal/arrow_ingestor.py +1 -1
  7. snowflake/ml/dataset/dataset.py +0 -1
  8. snowflake/ml/feature_store/feature_store.py +18 -0
  9. snowflake/ml/feature_store/feature_view.py +46 -1
  10. snowflake/ml/fileset/fileset.py +6 -0
  11. snowflake/ml/jobs/__init__.py +21 -0
  12. snowflake/ml/jobs/_utils/constants.py +57 -0
  13. snowflake/ml/jobs/_utils/payload_utils.py +438 -0
  14. snowflake/ml/jobs/_utils/spec_utils.py +296 -0
  15. snowflake/ml/jobs/_utils/types.py +39 -0
  16. snowflake/ml/jobs/decorators.py +71 -0
  17. snowflake/ml/jobs/job.py +113 -0
  18. snowflake/ml/jobs/manager.py +298 -0
  19. snowflake/ml/model/_client/ops/model_ops.py +11 -2
  20. snowflake/ml/model/_client/ops/service_ops.py +1 -11
  21. snowflake/ml/model/_client/sql/service.py +13 -6
  22. snowflake/ml/model/_packager/model_env/model_env.py +45 -28
  23. snowflake/ml/model/_packager/model_handlers/_utils.py +19 -6
  24. snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
  25. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +17 -0
  26. snowflake/ml/model/_packager/model_handlers/keras.py +230 -0
  27. snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -0
  28. snowflake/ml/model/_packager/model_handlers/sklearn.py +28 -3
  29. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +74 -21
  30. snowflake/ml/model/_packager/model_handlers/tensorflow.py +27 -49
  31. snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +48 -0
  32. snowflake/ml/model/_packager/model_meta/model_meta.py +1 -1
  33. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +3 -0
  34. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -1
  36. snowflake/ml/model/_packager/model_task/model_task_utils.py +5 -1
  37. snowflake/ml/model/_signatures/base_handler.py +1 -2
  38. snowflake/ml/model/_signatures/builtins_handler.py +2 -2
  39. snowflake/ml/model/_signatures/core.py +2 -2
  40. snowflake/ml/model/_signatures/numpy_handler.py +11 -12
  41. snowflake/ml/model/_signatures/pandas_handler.py +11 -9
  42. snowflake/ml/model/_signatures/pytorch_handler.py +3 -6
  43. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  44. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
  45. snowflake/ml/model/model_signature.py +25 -4
  46. snowflake/ml/model/type_hints.py +15 -0
  47. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +14 -1
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
  51. snowflake/ml/modeling/cluster/birch.py +6 -3
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
  53. snowflake/ml/modeling/cluster/dbscan.py +6 -3
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
  55. snowflake/ml/modeling/cluster/k_means.py +6 -3
  56. snowflake/ml/modeling/cluster/mean_shift.py +6 -3
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
  58. snowflake/ml/modeling/cluster/optics.py +6 -3
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
  62. snowflake/ml/modeling/compose/column_transformer.py +6 -3
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
  69. snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
  70. snowflake/ml/modeling/covariance/oas.py +6 -3
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
  74. snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
  79. snowflake/ml/modeling/decomposition/pca.py +6 -3
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
  110. snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
  111. snowflake/ml/modeling/impute/knn_imputer.py +6 -3
  112. snowflake/ml/modeling/impute/missing_indicator.py +6 -3
  113. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
  114. snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
  115. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
  116. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
  117. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
  118. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
  119. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
  120. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
  121. snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
  122. snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
  123. snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
  124. snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
  125. snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
  126. snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
  127. snowflake/ml/modeling/linear_model/lars.py +6 -3
  128. snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
  129. snowflake/ml/modeling/linear_model/lasso.py +6 -3
  130. snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
  131. snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
  132. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
  133. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
  134. snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
  135. snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
  136. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
  137. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
  139. snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
  140. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
  141. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
  142. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
  143. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
  144. snowflake/ml/modeling/linear_model/perceptron.py +6 -3
  145. snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
  146. snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
  147. snowflake/ml/modeling/linear_model/ridge.py +6 -3
  148. snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
  149. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
  150. snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
  151. snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
  152. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
  153. snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
  154. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
  155. snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
  156. snowflake/ml/modeling/manifold/isomap.py +6 -3
  157. snowflake/ml/modeling/manifold/mds.py +6 -3
  158. snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
  159. snowflake/ml/modeling/manifold/tsne.py +6 -3
  160. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
  161. snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
  162. snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
  163. snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
  164. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
  165. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
  166. snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
  167. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
  168. snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
  169. snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
  170. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
  171. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
  172. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
  173. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
  174. snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
  175. snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
  176. snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
  177. snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
  178. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
  179. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
  180. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
  181. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
  182. snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
  183. snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
  184. snowflake/ml/modeling/pipeline/pipeline.py +28 -3
  185. snowflake/ml/modeling/preprocessing/polynomial_features.py +8 -5
  186. snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
  187. snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
  188. snowflake/ml/modeling/svm/linear_svc.py +6 -3
  189. snowflake/ml/modeling/svm/linear_svr.py +6 -3
  190. snowflake/ml/modeling/svm/nu_svc.py +6 -3
  191. snowflake/ml/modeling/svm/nu_svr.py +6 -3
  192. snowflake/ml/modeling/svm/svc.py +6 -3
  193. snowflake/ml/modeling/svm/svr.py +6 -3
  194. snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
  195. snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
  196. snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
  197. snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
  198. snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
  199. snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
  200. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
  201. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
  202. snowflake/ml/registry/registry.py +34 -4
  203. snowflake/ml/version.py +1 -1
  204. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/METADATA +81 -33
  205. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/RECORD +208 -196
  206. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/WHEEL +1 -1
  207. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/LICENSE.txt +0 -0
  208. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class DBSCAN(BaseTransformer):
61
64
  r"""Perform DBSCAN clustering from vector array or distance matrix
62
65
  For more details on this class, see [sklearn.cluster.DBSCAN]
@@ -458,7 +461,7 @@ class DBSCAN(BaseTransformer):
458
461
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
459
462
  expected_dtype = "array"
460
463
  else:
461
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
464
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
462
465
  # We can only infer the output types from the input types if the following two statemetns are true:
463
466
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
464
467
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1115,7 +1118,7 @@ class DBSCAN(BaseTransformer):
1115
1118
 
1116
1119
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1117
1120
 
1118
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1121
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1119
1122
  outputs: List[BaseFeatureSpec] = []
1120
1123
  if hasattr(self, "predict"):
1121
1124
  # keep mypy happy
@@ -1123,7 +1126,7 @@ class DBSCAN(BaseTransformer):
1123
1126
  # For classifier, the type of predict is the same as the type of label
1124
1127
  if self._sklearn_object._estimator_type == "classifier":
1125
1128
  # label columns is the desired type for output
1126
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1129
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1127
1130
  # rename the output columns
1128
1131
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1129
1132
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class FeatureAgglomeration(BaseTransformer):
61
64
  r"""Agglomerate features
62
65
  For more details on this class, see [sklearn.cluster.FeatureAgglomeration]
@@ -477,7 +480,7 @@ class FeatureAgglomeration(BaseTransformer):
477
480
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
478
481
  expected_dtype = "array"
479
482
  else:
480
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
483
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
481
484
  # We can only infer the output types from the input types if the following two statemetns are true:
482
485
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
483
486
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1136,7 +1139,7 @@ class FeatureAgglomeration(BaseTransformer):
1136
1139
 
1137
1140
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1138
1141
 
1139
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1142
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1140
1143
  outputs: List[BaseFeatureSpec] = []
1141
1144
  if hasattr(self, "predict"):
1142
1145
  # keep mypy happy
@@ -1144,7 +1147,7 @@ class FeatureAgglomeration(BaseTransformer):
1144
1147
  # For classifier, the type of predict is the same as the type of label
1145
1148
  if self._sklearn_object._estimator_type == "classifier":
1146
1149
  # label columns is the desired type for output
1147
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1150
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1148
1151
  # rename the output columns
1149
1152
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1150
1153
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class KMeans(BaseTransformer):
61
64
  r"""K-Means clustering
62
65
  For more details on this class, see [sklearn.cluster.KMeans]
@@ -481,7 +484,7 @@ class KMeans(BaseTransformer):
481
484
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
482
485
  expected_dtype = "array"
483
486
  else:
484
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
487
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
485
488
  # We can only infer the output types from the input types if the following two statemetns are true:
486
489
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
487
490
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1142,7 +1145,7 @@ class KMeans(BaseTransformer):
1142
1145
 
1143
1146
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1144
1147
 
1145
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1148
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1146
1149
  outputs: List[BaseFeatureSpec] = []
1147
1150
  if hasattr(self, "predict"):
1148
1151
  # keep mypy happy
@@ -1150,7 +1153,7 @@ class KMeans(BaseTransformer):
1150
1153
  # For classifier, the type of predict is the same as the type of label
1151
1154
  if self._sklearn_object._estimator_type == "classifier":
1152
1155
  # label columns is the desired type for output
1153
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1156
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1154
1157
  # rename the output columns
1155
1158
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1156
1159
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MeanShift(BaseTransformer):
61
64
  r"""Mean shift clustering using a flat kernel
62
65
  For more details on this class, see [sklearn.cluster.MeanShift]
@@ -460,7 +463,7 @@ class MeanShift(BaseTransformer):
460
463
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
461
464
  expected_dtype = "array"
462
465
  else:
463
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
466
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
464
467
  # We can only infer the output types from the input types if the following two statemetns are true:
465
468
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
466
469
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1117,7 +1120,7 @@ class MeanShift(BaseTransformer):
1117
1120
 
1118
1121
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1119
1122
 
1120
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1123
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1121
1124
  outputs: List[BaseFeatureSpec] = []
1122
1125
  if hasattr(self, "predict"):
1123
1126
  # keep mypy happy
@@ -1125,7 +1128,7 @@ class MeanShift(BaseTransformer):
1125
1128
  # For classifier, the type of predict is the same as the type of label
1126
1129
  if self._sklearn_object._estimator_type == "classifier":
1127
1130
  # label columns is the desired type for output
1128
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1131
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1129
1132
  # rename the output columns
1130
1133
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1131
1134
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MiniBatchKMeans(BaseTransformer):
61
64
  r"""Mini-Batch K-Means clustering
62
65
  For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
@@ -512,7 +515,7 @@ class MiniBatchKMeans(BaseTransformer):
512
515
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
513
516
  expected_dtype = "array"
514
517
  else:
515
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
518
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
516
519
  # We can only infer the output types from the input types if the following two statemetns are true:
517
520
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
518
521
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1173,7 +1176,7 @@ class MiniBatchKMeans(BaseTransformer):
1173
1176
 
1174
1177
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1175
1178
 
1176
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1179
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1177
1180
  outputs: List[BaseFeatureSpec] = []
1178
1181
  if hasattr(self, "predict"):
1179
1182
  # keep mypy happy
@@ -1181,7 +1184,7 @@ class MiniBatchKMeans(BaseTransformer):
1181
1184
  # For classifier, the type of predict is the same as the type of label
1182
1185
  if self._sklearn_object._estimator_type == "classifier":
1183
1186
  # label columns is the desired type for output
1184
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1187
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1185
1188
  # rename the output columns
1186
1189
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1187
1190
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class OPTICS(BaseTransformer):
61
64
  r"""Estimate clustering structure from vector array
62
65
  For more details on this class, see [sklearn.cluster.OPTICS]
@@ -528,7 +531,7 @@ class OPTICS(BaseTransformer):
528
531
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
529
532
  expected_dtype = "array"
530
533
  else:
531
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
534
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
532
535
  # We can only infer the output types from the input types if the following two statemetns are true:
533
536
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
534
537
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1185,7 +1188,7 @@ class OPTICS(BaseTransformer):
1185
1188
 
1186
1189
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1187
1190
 
1188
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1191
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1189
1192
  outputs: List[BaseFeatureSpec] = []
1190
1193
  if hasattr(self, "predict"):
1191
1194
  # keep mypy happy
@@ -1193,7 +1196,7 @@ class OPTICS(BaseTransformer):
1193
1196
  # For classifier, the type of predict is the same as the type of label
1194
1197
  if self._sklearn_object._estimator_type == "classifier":
1195
1198
  # label columns is the desired type for output
1196
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1199
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1197
1200
  # rename the output columns
1198
1201
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1199
1202
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class SpectralBiclustering(BaseTransformer):
61
64
  r"""Spectral biclustering (Kluger, 2003)
62
65
  For more details on this class, see [sklearn.cluster.SpectralBiclustering]
@@ -466,7 +469,7 @@ class SpectralBiclustering(BaseTransformer):
466
469
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
467
470
  expected_dtype = "array"
468
471
  else:
469
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
472
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
470
473
  # We can only infer the output types from the input types if the following two statemetns are true:
471
474
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
472
475
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1121,7 +1124,7 @@ class SpectralBiclustering(BaseTransformer):
1121
1124
 
1122
1125
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1123
1126
 
1124
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1127
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1125
1128
  outputs: List[BaseFeatureSpec] = []
1126
1129
  if hasattr(self, "predict"):
1127
1130
  # keep mypy happy
@@ -1129,7 +1132,7 @@ class SpectralBiclustering(BaseTransformer):
1129
1132
  # For classifier, the type of predict is the same as the type of label
1130
1133
  if self._sklearn_object._estimator_type == "classifier":
1131
1134
  # label columns is the desired type for output
1132
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1135
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1133
1136
  # rename the output columns
1134
1137
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1135
1138
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class SpectralClustering(BaseTransformer):
61
64
  r"""Apply clustering to a projection of the normalized Laplacian
62
65
  For more details on this class, see [sklearn.cluster.SpectralClustering]
@@ -525,7 +528,7 @@ class SpectralClustering(BaseTransformer):
525
528
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
526
529
  expected_dtype = "array"
527
530
  else:
528
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
531
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
529
532
  # We can only infer the output types from the input types if the following two statemetns are true:
530
533
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
531
534
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1182,7 +1185,7 @@ class SpectralClustering(BaseTransformer):
1182
1185
 
1183
1186
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1184
1187
 
1185
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1188
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1186
1189
  outputs: List[BaseFeatureSpec] = []
1187
1190
  if hasattr(self, "predict"):
1188
1191
  # keep mypy happy
@@ -1190,7 +1193,7 @@ class SpectralClustering(BaseTransformer):
1190
1193
  # For classifier, the type of predict is the same as the type of label
1191
1194
  if self._sklearn_object._estimator_type == "classifier":
1192
1195
  # label columns is the desired type for output
1193
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1196
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1194
1197
  # rename the output columns
1195
1198
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1196
1199
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class SpectralCoclustering(BaseTransformer):
61
64
  r"""Spectral Co-Clustering algorithm (Dhillon, 2001)
62
65
  For more details on this class, see [sklearn.cluster.SpectralCoclustering]
@@ -445,7 +448,7 @@ class SpectralCoclustering(BaseTransformer):
445
448
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
446
449
  expected_dtype = "array"
447
450
  else:
448
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
451
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
449
452
  # We can only infer the output types from the input types if the following two statemetns are true:
450
453
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
451
454
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1100,7 +1103,7 @@ class SpectralCoclustering(BaseTransformer):
1100
1103
 
1101
1104
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1102
1105
 
1103
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1106
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1104
1107
  outputs: List[BaseFeatureSpec] = []
1105
1108
  if hasattr(self, "predict"):
1106
1109
  # keep mypy happy
@@ -1108,7 +1111,7 @@ class SpectralCoclustering(BaseTransformer):
1108
1111
  # For classifier, the type of predict is the same as the type of label
1109
1112
  if self._sklearn_object._estimator_type == "classifier":
1110
1113
  # label columns is the desired type for output
1111
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1114
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1112
1115
  # rename the output columns
1113
1116
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1114
1117
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class ColumnTransformer(BaseTransformer):
61
64
  r"""Applies transformers to columns of an array or pandas DataFrame
62
65
  For more details on this class, see [sklearn.compose.ColumnTransformer]
@@ -487,7 +490,7 @@ class ColumnTransformer(BaseTransformer):
487
490
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
488
491
  expected_dtype = "array"
489
492
  else:
490
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
493
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
491
494
  # We can only infer the output types from the input types if the following two statemetns are true:
492
495
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
493
496
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1144,7 +1147,7 @@ class ColumnTransformer(BaseTransformer):
1144
1147
 
1145
1148
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1146
1149
 
1147
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1150
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1148
1151
  outputs: List[BaseFeatureSpec] = []
1149
1152
  if hasattr(self, "predict"):
1150
1153
  # keep mypy happy
@@ -1152,7 +1155,7 @@ class ColumnTransformer(BaseTransformer):
1152
1155
  # For classifier, the type of predict is the same as the type of label
1153
1156
  if self._sklearn_object._estimator_type == "classifier":
1154
1157
  # label columns is the desired type for output
1155
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1158
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1156
1159
  # rename the output columns
1157
1160
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1158
1161
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class TransformedTargetRegressor(BaseTransformer):
61
64
  r"""Meta-estimator to regress on a transformed target
62
65
  For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
@@ -437,7 +440,7 @@ class TransformedTargetRegressor(BaseTransformer):
437
440
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
438
441
  expected_dtype = "array"
439
442
  else:
440
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
443
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
441
444
  # We can only infer the output types from the input types if the following two statemetns are true:
442
445
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
443
446
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1094,7 +1097,7 @@ class TransformedTargetRegressor(BaseTransformer):
1094
1097
 
1095
1098
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1096
1099
 
1097
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1100
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1098
1101
  outputs: List[BaseFeatureSpec] = []
1099
1102
  if hasattr(self, "predict"):
1100
1103
  # keep mypy happy
@@ -1102,7 +1105,7 @@ class TransformedTargetRegressor(BaseTransformer):
1102
1105
  # For classifier, the type of predict is the same as the type of label
1103
1106
  if self._sklearn_object._estimator_type == "classifier":
1104
1107
  # label columns is the desired type for output
1105
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1108
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1106
1109
  # rename the output columns
1107
1110
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1108
1111
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class EllipticEnvelope(BaseTransformer):
61
64
  r"""An object for detecting outliers in a Gaussian distributed dataset
62
65
  For more details on this class, see [sklearn.covariance.EllipticEnvelope]
@@ -433,7 +436,7 @@ class EllipticEnvelope(BaseTransformer):
433
436
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
434
437
  expected_dtype = "array"
435
438
  else:
436
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
439
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
437
440
  # We can only infer the output types from the input types if the following two statemetns are true:
438
441
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
439
442
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1096,7 +1099,7 @@ class EllipticEnvelope(BaseTransformer):
1096
1099
 
1097
1100
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1098
1101
 
1099
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1102
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1100
1103
  outputs: List[BaseFeatureSpec] = []
1101
1104
  if hasattr(self, "predict"):
1102
1105
  # keep mypy happy
@@ -1104,7 +1107,7 @@ class EllipticEnvelope(BaseTransformer):
1104
1107
  # For classifier, the type of predict is the same as the type of label
1105
1108
  if self._sklearn_object._estimator_type == "classifier":
1106
1109
  # label columns is the desired type for output
1107
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1110
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1108
1111
  # rename the output columns
1109
1112
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1110
1113
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class EmpiricalCovariance(BaseTransformer):
61
64
  r"""Maximum likelihood covariance estimator
62
65
  For more details on this class, see [sklearn.covariance.EmpiricalCovariance]
@@ -407,7 +410,7 @@ class EmpiricalCovariance(BaseTransformer):
407
410
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
408
411
  expected_dtype = "array"
409
412
  else:
410
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
413
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
411
414
  # We can only infer the output types from the input types if the following two statemetns are true:
412
415
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
413
416
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1064,7 +1067,7 @@ class EmpiricalCovariance(BaseTransformer):
1064
1067
 
1065
1068
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1066
1069
 
1067
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1070
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1068
1071
  outputs: List[BaseFeatureSpec] = []
1069
1072
  if hasattr(self, "predict"):
1070
1073
  # keep mypy happy
@@ -1072,7 +1075,7 @@ class EmpiricalCovariance(BaseTransformer):
1072
1075
  # For classifier, the type of predict is the same as the type of label
1073
1076
  if self._sklearn_object._estimator_type == "classifier":
1074
1077
  # label columns is the desired type for output
1075
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1078
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1076
1079
  # rename the output columns
1077
1080
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1078
1081
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class GraphicalLasso(BaseTransformer):
61
64
  r"""Sparse inverse covariance estimation with an l1-penalized estimator
62
65
  For more details on this class, see [sklearn.covariance.GraphicalLasso]
@@ -455,7 +458,7 @@ class GraphicalLasso(BaseTransformer):
455
458
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
456
459
  expected_dtype = "array"
457
460
  else:
458
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
461
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
459
462
  # We can only infer the output types from the input types if the following two statemetns are true:
460
463
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
461
464
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1112,7 +1115,7 @@ class GraphicalLasso(BaseTransformer):
1112
1115
 
1113
1116
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1114
1117
 
1115
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1118
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1116
1119
  outputs: List[BaseFeatureSpec] = []
1117
1120
  if hasattr(self, "predict"):
1118
1121
  # keep mypy happy
@@ -1120,7 +1123,7 @@ class GraphicalLasso(BaseTransformer):
1120
1123
  # For classifier, the type of predict is the same as the type of label
1121
1124
  if self._sklearn_object._estimator_type == "classifier":
1122
1125
  # label columns is the desired type for output
1123
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1126
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1124
1127
  # rename the output columns
1125
1128
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1126
1129
  self._model_signature_dict["predict"] = ModelSignature(