snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +19 -0
- snowflake/ml/_internal/env_utils.py +64 -21
- snowflake/ml/_internal/platform_capabilities.py +87 -0
- snowflake/ml/_internal/relax_version_strategy.py +16 -0
- snowflake/ml/_internal/telemetry.py +21 -0
- snowflake/ml/data/_internal/arrow_ingestor.py +1 -1
- snowflake/ml/dataset/dataset.py +0 -1
- snowflake/ml/feature_store/feature_store.py +18 -0
- snowflake/ml/feature_store/feature_view.py +46 -1
- snowflake/ml/fileset/fileset.py +6 -0
- snowflake/ml/jobs/__init__.py +21 -0
- snowflake/ml/jobs/_utils/constants.py +57 -0
- snowflake/ml/jobs/_utils/payload_utils.py +438 -0
- snowflake/ml/jobs/_utils/spec_utils.py +296 -0
- snowflake/ml/jobs/_utils/types.py +39 -0
- snowflake/ml/jobs/decorators.py +71 -0
- snowflake/ml/jobs/job.py +113 -0
- snowflake/ml/jobs/manager.py +298 -0
- snowflake/ml/model/_client/ops/model_ops.py +11 -2
- snowflake/ml/model/_client/ops/service_ops.py +1 -11
- snowflake/ml/model/_client/sql/service.py +13 -6
- snowflake/ml/model/_packager/model_env/model_env.py +45 -28
- snowflake/ml/model/_packager/model_handlers/_utils.py +19 -6
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +17 -0
- snowflake/ml/model/_packager/model_handlers/keras.py +230 -0
- snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +28 -3
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +74 -21
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +27 -49
- snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +48 -0
- snowflake/ml/model/_packager/model_meta/model_meta.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +3 -0
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -1
- snowflake/ml/model/_packager/model_task/model_task_utils.py +5 -1
- snowflake/ml/model/_signatures/base_handler.py +1 -2
- snowflake/ml/model/_signatures/builtins_handler.py +2 -2
- snowflake/ml/model/_signatures/core.py +2 -2
- snowflake/ml/model/_signatures/numpy_handler.py +11 -12
- snowflake/ml/model/_signatures/pandas_handler.py +11 -9
- snowflake/ml/model/_signatures/pytorch_handler.py +3 -6
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
- snowflake/ml/model/model_signature.py +25 -4
- snowflake/ml/model/type_hints.py +15 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +14 -1
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
- snowflake/ml/modeling/cluster/birch.py +6 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
- snowflake/ml/modeling/cluster/dbscan.py +6 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
- snowflake/ml/modeling/cluster/k_means.py +6 -3
- snowflake/ml/modeling/cluster/mean_shift.py +6 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
- snowflake/ml/modeling/cluster/optics.py +6 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
- snowflake/ml/modeling/compose/column_transformer.py +6 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
- snowflake/ml/modeling/covariance/oas.py +6 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/pca.py +6 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
- snowflake/ml/modeling/impute/knn_imputer.py +6 -3
- snowflake/ml/modeling/impute/missing_indicator.py +6 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/lars.py +6 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/perceptron.py +6 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ridge.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
- snowflake/ml/modeling/manifold/isomap.py +6 -3
- snowflake/ml/modeling/manifold/mds.py +6 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
- snowflake/ml/modeling/manifold/tsne.py +6 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
- snowflake/ml/modeling/pipeline/pipeline.py +28 -3
- snowflake/ml/modeling/preprocessing/polynomial_features.py +8 -5
- snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
- snowflake/ml/modeling/svm/linear_svc.py +6 -3
- snowflake/ml/modeling/svm/linear_svr.py +6 -3
- snowflake/ml/modeling/svm/nu_svc.py +6 -3
- snowflake/ml/modeling/svm/nu_svr.py +6 -3
- snowflake/ml/modeling/svm/svc.py +6 -3
- snowflake/ml/modeling/svm/svr.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
- snowflake/ml/registry/registry.py +34 -4
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/METADATA +81 -33
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/RECORD +208 -196
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/WHEEL +1 -1
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.5.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class RandomForestClassifier(BaseTransformer):
|
61
64
|
r"""A random forest classifier
|
62
65
|
For more details on this class, see [sklearn.ensemble.RandomForestClassifier]
|
@@ -599,7 +602,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
599
602
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
600
603
|
expected_dtype = "array"
|
601
604
|
else:
|
602
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
605
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
603
606
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
604
607
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
605
608
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1260,7 +1263,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
1260
1263
|
|
1261
1264
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1262
1265
|
|
1263
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1266
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1264
1267
|
outputs: List[BaseFeatureSpec] = []
|
1265
1268
|
if hasattr(self, "predict"):
|
1266
1269
|
# keep mypy happy
|
@@ -1268,7 +1271,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
1268
1271
|
# For classifier, the type of predict is the same as the type of label
|
1269
1272
|
if self._sklearn_object._estimator_type == "classifier":
|
1270
1273
|
# label columns is the desired type for output
|
1271
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1274
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1272
1275
|
# rename the output columns
|
1273
1276
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1274
1277
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class RandomForestRegressor(BaseTransformer):
|
61
64
|
r"""A random forest regressor
|
62
65
|
For more details on this class, see [sklearn.ensemble.RandomForestRegressor]
|
@@ -575,7 +578,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
575
578
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
576
579
|
expected_dtype = "array"
|
577
580
|
else:
|
578
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
581
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
579
582
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
580
583
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
581
584
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1232,7 +1235,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
1232
1235
|
|
1233
1236
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1234
1237
|
|
1235
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1238
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1236
1239
|
outputs: List[BaseFeatureSpec] = []
|
1237
1240
|
if hasattr(self, "predict"):
|
1238
1241
|
# keep mypy happy
|
@@ -1240,7 +1243,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
1240
1243
|
# For classifier, the type of predict is the same as the type of label
|
1241
1244
|
if self._sklearn_object._estimator_type == "classifier":
|
1242
1245
|
# label columns is the desired type for output
|
1243
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1246
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1244
1247
|
# rename the output columns
|
1245
1248
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1246
1249
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class StackingRegressor(BaseTransformer):
|
61
64
|
r"""Stack of estimators with a final regressor
|
62
65
|
For more details on this class, see [sklearn.ensemble.StackingRegressor]
|
@@ -462,7 +465,7 @@ class StackingRegressor(BaseTransformer):
|
|
462
465
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
463
466
|
expected_dtype = "array"
|
464
467
|
else:
|
465
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
468
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
466
469
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
467
470
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
468
471
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1121,7 +1124,7 @@ class StackingRegressor(BaseTransformer):
|
|
1121
1124
|
|
1122
1125
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1123
1126
|
|
1124
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1127
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1125
1128
|
outputs: List[BaseFeatureSpec] = []
|
1126
1129
|
if hasattr(self, "predict"):
|
1127
1130
|
# keep mypy happy
|
@@ -1129,7 +1132,7 @@ class StackingRegressor(BaseTransformer):
|
|
1129
1132
|
# For classifier, the type of predict is the same as the type of label
|
1130
1133
|
if self._sklearn_object._estimator_type == "classifier":
|
1131
1134
|
# label columns is the desired type for output
|
1132
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1135
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1133
1136
|
# rename the output columns
|
1134
1137
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1135
1138
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class VotingClassifier(BaseTransformer):
|
61
64
|
r"""Soft Voting/Majority Rule classifier for unfitted estimators
|
62
65
|
For more details on this class, see [sklearn.ensemble.VotingClassifier]
|
@@ -444,7 +447,7 @@ class VotingClassifier(BaseTransformer):
|
|
444
447
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
445
448
|
expected_dtype = "array"
|
446
449
|
else:
|
447
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
450
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
448
451
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
449
452
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
450
453
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1107,7 +1110,7 @@ class VotingClassifier(BaseTransformer):
|
|
1107
1110
|
|
1108
1111
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1109
1112
|
|
1110
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1113
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1111
1114
|
outputs: List[BaseFeatureSpec] = []
|
1112
1115
|
if hasattr(self, "predict"):
|
1113
1116
|
# keep mypy happy
|
@@ -1115,7 +1118,7 @@ class VotingClassifier(BaseTransformer):
|
|
1115
1118
|
# For classifier, the type of predict is the same as the type of label
|
1116
1119
|
if self._sklearn_object._estimator_type == "classifier":
|
1117
1120
|
# label columns is the desired type for output
|
1118
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1121
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1119
1122
|
# rename the output columns
|
1120
1123
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1121
1124
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class VotingRegressor(BaseTransformer):
|
61
64
|
r"""Prediction voting regressor for unfitted estimators
|
62
65
|
For more details on this class, see [sklearn.ensemble.VotingRegressor]
|
@@ -426,7 +429,7 @@ class VotingRegressor(BaseTransformer):
|
|
426
429
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
427
430
|
expected_dtype = "array"
|
428
431
|
else:
|
429
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
432
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
430
433
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
431
434
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
432
435
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1085,7 +1088,7 @@ class VotingRegressor(BaseTransformer):
|
|
1085
1088
|
|
1086
1089
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1087
1090
|
|
1088
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1091
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1089
1092
|
outputs: List[BaseFeatureSpec] = []
|
1090
1093
|
if hasattr(self, "predict"):
|
1091
1094
|
# keep mypy happy
|
@@ -1093,7 +1096,7 @@ class VotingRegressor(BaseTransformer):
|
|
1093
1096
|
# For classifier, the type of predict is the same as the type of label
|
1094
1097
|
if self._sklearn_object._estimator_type == "classifier":
|
1095
1098
|
# label columns is the desired type for output
|
1096
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1099
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1097
1100
|
# rename the output columns
|
1098
1101
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1099
1102
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class GenericUnivariateSelect(BaseTransformer):
|
62
65
|
r"""Univariate feature selector with configurable strategy
|
63
66
|
For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
|
@@ -415,7 +418,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
415
418
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
416
419
|
expected_dtype = "array"
|
417
420
|
else:
|
418
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
421
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
419
422
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
420
423
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
421
424
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1072,7 +1075,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
1072
1075
|
|
1073
1076
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1074
1077
|
|
1075
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1078
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1076
1079
|
outputs: List[BaseFeatureSpec] = []
|
1077
1080
|
if hasattr(self, "predict"):
|
1078
1081
|
# keep mypy happy
|
@@ -1080,7 +1083,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
1080
1083
|
# For classifier, the type of predict is the same as the type of label
|
1081
1084
|
if self._sklearn_object._estimator_type == "classifier":
|
1082
1085
|
# label columns is the desired type for output
|
1083
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1086
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1084
1087
|
# rename the output columns
|
1085
1088
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1086
1089
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class SelectFdr(BaseTransformer):
|
62
65
|
r"""Filter: Select the p-values for an estimated false discovery rate
|
63
66
|
For more details on this class, see [sklearn.feature_selection.SelectFdr]
|
@@ -410,7 +413,7 @@ class SelectFdr(BaseTransformer):
|
|
410
413
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
411
414
|
expected_dtype = "array"
|
412
415
|
else:
|
413
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
416
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
414
417
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
415
418
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
416
419
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1067,7 +1070,7 @@ class SelectFdr(BaseTransformer):
|
|
1067
1070
|
|
1068
1071
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1069
1072
|
|
1070
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1073
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1071
1074
|
outputs: List[BaseFeatureSpec] = []
|
1072
1075
|
if hasattr(self, "predict"):
|
1073
1076
|
# keep mypy happy
|
@@ -1075,7 +1078,7 @@ class SelectFdr(BaseTransformer):
|
|
1075
1078
|
# For classifier, the type of predict is the same as the type of label
|
1076
1079
|
if self._sklearn_object._estimator_type == "classifier":
|
1077
1080
|
# label columns is the desired type for output
|
1078
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1081
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1079
1082
|
# rename the output columns
|
1080
1083
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1081
1084
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class SelectFpr(BaseTransformer):
|
62
65
|
r"""Filter: Select the pvalues below alpha based on a FPR test
|
63
66
|
For more details on this class, see [sklearn.feature_selection.SelectFpr]
|
@@ -410,7 +413,7 @@ class SelectFpr(BaseTransformer):
|
|
410
413
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
411
414
|
expected_dtype = "array"
|
412
415
|
else:
|
413
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
416
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
414
417
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
415
418
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
416
419
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1067,7 +1070,7 @@ class SelectFpr(BaseTransformer):
|
|
1067
1070
|
|
1068
1071
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1069
1072
|
|
1070
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1073
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1071
1074
|
outputs: List[BaseFeatureSpec] = []
|
1072
1075
|
if hasattr(self, "predict"):
|
1073
1076
|
# keep mypy happy
|
@@ -1075,7 +1078,7 @@ class SelectFpr(BaseTransformer):
|
|
1075
1078
|
# For classifier, the type of predict is the same as the type of label
|
1076
1079
|
if self._sklearn_object._estimator_type == "classifier":
|
1077
1080
|
# label columns is the desired type for output
|
1078
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1081
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1079
1082
|
# rename the output columns
|
1080
1083
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1081
1084
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class SelectFwe(BaseTransformer):
|
62
65
|
r"""Filter: Select the p-values corresponding to Family-wise error rate
|
63
66
|
For more details on this class, see [sklearn.feature_selection.SelectFwe]
|
@@ -410,7 +413,7 @@ class SelectFwe(BaseTransformer):
|
|
410
413
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
411
414
|
expected_dtype = "array"
|
412
415
|
else:
|
413
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
416
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
414
417
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
415
418
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
416
419
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1067,7 +1070,7 @@ class SelectFwe(BaseTransformer):
|
|
1067
1070
|
|
1068
1071
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1069
1072
|
|
1070
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1073
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1071
1074
|
outputs: List[BaseFeatureSpec] = []
|
1072
1075
|
if hasattr(self, "predict"):
|
1073
1076
|
# keep mypy happy
|
@@ -1075,7 +1078,7 @@ class SelectFwe(BaseTransformer):
|
|
1075
1078
|
# For classifier, the type of predict is the same as the type of label
|
1076
1079
|
if self._sklearn_object._estimator_type == "classifier":
|
1077
1080
|
# label columns is the desired type for output
|
1078
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1081
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1079
1082
|
# rename the output columns
|
1080
1083
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1081
1084
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class SelectKBest(BaseTransformer):
|
62
65
|
r"""Select features according to the k highest scores
|
63
66
|
For more details on this class, see [sklearn.feature_selection.SelectKBest]
|
@@ -411,7 +414,7 @@ class SelectKBest(BaseTransformer):
|
|
411
414
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
412
415
|
expected_dtype = "array"
|
413
416
|
else:
|
414
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
417
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
415
418
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
416
419
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
417
420
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1068,7 +1071,7 @@ class SelectKBest(BaseTransformer):
|
|
1068
1071
|
|
1069
1072
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1070
1073
|
|
1071
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1074
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1072
1075
|
outputs: List[BaseFeatureSpec] = []
|
1073
1076
|
if hasattr(self, "predict"):
|
1074
1077
|
# keep mypy happy
|
@@ -1076,7 +1079,7 @@ class SelectKBest(BaseTransformer):
|
|
1076
1079
|
# For classifier, the type of predict is the same as the type of label
|
1077
1080
|
if self._sklearn_object._estimator_type == "classifier":
|
1078
1081
|
# label columns is the desired type for output
|
1079
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1082
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1080
1083
|
# rename the output columns
|
1081
1084
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1082
1085
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -38,6 +38,7 @@ from snowflake.ml.model.model_signature import (
|
|
38
38
|
FeatureSpec,
|
39
39
|
ModelSignature,
|
40
40
|
_infer_signature,
|
41
|
+
_truncate_data,
|
41
42
|
_rename_signature_with_snowflake_identifiers,
|
42
43
|
)
|
43
44
|
|
@@ -58,6 +59,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
58
59
|
|
59
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
60
61
|
|
62
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
63
|
+
|
61
64
|
class SelectPercentile(BaseTransformer):
|
62
65
|
r"""Select features according to a percentile of the highest scores
|
63
66
|
For more details on this class, see [sklearn.feature_selection.SelectPercentile]
|
@@ -410,7 +413,7 @@ class SelectPercentile(BaseTransformer):
|
|
410
413
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
411
414
|
expected_dtype = "array"
|
412
415
|
else:
|
413
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
416
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
414
417
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
415
418
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
416
419
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1067,7 +1070,7 @@ class SelectPercentile(BaseTransformer):
|
|
1067
1070
|
|
1068
1071
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1069
1072
|
|
1070
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1073
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1071
1074
|
outputs: List[BaseFeatureSpec] = []
|
1072
1075
|
if hasattr(self, "predict"):
|
1073
1076
|
# keep mypy happy
|
@@ -1075,7 +1078,7 @@ class SelectPercentile(BaseTransformer):
|
|
1075
1078
|
# For classifier, the type of predict is the same as the type of label
|
1076
1079
|
if self._sklearn_object._estimator_type == "classifier":
|
1077
1080
|
# label columns is the desired type for output
|
1078
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1081
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1079
1082
|
# rename the output columns
|
1080
1083
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1081
1084
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class SequentialFeatureSelector(BaseTransformer):
|
61
64
|
r"""Transformer that performs Sequential Feature Selection
|
62
65
|
For more details on this class, see [sklearn.feature_selection.SequentialFeatureSelector]
|
@@ -472,7 +475,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
472
475
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
473
476
|
expected_dtype = "array"
|
474
477
|
else:
|
475
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
478
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
476
479
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
477
480
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
478
481
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1129,7 +1132,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1129
1132
|
|
1130
1133
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1131
1134
|
|
1132
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1135
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1133
1136
|
outputs: List[BaseFeatureSpec] = []
|
1134
1137
|
if hasattr(self, "predict"):
|
1135
1138
|
# keep mypy happy
|
@@ -1137,7 +1140,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1137
1140
|
# For classifier, the type of predict is the same as the type of label
|
1138
1141
|
if self._sklearn_object._estimator_type == "classifier":
|
1139
1142
|
# label columns is the desired type for output
|
1140
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1143
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1141
1144
|
# rename the output columns
|
1142
1145
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1143
1146
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class VarianceThreshold(BaseTransformer):
|
61
64
|
r"""Feature selector that removes all low-variance features
|
62
65
|
For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
|
@@ -403,7 +406,7 @@ class VarianceThreshold(BaseTransformer):
|
|
403
406
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
404
407
|
expected_dtype = "array"
|
405
408
|
else:
|
406
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
409
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
407
410
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
408
411
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
409
412
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1060,7 +1063,7 @@ class VarianceThreshold(BaseTransformer):
|
|
1060
1063
|
|
1061
1064
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1062
1065
|
|
1063
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1066
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1064
1067
|
outputs: List[BaseFeatureSpec] = []
|
1065
1068
|
if hasattr(self, "predict"):
|
1066
1069
|
# keep mypy happy
|
@@ -1068,7 +1071,7 @@ class VarianceThreshold(BaseTransformer):
|
|
1068
1071
|
# For classifier, the type of predict is the same as the type of label
|
1069
1072
|
if self._sklearn_object._estimator_type == "classifier":
|
1070
1073
|
# label columns is the desired type for output
|
1071
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1074
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1072
1075
|
# rename the output columns
|
1073
1076
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1074
1077
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replac
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GaussianProcessClassifier(BaseTransformer):
|
61
64
|
r"""Gaussian process classification (GPC) based on Laplace approximation
|
62
65
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
|
@@ -496,7 +499,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
496
499
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
497
500
|
expected_dtype = "array"
|
498
501
|
else:
|
499
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
502
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
500
503
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
501
504
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
502
505
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1157,7 +1160,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
1157
1160
|
|
1158
1161
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1159
1162
|
|
1160
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1163
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1161
1164
|
outputs: List[BaseFeatureSpec] = []
|
1162
1165
|
if hasattr(self, "predict"):
|
1163
1166
|
# keep mypy happy
|
@@ -1165,7 +1168,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
1165
1168
|
# For classifier, the type of predict is the same as the type of label
|
1166
1169
|
if self._sklearn_object._estimator_type == "classifier":
|
1167
1170
|
# label columns is the desired type for output
|
1168
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1171
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1169
1172
|
# rename the output columns
|
1170
1173
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1171
1174
|
self._model_signature_dict["predict"] = ModelSignature(
|