snowflake-ml-python 1.5.3__py3-none-any.whl → 1.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. snowflake/cortex/__init__.py +2 -1
  2. snowflake/cortex/_complete.py +224 -21
  3. snowflake/cortex/_extract_answer.py +0 -1
  4. snowflake/cortex/_sentiment.py +0 -1
  5. snowflake/cortex/_summarize.py +0 -1
  6. snowflake/cortex/_translate.py +0 -1
  7. snowflake/cortex/_util.py +12 -85
  8. snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
  9. snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
  10. snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
  11. snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
  12. snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
  13. snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
  14. snowflake/ml/_internal/telemetry.py +26 -0
  15. snowflake/ml/_internal/utils/identifier.py +14 -0
  16. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
  17. snowflake/ml/dataset/dataset.py +39 -20
  18. snowflake/ml/feature_store/feature_store.py +440 -243
  19. snowflake/ml/feature_store/feature_view.py +61 -9
  20. snowflake/ml/fileset/embedded_stage_fs.py +25 -21
  21. snowflake/ml/fileset/fileset.py +2 -2
  22. snowflake/ml/fileset/snowfs.py +4 -15
  23. snowflake/ml/fileset/stage_fs.py +6 -8
  24. snowflake/ml/lineage/__init__.py +3 -0
  25. snowflake/ml/lineage/lineage_node.py +139 -0
  26. snowflake/ml/model/_client/model/model_impl.py +47 -14
  27. snowflake/ml/model/_client/model/model_version_impl.py +82 -2
  28. snowflake/ml/model/_client/ops/model_ops.py +77 -5
  29. snowflake/ml/model/_client/sql/model.py +1 -0
  30. snowflake/ml/model/_client/sql/model_version.py +45 -2
  31. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
  32. snowflake/ml/model/_model_composer/model_composer.py +5 -4
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
  34. snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
  35. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
  36. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +2 -2
  37. snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
  38. snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
  39. snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
  40. snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
  41. snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
  42. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
  43. snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
  44. snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
  45. snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
  46. snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
  47. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
  48. snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
  49. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
  50. snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
  51. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  52. snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
  53. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  54. snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
  55. snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
  56. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
  57. snowflake/ml/model/_packager/model_packager.py +9 -4
  58. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  59. snowflake/ml/model/custom_model.py +22 -2
  60. snowflake/ml/model/type_hints.py +73 -4
  61. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -0
  62. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +1 -0
  63. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +6 -0
  64. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +1 -0
  65. snowflake/ml/modeling/cluster/affinity_propagation.py +4 -2
  66. snowflake/ml/modeling/cluster/agglomerative_clustering.py +4 -2
  67. snowflake/ml/modeling/cluster/birch.py +4 -2
  68. snowflake/ml/modeling/cluster/bisecting_k_means.py +4 -2
  69. snowflake/ml/modeling/cluster/dbscan.py +4 -2
  70. snowflake/ml/modeling/cluster/feature_agglomeration.py +4 -2
  71. snowflake/ml/modeling/cluster/k_means.py +4 -2
  72. snowflake/ml/modeling/cluster/mean_shift.py +4 -2
  73. snowflake/ml/modeling/cluster/mini_batch_k_means.py +4 -2
  74. snowflake/ml/modeling/cluster/optics.py +4 -2
  75. snowflake/ml/modeling/cluster/spectral_biclustering.py +4 -2
  76. snowflake/ml/modeling/cluster/spectral_clustering.py +4 -2
  77. snowflake/ml/modeling/cluster/spectral_coclustering.py +4 -2
  78. snowflake/ml/modeling/compose/column_transformer.py +4 -2
  79. snowflake/ml/modeling/covariance/elliptic_envelope.py +4 -2
  80. snowflake/ml/modeling/covariance/empirical_covariance.py +4 -2
  81. snowflake/ml/modeling/covariance/graphical_lasso.py +4 -2
  82. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +4 -2
  83. snowflake/ml/modeling/covariance/ledoit_wolf.py +4 -2
  84. snowflake/ml/modeling/covariance/min_cov_det.py +4 -2
  85. snowflake/ml/modeling/covariance/oas.py +4 -2
  86. snowflake/ml/modeling/covariance/shrunk_covariance.py +4 -2
  87. snowflake/ml/modeling/decomposition/dictionary_learning.py +4 -2
  88. snowflake/ml/modeling/decomposition/factor_analysis.py +4 -2
  89. snowflake/ml/modeling/decomposition/fast_ica.py +4 -2
  90. snowflake/ml/modeling/decomposition/incremental_pca.py +4 -2
  91. snowflake/ml/modeling/decomposition/kernel_pca.py +4 -2
  92. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +4 -2
  93. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +4 -2
  94. snowflake/ml/modeling/decomposition/pca.py +4 -2
  95. snowflake/ml/modeling/decomposition/sparse_pca.py +4 -2
  96. snowflake/ml/modeling/decomposition/truncated_svd.py +4 -2
  97. snowflake/ml/modeling/ensemble/isolation_forest.py +4 -2
  98. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +4 -2
  99. snowflake/ml/modeling/feature_selection/variance_threshold.py +4 -2
  100. snowflake/ml/modeling/impute/iterative_imputer.py +4 -2
  101. snowflake/ml/modeling/impute/knn_imputer.py +4 -2
  102. snowflake/ml/modeling/impute/missing_indicator.py +4 -2
  103. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +4 -2
  104. snowflake/ml/modeling/kernel_approximation/nystroem.py +4 -2
  105. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +4 -2
  106. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +4 -2
  107. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +4 -2
  108. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +4 -2
  109. snowflake/ml/modeling/manifold/isomap.py +4 -2
  110. snowflake/ml/modeling/manifold/mds.py +4 -2
  111. snowflake/ml/modeling/manifold/spectral_embedding.py +4 -2
  112. snowflake/ml/modeling/manifold/tsne.py +4 -2
  113. snowflake/ml/modeling/metrics/ranking.py +3 -0
  114. snowflake/ml/modeling/metrics/regression.py +3 -0
  115. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +4 -2
  116. snowflake/ml/modeling/mixture/gaussian_mixture.py +4 -2
  117. snowflake/ml/modeling/neighbors/kernel_density.py +4 -2
  118. snowflake/ml/modeling/neighbors/local_outlier_factor.py +4 -2
  119. snowflake/ml/modeling/neighbors/nearest_neighbors.py +4 -2
  120. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +4 -2
  121. snowflake/ml/modeling/pipeline/pipeline.py +1 -0
  122. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +43 -9
  123. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +36 -8
  124. snowflake/ml/modeling/preprocessing/polynomial_features.py +4 -2
  125. snowflake/ml/registry/_manager/model_manager.py +16 -3
  126. snowflake/ml/version.py +1 -1
  127. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +35 -7
  128. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/RECORD +131 -127
  129. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
  130. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
  131. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.5.3
3
+ Version: 1.5.4
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -250,7 +250,7 @@ Requires-Dist: s3fs <2024,>=2022.11
250
250
  Requires-Dist: scikit-learn <1.4,>=1.2.1
251
251
  Requires-Dist: scipy <2,>=1.9
252
252
  Requires-Dist: snowflake-connector-python[pandas] <4,>=3.5.0
253
- Requires-Dist: snowflake-snowpark-python <2,>=1.15.0
253
+ Requires-Dist: snowflake-snowpark-python <2,>=1.17.0
254
254
  Requires-Dist: sqlparse <1,>=0.4
255
255
  Requires-Dist: typing-extensions <5,>=4.1.0
256
256
  Requires-Dist: xgboost <2,>=1.7.3
@@ -264,7 +264,7 @@ Requires-Dist: sentencepiece <1,>=0.1.95 ; extra == 'all'
264
264
  Requires-Dist: shap ==0.42.1 ; extra == 'all'
265
265
  Requires-Dist: tensorflow <3,>=2.10 ; extra == 'all'
266
266
  Requires-Dist: tokenizers <1,>=0.10 ; extra == 'all'
267
- Requires-Dist: torch <3,>=2.0.1 ; extra == 'all'
267
+ Requires-Dist: torch <2.3.0,>=2.0.1 ; extra == 'all'
268
268
  Requires-Dist: torchdata <1,>=0.4 ; extra == 'all'
269
269
  Requires-Dist: transformers <5,>=4.32.1 ; extra == 'all'
270
270
  Provides-Extra: catboost
@@ -280,7 +280,7 @@ Requires-Dist: shap ==0.42.1 ; extra == 'shap'
280
280
  Provides-Extra: tensorflow
281
281
  Requires-Dist: tensorflow <3,>=2.10 ; extra == 'tensorflow'
282
282
  Provides-Extra: torch
283
- Requires-Dist: torch <3,>=2.0.1 ; extra == 'torch'
283
+ Requires-Dist: torch <2.3.0,>=2.0.1 ; extra == 'torch'
284
284
  Requires-Dist: torchdata <1,>=0.4 ; extra == 'torch'
285
285
  Provides-Extra: transformers
286
286
  Requires-Dist: sentence-transformers <3,>=2.2.2 ; extra == 'transformers'
@@ -373,7 +373,37 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
373
373
 
374
374
  # Release History
375
375
 
376
- ## 1.5.3
376
+ ## 1.5.4
377
+
378
+ ### Bug Fixes
379
+
380
+ - Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
381
+ - Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
382
+ desc, refresh_freq and warehouse for draft feature views.
383
+ - Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
384
+ - Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
385
+
386
+ ### New Features
387
+
388
+ - Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
389
+ - Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
390
+ - Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
391
+ - Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
392
+ models. Enable model inference methods with table functions with vectorized process methods in registered models.
393
+ - Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
394
+ `list_feature_views()`.
395
+ - Feature Store: `update_feature_view()` supports updating description.
396
+ - Feature Store: add new API `refresh_feature_view()`.
397
+ - Feature Store: add new API `get_refresh_history()`.
398
+ - Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
399
+ - Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
400
+ - Feature Store: `update_feature_view()` supports updating description.
401
+ - Feature Store: add new API `refresh_feature_view()`.
402
+ - Feature Store: add new API `get_refresh_history()`.
403
+ - Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
404
+ - Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
405
+
406
+ ## 1.5.3 (06-17-2024)
377
407
 
378
408
  ### Bug Fixes
379
409
 
@@ -382,8 +412,6 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
382
412
  - Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
383
413
  of `ModelVersion.run` method in Stored Procedure.
384
414
 
385
- ### Behavior Changes
386
-
387
415
  ### New Features
388
416
 
389
417
  - Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
@@ -1,31 +1,32 @@
1
- snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
- snowflake/cortex/_complete.py,sha256=Hg5JXtFGYqStCi6BDvgaIPJfDWhX9GDNs2iGTrscJBc,2361
3
- snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
- snowflake/cortex/_sentiment.py,sha256=hY-GVxLnWuRBSG16kMo-I8r-pDiFT6j9ZZhFUECgtFk,1246
1
+ snowflake/cortex/__init__.py,sha256=CDjClvxuVO5feVi3EgdYMU0RIO89UO72g-hqjvfPiI4,400
2
+ snowflake/cortex/_complete.py,sha256=79WiddAYdMs8m2tHnRJ3OV01WdxYu6yZsW8PEuvsh5Y,10246
3
+ snowflake/cortex/_extract_answer.py,sha256=-ZvpnI6i4QmCkgxIEC8QGPlOQzKMVO5abgouXMf6wTw,1301
4
+ snowflake/cortex/_sentiment.py,sha256=yhV4T9GW-tcxkg_OYd-hbYHsbjHIYzRjbsmYuzXMPzU,1189
5
5
  snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
6
- snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
7
- snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
8
- snowflake/cortex/_util.py,sha256=6KVmrFZQrY1myI8VxtbDPBjqz39jVbFdQx8UbVVtpJg,4644
9
- snowflake/ml/version.py,sha256=bfI2NojWQ0mSVWuSsEep7KAW_E2qdiO7VDpCL3cN5Bs,16
6
+ snowflake/cortex/_summarize.py,sha256=raDFAb31penzEtOtqQv8wQS69MsRt_B75VQ5cDHegbE,1018
7
+ snowflake/cortex/_translate.py,sha256=QqngDJ9ijB5wCObSVWMfY2FQzk4S02M85PEAKr_Alrk,1363
8
+ snowflake/cortex/_util.py,sha256=5G8N3iLlyEN_cqRKEabW2em6x8y768XFxrcFurrDMX0,2111
9
+ snowflake/ml/version.py,sha256=iIDybYLB9gFebNDKdRllkCJ7KAxZctaCoWfqMEK3Qu4,16
10
10
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
11
11
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
12
12
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
13
13
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
14
14
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
15
- snowflake/ml/_internal/telemetry.py,sha256=E8AEeXgmSKzYx709WYMaTBMWF8VAr259cgmsIFs3IAw,22820
15
+ snowflake/ml/_internal/telemetry.py,sha256=2X9qQWkxKVTp0JKkgQr7tzCpu_Qeiy9p9zrRpnACckE,23843
16
16
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
17
17
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
18
- snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
19
- snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
20
- snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
18
+ snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=JAkZmI9szd3BeAB6bpSlfCWAmQOSGKVO3zrV_0QP6-I,5448
19
+ snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=362M5dCE4wYWEsHgWaIIvIu-SfUt42skb3bJVSr--5o,14883
20
+ snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=YngCY0U-m2adQai0XCS8jsJ9COIrMrtKJOLbjXfFeq8,9318
21
21
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
22
- snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=wZTPKZRJSYsfeTs0vDL8r4bFFSP_9ob8XinMgPi63RM,762
22
+ snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
23
23
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=eMgsEfIYFQesK_pqLIsyxRZojz8Ke9DTlA5ni60RLv4,5453
24
24
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
25
25
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
26
26
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
27
- snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
27
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=pHwY7f5c6JH-RZDtkiWy8nICHKy4T5vvWs5cq5rPD_4,1030
28
28
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
29
+ snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOaGGRBmPJmkCHK-a1o2e3c3PI,206
29
30
  snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
30
31
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
31
32
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
@@ -33,7 +34,7 @@ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vm
33
34
  snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
34
35
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-eO01yjER2qGYvaS-2SD9oxmWN52vrk3VEWlduHZO78,3415
35
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
- snowflake/ml/_internal/utils/identifier.py,sha256=7dV6dN_KAoupT-xJS8f19K69GVWa4069RmKVWMuWH9k,10926
37
+ snowflake/ml/_internal/utils/identifier.py,sha256=jlvTl2mjzvuMgNgTU2jBlfQ6TR21t3Q1C-mujeO-Rtc,11375
37
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
38
39
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
39
40
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
@@ -43,43 +44,45 @@ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3X
43
44
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
44
45
  snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
45
46
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
46
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
47
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
47
48
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
48
49
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28XICncHGwOIzs8rLDI,3729
49
50
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
50
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
51
52
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
52
53
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
53
- snowflake/ml/dataset/dataset.py,sha256=6_4WPEw0SxU0O_2ock3UmcYjLU51Drmu7VRQQ8vU1gg,21117
54
+ snowflake/ml/dataset/dataset.py,sha256=bRaUgiqSSHfVsET6-rm60jSdEf7ZDAKgFD-Zqsquh_c,21596
54
55
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
55
56
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
56
57
  snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
57
58
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
58
59
  snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
59
60
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
60
- snowflake/ml/feature_store/feature_store.py,sha256=Xy5wnUanl1AsfBXyIoPGPlwugE6h-Vf9QmeYqyPYH84,78694
61
- snowflake/ml/feature_store/feature_view.py,sha256=6D4hB0v2jmLLjBlpiIVkSUXdSXxqqozf0XLc8EZ3bys,19332
62
- snowflake/ml/fileset/embedded_stage_fs.py,sha256=90nCRvRm2EZpDlx-Hu-NLI5s9fYbEFHdf0ggwjdrkQM,5919
63
- snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
61
+ snowflake/ml/feature_store/feature_store.py,sha256=RfwlPLFJgYlx3mX2PBdztFdUabpLQw4AU5UjmrC-45k,87179
62
+ snowflake/ml/feature_store/feature_view.py,sha256=YcAKOv2B8jZpEJVzIObMdiU1s8WA7Lfpzm0zxH3Oers,21200
63
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=AYa0vRiqQTvi1Z86tAeID_Mxl3kgxbhi35A0o_-DJF0,6003
64
+ snowflake/ml/fileset/fileset.py,sha256=yfYFZL2b1vYqL0zs6m9_hmjzyP3TAGTINNz6hF1yalQ,26196
64
65
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
65
66
  snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
66
- snowflake/ml/fileset/snowfs.py,sha256=AGP0Uj-59T6B40dQQHhnc_46gpmugz6Xkxp505SyMkw,5392
67
- snowflake/ml/fileset/stage_fs.py,sha256=IebRjgPlJdwdAlpg_99DGbgIBD3XJb2p9N36O0tU3wI,19532
67
+ snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
68
+ snowflake/ml/fileset/stage_fs.py,sha256=Xo7oijoVAbpdWNF_bXsxeXJ-6DBwQ15lrUY7-kJTo4A,19478
68
69
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
69
70
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
71
+ snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
72
+ snowflake/ml/lineage/lineage_node.py,sha256=7GwA7XZzKt93XVo1RyzjOQLev3Phs0afAo_v2EpD20k,5535
70
73
  snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
71
74
  snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
72
- snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
75
+ snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
73
76
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
74
77
  snowflake/ml/model/model_signature.py,sha256=ZnkgY-6BL7gNGRPXJTgK0EbZ6RQ7hDJjiDxsPNXHKi4,29453
75
- snowflake/ml/model/type_hints.py,sha256=ZHnhoAV_oAAPz3QmXtzrrpstVyame48-KgTpyIHGM6k,12726
76
- snowflake/ml/model/_client/model/model_impl.py,sha256=hVtAHejB2pTDquWs4XNS7E7XZS1DI7nH7EILbd0btbc,13655
77
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=Li9JtKwZvNqKjpAQM4qA52-F0fu-HASt0RWPDEJGFPE,17994
78
+ snowflake/ml/model/type_hints.py,sha256=MSQ0ZnrIZ4ViCrihE8JE-PeQ5qG2BE9CiKzQ1n8ZTfk,14040
79
+ snowflake/ml/model/_client/model/model_impl.py,sha256=QC3h0v0kfbfUIia2z6f0AE2b1SRI8OFxxhOxd1wJeOI,15036
80
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=g64uvaCbowz4b-b53DRzV-lX9KJA9bTiW5GvpqBHRH8,20850
78
81
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
79
- snowflake/ml/model/_client/ops/model_ops.py,sha256=YWhR_MVvp8bCFJ_yvSHp0fRe9ZCWSAmFCvZUNLqs7Ko,30615
82
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=-QMtGhdi4qdmro7Dub-bt6ZkZ_XSTVQi8a7EFpH24r4,33470
80
83
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
81
- snowflake/ml/model/_client/sql/model.py,sha256=dKgrkYKuuAIaOcAC1K7_wxWgrtGF1r89sItcP00hUzY,5736
82
- snowflake/ml/model/_client/sql/model_version.py,sha256=aLNXLKqDAEG1LjxdLdSc05E_3hK9i-Ry6MwSTWGS1kg,18106
84
+ snowflake/ml/model/_client/sql/model.py,sha256=kdglOjmrOsFZYoEu63-BfyLXgnWBe7RrwkknalDKDkQ,5783
85
+ snowflake/ml/model/_client/sql/model_version.py,sha256=lguEWCQDdbc_QsUW7FNv-mO2bi5a0BEQSnrDB-fYheE,19989
83
86
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
84
87
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
85
88
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -87,7 +90,7 @@ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G7
87
90
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
88
91
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
89
92
  snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
90
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
93
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=xtEm1fklRGR9euMCwR9FsAL38LSnBqDWkIVv_stnRIw,11021
91
94
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
92
95
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
93
96
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
@@ -100,41 +103,42 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
100
103
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
101
104
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
102
105
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
103
- snowflake/ml/model/_model_composer/model_composer.py,sha256=DPTI_-krAIzlYgs5-ojSpoBP-OQ_vamcI1uim3s9n08,7580
104
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
106
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=LOqvBYHTGSlCkBOnwf6T_gqxJXh76OptHF_tOHvfvac,7731
107
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=m-pRrR05L1MX20SHeehJccIr3U0_mEohhNEFL1Rr_OM,5899
105
108
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
106
- snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
109
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=4jeAtbsZFbD6jhonr1tIKuNO5WCa5R6lu5s_ZTAauUg,2561
107
110
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
108
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
109
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
111
+ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
112
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=L_aWZ0hRHgcbGXlM-qeqVCjJr4OrB18qKqVA4BydNRg,2291
113
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=5N_j_HsOhrZkxYiosUlBexB2Pak9KuSPd823M3y0m2Y,6782
110
114
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
111
- snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
115
+ snowflake/ml/model/_packager/model_packager.py,sha256=mbIN3NzvF6akwJ86zBjOn6pJyNPDHaUBT0ohpAtHMGo,5980
112
116
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
113
- snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
114
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
115
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
116
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=y5CHdEeKWAO08uor2OtEob4-67zv1CVfRf1CLvBHN40,7325
117
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=Z7vZ5zhZByLVPfNdSkhgzBot1Y8UBOM3ITj3Qfway3A,19985
118
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=PWPdpOdden2vfloXZA5sA20b2dCBiGO1-NfJ8atH-Uc,8445
119
- snowflake/ml/model/_packager/model_handlers/llm.py,sha256=SgCgy9Ys5KivNymjF35ufCpPOtMtSby2Zu4Tllir8Mg,10772
120
- snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=5Kyfg962x_kJQyabIQXf72bO0cAgNgj1vfy48RD9osw,9022
121
- snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
122
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
123
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=u4ino0SxjAMxEl2jgTqt6Mqs1dKGZmSE90mIp3qHErU,8218
124
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
125
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
126
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
127
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
117
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=aJ-d3HOlMog0egz9f8P4tPmSNQ_IKCJV1b7SnHCmoa0,6041
118
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=Za44AtkP1ktNstg6LXl26uUqODkAmQybcG_Za_hlZaQ,2623
119
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=253KNSePi248WKqBZHLugwVx3T0bAvQGFjtuLVhWPCg,8160
120
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=aqhvRFzmgAxpzRQdMxwrMzBXsjr-q9489Vwf_Y_eXM4,7805
121
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VQIvkvGZBSZ8bg8QKAyRJ5xvmjL0qi9A3s3ml7mtjjI,20296
122
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=Uh2mHRlj5SYWfDDfVFJi9tij8JuIV0tDts4VSnlsjuw,8455
123
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=rPsTXrA70Va8vV0wHKj8O3fwrh24HppRHxyWGIIe3lY,10770
124
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=h0FUuuq5y4M_1eRe7klDNCudDaw_YuE_v1kwrOX5FH0,9026
125
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=bL6CJApzBUZ903Ays0mQ2ONvn5Qnn01zP40GPThQbCA,8039
126
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=6pAnXmVhHt4UKEM4eLDC8hxY1OMEm4Gx_TbirQetaMA,9083
127
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=BT5dQsdudIi3qTAIvEYgHDVw-oJap4BdKkaTM4m6Woc,8226
128
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Y9wqTMc7ODEuhOAf3FQrDstaT_4wxWzntVYAcEa106g,7977
129
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OFhh3QRI085F0dpn4iLpxZtCKnotAEcztrv4Sh4AAGM,8191
130
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3fQ4z8fJE-MjKuIBVLeNXZp7vpQzw00Wk1W3rSe_Xm4,8118
131
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=joheYlYo-E3F0R5BxhR7el1la8qLv4ZkAR3d8eXAQMA,8882
128
132
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
129
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=QaB-eiwoyIl5BT5HSI_Jrb-FxqGJ6LgvsNRrPiI8UQc,265
133
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=z0WnMVFR9RySEpldoPrDsMgSrSW8EOiTaylnTsBwhe4,265
130
134
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
131
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
132
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=lmztlpzedTtJ2PNyLm5vYATGoMPVPXluu2qppmvEVJ8,17137
133
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
135
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
136
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=BlBOQF7lPhK9pUK48bwGytXpnTlW53B_8XeLS7YJgtY,18100
137
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=yN5-rbOsjT8vm5SgKoM-GFygxGwQzuKZMbYRxujjiGU,2531
134
138
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
135
139
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
136
140
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
137
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=ZGtLo1foiSMGE3KyAmyCcNoeYHeyQgeRIMMSgwuQBW4,239
141
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
138
142
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
139
143
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
140
144
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
@@ -158,50 +162,50 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
158
162
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
159
163
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
160
164
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
161
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=ueX0rtJSn3x9cJL9w1j_AiAG1ud6iykHOgkhSyjcAFQ,54585
165
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=sC3nlhrSV39uSfe01eMsCXc13bNFUf3evRYhJ7SRS0g,54651
162
166
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=YN8I_U_7_hL42o5_7NnEYY05aiuwgdO4Q2Iw__7Qa_w,6180
163
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=rt3xsJg0q82EbBgV1GF6OQjwGSYRbNMPr5a3mOn8iY0,15483
164
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=C2-_fJxOSre3mDhn9SAWLZThKj11BT42mecB4xppgKA,33390
165
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
167
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=Iqk8y4ltjfwDfrBOHmmvYRGyNzR3ZokQNukByUyH8NU,15516
168
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=BVUHR4k5uQzVTddXvfDgzm9nZ_ZnkDg4SxTM69yV9a8,33588
169
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=JHAo8u7myo1ZF1g1Ia_E2GDnPJqGdunl7ezma9mtANI,17333
166
170
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
167
171
  snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=K9_iTZRo_XU7THcR6t51OcmHQxHj07CxdBkKHi-4FSY,51596
168
172
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
169
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=uW6rQmBiarz-6kw_F6Qmdma4oaL4QAscifZI56PRMhQ,49425
170
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=cs1FQycRGsXdRUEpKl_OC7Hyfg14bQSDv7eU11e7Kss,51462
171
- snowflake/ml/modeling/cluster/birch.py,sha256=CA4yNF5eVMx7IOsUAXmIRevtEZN_6ufzBorY8ZOeK5w,49352
172
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=w19X53Mk9pdkmr0sjU8wRyVNTIycPrum1P3Z3MBXSSo,52111
173
- snowflake/ml/modeling/cluster/dbscan.py,sha256=71SaDPql_w2PKnge8-CQRa1zR5m9fwvUJkWB9AAfEYk,49512
174
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=AszdjTzVfmlnhzlB4HEqNJ0fTjBvlRVSAqibjWVwgOY,52227
175
- snowflake/ml/modeling/cluster/k_means.py,sha256=Nj8XpH64T39A-KrTHkkdT5Aghhsz4O37mltb59DgUXs,51640
176
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=pLLZ7SO-m8PmJ7EwDn0j3m_fZ01FzO7BsI0KfJzdwe0,49722
177
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HBadAGegSP1RDMBUcdai5cqlOOofDiN01Le4jxYBYnI,53029
178
- snowflake/ml/modeling/cluster/optics.py,sha256=Urt2e02Ilhg5CNaSajX86x-5OIzh_YORI8PzZnyNyUA,52826
179
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=YfxvYnLw55ntCeaqAVdwNo27YYp4YAF7gUQm9InF62M,49721
180
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=rrHwdYx6qKQyBAd3R38YtWl2CVKJwwxLoXNsYRd8mJk,52913
181
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=OU4L3Ib_do0TYp8kfyfuZu7JjsYih53tPrCzbOx1ms0,48854
173
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XGpuBMEU0CfXa3NumS5eBY1k2TA2nUXoDpbUlF8EZKg,49509
174
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=YX5_3a4h-esiuO3h-IBNyQRETx8ROqjppxqseabxY1A,51546
175
+ snowflake/ml/modeling/cluster/birch.py,sha256=JOhh4CekZQNVxU1hNf6eWLLM0g1t-LjBBsIgeC1z_JY,49436
176
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=XqzVUjQ6zcilP-PgslRYNRe3FTBDDkx85VTcaIB_YhU,52195
177
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=w-d3CY5KHTk0zm05Q0aYR15PaXa9tjTtmyC6xC_rtOg,49596
178
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=DRyJPbDYdvXCLM39VNWCh9V7Dsc4jgw4dz5lHWGP1ew,52311
179
+ snowflake/ml/modeling/cluster/k_means.py,sha256=azFG8uEX5J6lS9PqKDgv1kQo7tyrUt4dBs0JmRr347c,51724
180
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=EPXQI46vf3B7ky9PmDCK86Nl1m1JeGNo_O1oYSwrT04,49806
181
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=n_A2V1HZRfkAPKG36by6305ghy7DMbZlfryUdRFZDEQ,53113
182
+ snowflake/ml/modeling/cluster/optics.py,sha256=GoIOqcEu7V-y1C5lk3aK13CUrhdsx3r2Tweamci2vdY,52910
183
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=HpWYWZtAwWC_06XcBNIT1RUVW_8QklJw18Q0f3VjML0,49805
184
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=DlL3--nc-R_ISnG4gV6MwB5KmMmOTV2m0xltRSO2OKE,52997
185
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=3mXD667Al2Z7LMT9hYP_0Ykp1XkGpOryWhMWjlQZkeA,48938
182
186
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
183
- snowflake/ml/modeling/compose/column_transformer.py,sha256=cG78wvFzaWF2dNYhiNv_PDqSiWn4TQz2LvZnhyvLCmQ,51692
187
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=71LEirqv49TIUt3yMEjW_SpUdZeDLc6Eq2D0m3n_eMM,51776
184
188
  snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=1NwaWTVABvYhApdXJHSb7BLrOOnmGc2u-v0n_4Hv4IU,49408
185
189
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
186
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=H5jLT_yDAwiFYi2JcsgRCihKRpy9GWWrBMtHvceExQ0,49746
187
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=9vFnH0oRwbY7wfHDexO3xf9vlw6seqbu1pO_7Jc9svg,47554
188
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=EvxbRLYslQyDjhHqje5yx6VoJLmPiQX0rkoyP09Hk_A,49418
189
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=sNUEFH-e4BerMZ0zSOeL3VBDP0p8q_k1w5mujKK4Tkw,50583
190
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Bl1nx4pdWzp-yqOFOO9TCO2U5BM_p3T6947YxswKFl4,47692
191
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=3RMyEMkYV7CpapjcLZ__p4pOnPpOsZHQzrMr_G9ySn8,48447
192
- snowflake/ml/modeling/covariance/oas.py,sha256=atSOn1SSJ2mXwB0Ym_A4gZPcXWJwvIxoqE6LbtqZDfM,47333
193
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=CWAEhnyz3rxDgrEaoCqmwVLGbf7SKe_MOmPqcr2-DUA,47709
190
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=pXq9oGodQZvBcUHBk8BqWMAnTZHeSP_sKA5PSCllTBE,49830
191
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=xnc9sqX5yYXTpCSXaKTM5MWvWSg1vLQUc3bxLNeYw2w,47638
192
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=g9S1OFD8oDG8eFHdbxeRVRoXq51ZmY1gyEfGD7ZoOY4,49502
193
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=_LQa69Vms5LRZZfDFY2ZIs97I_NS5-fNUBX-fnHpymM,50667
194
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ic3JsS3FnKFOkqTyKl7hnJKBJ0f2QvVsxa0S2H-ozak,47776
195
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=_kBmsMyNcA_moBOvjucLfMp90y3YlU9HKZZImOxGbdw,48531
196
+ snowflake/ml/modeling/covariance/oas.py,sha256=Zhdeao4qKP-QxSTVJEDGLSZfsfRlMw1SEaB7fU997Hg,47417
197
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=Gi2fFZj5UxmsKgLldV5GSSoLeAkcbAueEjaNnqc7ET0,47793
194
198
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TC9EW-abr5-s2Si6q3RzBoTwDSDPoB0SEuWGvbm4_c8,52706
196
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DpZT0nesVDJJjsi267IY9eJHCmUideN_DEl6tQnUj0U,50369
197
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=ENQYsxckx7NrsghQMRaLwBn5pyzL4mbZ90ptH39j8yU,50303
198
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=HaqFYKoXLzpvuXbyMRKCHJOTxVH485Yhp55-sM_MhPY,48663
199
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=MCrYz74F1eM_9EklxwA-QYleSUcDQmcUVx71ubQMus0,52661
200
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=GTNS6j-LaorTq-VnmrYHxIWHBDyT3HSVmMBMZSe0WHE,53747
201
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=p5_gbVDBkImMwiuUsoquFSzuaRFFF_EYKlOvf9Cdr6c,51012
202
- snowflake/ml/modeling/decomposition/pca.py,sha256=ECUXv2XWoQy5SZpD9OcBZhcGX0h23C__BDUioMVeJM4,51930
203
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vDbHgJYAQGa3mc7wsZWxmHC1774ubTlL-EC5nnFqzbQ,49817
204
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=8JKkBGV46Ltf54HSsBgdwLpZQS9ui6j642DBH00bnsU,49440
199
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4VquBu3aa87sQc4t-bhb3Hzqh6rGUkNQACibKnMWHRI,52790
200
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=xsf4a7lZyMq3xvu0zQ_M9iMlLbQgpUrypSS1HB8busg,50453
201
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=s9PfbTA8l5PTl0aIw54NrbznfusUQjao5zW9lXeZaFE,50387
202
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=8S7WBdrn0n7wvQd9rJb4oVJ9mS5IKzhegpYokh6PTs0,48747
203
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=3P91UeX8jksZB9QVXsjHTmCP7BR3Bug-r42KUFQBvQM,52745
204
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=zbOwmPz28O0XcgfkdoUFoQoIjllKq1Gs_1Lp-3ePKqw,53831
205
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=-ZhoeMEb39KNk2pOKSCinQhnBFUNaxuTL4kJAyMafCI,51096
206
+ snowflake/ml/modeling/decomposition/pca.py,sha256=lT0TUUGTp1TTmn3gRLIM3DDw_3qNu1rV-IsoZra9YNE,52014
207
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=cGna3ORrGfpzDxjj6A7J5eQcakX-MTD-eLU3iGP8lAQ,49901
208
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=T970CkfwOVxwqofaNc5BYTObXGN4SFuq1oP0q-ysPZ0,49524
205
209
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
210
  snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=aD4eyWhCJ0dtHnuiRdiMROYGa5pk1Ww5PSFtKZGcsTM,52195
207
211
  snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=I4zI7ebh8m4WbtTo5HIjQGY20RLeW4Yd-bwTTvRVhHg,49977
@@ -216,7 +220,7 @@ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=jyjuwXiI-o
216
220
  snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kzDj-tzK1Zh3hG8nslnZk-V6Yeudwi8TUe9_w0rJmgY,57674
217
221
  snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=jFK9JOyTZq4VDRNuhYXJguqkHogM-mshxQhA-EYV5KQ,57915
218
222
  snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=jlzEtA-Il_zcgrN2AsypiiUsbekGHKE90FNq2igIhIg,56400
219
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=EAojT9PzpKJVnWJ3rxJQzmAqG7bvYHdCWPHa_fHsrJE,50894
223
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=OtQ_grOT13s47YaB4fsgDwKcJTylExq5f_uL3jAFHdQ,50978
220
224
  snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=iI_pjip7zCA70IBVZmIUX1wM84aw1BA0GfC6ATldGSg,56609
221
225
  snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=XSb3MwsB4esvoZHx_XAPahF8ABjdeJNCdTOAKImT9y0,55201
222
226
  snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=cVydbNy2f7a2NBxvUCw9E46whcv7NMnfA-p7D0-FT5s,50920
@@ -229,24 +233,24 @@ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1OkuVewZQZg2qthlIOA
229
233
  snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=OyPeCIcUFypzdEhl3NRFBB7dDkSGQGlipV-UacRVeXU,47939
230
234
  snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=zO_JGWE0U5iF_ruiJOS1xWbbJLKTDzlheEy3bHbR2rg,48030
231
235
  snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=Uh_WEWjInPmaRCSh0JXuqSj3Ai2fVE1xRoaAtv3p0vc,48085
232
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=XwdAvIRvEkB6X7Ge-RhoQctiuXoRqE_BDpsoyea32i4,50705
233
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=IioNNW_h6c2ChsWrmDmCUmNOR9kRhQqeF0hC9Z9DFPk,47641
236
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=EgCyX3pdkdVeOByVvgiqgfTlbmTmJdrxKEWCydrONg8,50789
237
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KWlDhy65YXAyt3qS2nqOuAYVxtV8gnS1bSjEUFyazjI,47725
234
238
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
235
239
  snowflake/ml/modeling/framework/base.py,sha256=gGsQLJJQcFvtRn_6uhiB5UB3bV0HFiijJpkBvvDyFUU,31156
236
240
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
237
241
  snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=04H5iTImclnaG3QYJRSfnRQfBl2EfNnheJXlhzeuu-c,53347
238
242
  snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=I33qYg_R8NDieFBJvd12mpCpe6jxy-fNhqwelw8e5uQ,52412
239
243
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
240
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=fce1UrFCL9fHpaBQ4-3eJ-icZQeinARojCAOGB3wxg0,54165
241
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=mNBzoaOomnP7ptuwZhMfgA2DuqJl5Aus5com4VPe5Wk,49881
242
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=L214K6TSNLifdZyqWEBBJpIhmehdjGGvNj95li9B5Lw,48738
244
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=9RXx_881cjE1D_Ge-4XcCuL-PHs7w-PwhKyazd669lc,54249
245
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=ok-sB6aF1Myilb7obFQFec4RoWv790E984yeup32cWQ,49965
246
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=Teuf0BKOr3i6RmmW4K7UBMGIHOkg4-NPu-XOiyFp1-s,48822
243
247
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Y-oSvi8CXOyBJSCkLoNZNjdZ_NVwjvQhaOmxvgo2HAY,19847
244
248
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
245
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=jzkCrzcsW9Bza1tEm_oXO71ax1Rt4jBEocs2HYKVDnY,47769
246
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=U2Eumczi05eTUZCiSpUQsk7ka5Z7pV9ZVjiFlA20_Ys,49540
247
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Eb6RD5A-imt-R1uGjabMlOQDA0ufAIjuIHN422X6jXM,48788
248
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=fMT9l5l-zfs0RVNKYh9J7QqRJ1g5bWHCpFML8O0hlHg,48142
249
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=woUxmEBQGk3xCXuaJ5fTNS2q34xasrEUof6k4qK2iVI,48190
249
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=iYAZ8PxMQ4yurlSYdk5v0daPSyo_bXBZBbbatm721jY,47853
250
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=ghFz9Tt3S4qSb2V7yG5Idzgf4leJNvovQO7JscUUSRQ,49624
251
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=KV-nopNzaNO5hY085EL2b1IGToCMYiAAkcfkLdIjDsI,48872
252
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=CkfxVDFXH0g0bBHtj4YqqizleB5g-XQbvQbVkkaYeB4,48226
253
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=V103IK-LVZV_GnNRKHRvf8SqtZzRf2z-humuv3Px-c4,48274
250
254
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
251
255
  snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=NBdl_aCcc78yYNSf31N-oeHycA_l-WTW0xluEgUMooA,49726
252
256
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -284,25 +288,25 @@ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=mphwSuzmQdfhmNyVMi
284
288
  snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NLp1ih9pmk71OHWHdIvuOUnF8vr7tCTZtmrJCBpObjU,50192
285
289
  snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=BlJLP44TG4M8Fd1ygQ6DTKpR6zzipvn10KzzafijSzE,50893
286
290
  snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=NSqWxj693EefNlIjH1NGjN0hITDzPOtBcGhIw2vTSu8,57270
287
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=5nxTy3XsaafbNJG1fi1UUCDEHJrx4aMLIktcB6Uk8HQ,52068
291
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=s46-agva7istln4N96cCt_iOEft-5ZAAdrcAY7zvq48,52152
288
292
  snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=LxbXjd-ZukPmvZ7dsOXp3XNIkxf02ESWrvbRC52DeEc,54741
289
293
  snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=RoupM8uJLO8Wei3a1Vtbz6LJv9UkYWyovjzQKkOPDeQ,50219
290
294
  snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=j3WY7u3mxWQYIjBjh-8NeBFbUNF_OIWpQTrN8771iqg,51175
291
295
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
292
- snowflake/ml/modeling/manifold/isomap.py,sha256=dIN5V-okxAsLPhtst0fbY-QPT38gUTSWHJrWNSshC60,50402
293
- snowflake/ml/modeling/manifold/mds.py,sha256=JmriGgVE5DfxVxsHJhLIbDiSGcBnFVThxqB6kqWv6ys,49622
294
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=UqS8Ezqtkwmr3OSGQjYu8USsnol0nPJen2lE8ROCkrs,50473
295
- snowflake/ml/modeling/manifold/tsne.py,sha256=Zbppt5E9AWb7PPdA94IYxFiyXntc5wBK64it-lkaCmw,53412
296
+ snowflake/ml/modeling/manifold/isomap.py,sha256=X78nMPqC7lRkgXr_QOESTmZVL3ofekECR2UqDiLX7O0,50486
297
+ snowflake/ml/modeling/manifold/mds.py,sha256=eiouIDYVXFAUG0oiA-epAzwOiiJf2o-6jWwIyjuoldM,49706
298
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=b-uNomRv_TZlIdGlITeaayUzYHagWgr5l4cs4yTvTsE,50557
299
+ snowflake/ml/modeling/manifold/tsne.py,sha256=-PSot6jXJpnycXj_4TH6w2W5x9i-yiavmIz-9gd5BxM,53496
296
300
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
297
301
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
298
302
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
299
303
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
300
304
  snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
301
- snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
302
- snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
305
+ snowflake/ml/modeling/metrics/ranking.py,sha256=J2o8cDhS2JmcwF8zTA6AclmIgOb4P3qRNSqTb0FWZuI,17656
306
+ snowflake/ml/modeling/metrics/regression.py,sha256=FEr48UddRq5ToD4J9fiwZlo0NDB82oi_iaAtnBxJ56A,25932
303
307
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
304
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=j66bYxt5nAgQxDasNa8gJN3qY__s1JZUf1xuzhwyNm4,54975
305
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=_Yympzyu4CcCm5vEi2Yp0y0faaAqUbzgzR_bbVAxapU,52876
308
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=t26TTCmcTbZ33uRpytCZofh9CHavg95qkhpl-4yW_kQ,55059
309
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=nwQ4O0rJtP2C4Iqtp36x8k6_kJ70-xM3umhbOgETowM,52960
306
310
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
307
311
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
308
312
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
@@ -319,21 +323,21 @@ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1t7DdWZXdHfbBJWukvyVf
319
323
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
320
324
  snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Za3lXdpV1yltloLN1CjtU383s4Yz0kmUfWwSzxh5cSU,51866
321
325
  snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=1QJLPrEGqCfbk5QyPzH3jMvWo1ds-is6qPXDRBMfXp4,51337
322
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=3sBEG5wP1TyDC5t59XDBgbQfRtbmeZJYBy3PDSb0bhY,49695
323
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=vfACYYYe5jx9tYZoWrOnLCbUfnTCQ2KSeNdWqL1NoP0,52273
326
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=I_gVXJreNpuLVgT6I_ASgyxDcLjm-czpz6-eBOi80Dg,49779
327
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=kKcBCH7K59OECYWrgsSWUu4qDbpkmtry14B_Ngso80s,52357
324
328
  snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=KPD4psFrwMu_2KaDV6zZiY_I8WxRRO62yv8VpykgREE,48355
325
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=c_wURNmsJA7Xjbnl0jPzzJronVxzvYjT2kO-MH08rDQ,50164
329
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=2bpzr1CbixQ_mrfZfn6YCSpWk20nkkjSMvAJlcCKir4,50248
326
330
  snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ZRsEVMYQM3KzXKNkKz4wmCAj3Km4CBo-aEDzddZtoOo,51827
327
331
  snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-ebpHawA51N0FZ_YWXDK5PquKZl8cu72b1dIlCQ8p1M,52279
328
332
  snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=LxkVr2eaPZzYM1FgUnnky8UYLb3Fw_JTv82kh4ZouSk,51160
329
333
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=wDjO7pffyY1Wp14h5NMo1glIBCNK3J09AYHz5UL4ZFc,48903
334
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=HtRiANwEwCjpgbhj4klsCOUw6HHMRkXUBeSfz4ZboQA,48987
331
335
  snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=tfNfjBo2I5-l9hzN3qLTiZ3pAL89JTquebp_KLKLxM8,56239
332
336
  snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoDgmgFN8nI19SyjmxG4MC8SIjI,55508
333
337
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
334
338
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
335
339
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
336
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=531nAtKEoOBz_j25upGvWuvWz7vDmG9LePCksHWsS_c,46484
340
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=_4LPhCL9fdG2h1IDMgdo2ht7E0Dfi4nHbC8hupgP9zk,46521
337
341
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
338
342
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
339
343
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -341,9 +345,9 @@ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhf
341
345
  snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
342
346
  snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
343
347
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
344
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=vSRMBFSYK_KRToPecMeBHXsJi45ySruSn7-dbGFF7xM,73145
345
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=MvIqNHzC5Ts2ItIyjkcGNOhin4NH2rG8Y0XEjlKZ_Fg,33558
346
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=gSwdmWWAaoufqEs9mLNh5UFn-7uE-eI2h3NzLn_J7jw,48829
348
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
349
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
350
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=8m9zXUihjZdWp6Y0aiCA10-QNt16vOqP2WQ9dbUHdFg,48913
347
351
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
348
352
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
349
353
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -375,11 +379,11 @@ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZu
375
379
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
376
380
  snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
377
381
  snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93PyM2Uw,11210
378
- snowflake/ml/registry/_manager/model_manager.py,sha256=9JL_pmSu-R7IWq6sTj-XkMLLW_BDFZbMwUlmf2AlB3o,9664
382
+ snowflake/ml/registry/_manager/model_manager.py,sha256=grUa1d55mFbvvG5J32JZWEIvcj4nKhX30xx1Yt1V6Ys,10274
379
383
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
380
384
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
381
- snowflake_ml_python-1.5.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
382
- snowflake_ml_python-1.5.3.dist-info/METADATA,sha256=QA_B6mf84du8scBIHopk8Lfi_q2AzdD-8Z7YCwL69r0,53001
383
- snowflake_ml_python-1.5.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
384
- snowflake_ml_python-1.5.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
385
- snowflake_ml_python-1.5.3.dist-info/RECORD,,
385
+ snowflake_ml_python-1.5.4.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
386
+ snowflake_ml_python-1.5.4.dist-info/METADATA,sha256=Z9gtPGVQ35nk8HRTBe6ssGQ9kbg668PnrkjabJTxKZI,54910
387
+ snowflake_ml_python-1.5.4.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
388
+ snowflake_ml_python-1.5.4.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
389
+ snowflake_ml_python-1.5.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (70.3.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5