snowflake-ml-python 1.5.3__py3-none-any.whl → 1.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. snowflake/cortex/__init__.py +2 -1
  2. snowflake/cortex/_complete.py +224 -21
  3. snowflake/cortex/_extract_answer.py +0 -1
  4. snowflake/cortex/_sentiment.py +0 -1
  5. snowflake/cortex/_summarize.py +0 -1
  6. snowflake/cortex/_translate.py +0 -1
  7. snowflake/cortex/_util.py +12 -85
  8. snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
  9. snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
  10. snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
  11. snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
  12. snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
  13. snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
  14. snowflake/ml/_internal/telemetry.py +26 -0
  15. snowflake/ml/_internal/utils/identifier.py +14 -0
  16. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
  17. snowflake/ml/dataset/dataset.py +39 -20
  18. snowflake/ml/feature_store/feature_store.py +440 -243
  19. snowflake/ml/feature_store/feature_view.py +61 -9
  20. snowflake/ml/fileset/embedded_stage_fs.py +25 -21
  21. snowflake/ml/fileset/fileset.py +2 -2
  22. snowflake/ml/fileset/snowfs.py +4 -15
  23. snowflake/ml/fileset/stage_fs.py +6 -8
  24. snowflake/ml/lineage/__init__.py +3 -0
  25. snowflake/ml/lineage/lineage_node.py +139 -0
  26. snowflake/ml/model/_client/model/model_impl.py +47 -14
  27. snowflake/ml/model/_client/model/model_version_impl.py +82 -2
  28. snowflake/ml/model/_client/ops/model_ops.py +77 -5
  29. snowflake/ml/model/_client/sql/model.py +1 -0
  30. snowflake/ml/model/_client/sql/model_version.py +45 -2
  31. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
  32. snowflake/ml/model/_model_composer/model_composer.py +5 -4
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
  34. snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
  35. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
  36. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +2 -2
  37. snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
  38. snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
  39. snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
  40. snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
  41. snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
  42. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
  43. snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
  44. snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
  45. snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
  46. snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
  47. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
  48. snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
  49. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
  50. snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
  51. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  52. snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
  53. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  54. snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
  55. snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
  56. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
  57. snowflake/ml/model/_packager/model_packager.py +9 -4
  58. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  59. snowflake/ml/model/custom_model.py +22 -2
  60. snowflake/ml/model/type_hints.py +73 -4
  61. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -0
  62. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +1 -0
  63. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +6 -0
  64. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +1 -0
  65. snowflake/ml/modeling/cluster/affinity_propagation.py +4 -2
  66. snowflake/ml/modeling/cluster/agglomerative_clustering.py +4 -2
  67. snowflake/ml/modeling/cluster/birch.py +4 -2
  68. snowflake/ml/modeling/cluster/bisecting_k_means.py +4 -2
  69. snowflake/ml/modeling/cluster/dbscan.py +4 -2
  70. snowflake/ml/modeling/cluster/feature_agglomeration.py +4 -2
  71. snowflake/ml/modeling/cluster/k_means.py +4 -2
  72. snowflake/ml/modeling/cluster/mean_shift.py +4 -2
  73. snowflake/ml/modeling/cluster/mini_batch_k_means.py +4 -2
  74. snowflake/ml/modeling/cluster/optics.py +4 -2
  75. snowflake/ml/modeling/cluster/spectral_biclustering.py +4 -2
  76. snowflake/ml/modeling/cluster/spectral_clustering.py +4 -2
  77. snowflake/ml/modeling/cluster/spectral_coclustering.py +4 -2
  78. snowflake/ml/modeling/compose/column_transformer.py +4 -2
  79. snowflake/ml/modeling/covariance/elliptic_envelope.py +4 -2
  80. snowflake/ml/modeling/covariance/empirical_covariance.py +4 -2
  81. snowflake/ml/modeling/covariance/graphical_lasso.py +4 -2
  82. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +4 -2
  83. snowflake/ml/modeling/covariance/ledoit_wolf.py +4 -2
  84. snowflake/ml/modeling/covariance/min_cov_det.py +4 -2
  85. snowflake/ml/modeling/covariance/oas.py +4 -2
  86. snowflake/ml/modeling/covariance/shrunk_covariance.py +4 -2
  87. snowflake/ml/modeling/decomposition/dictionary_learning.py +4 -2
  88. snowflake/ml/modeling/decomposition/factor_analysis.py +4 -2
  89. snowflake/ml/modeling/decomposition/fast_ica.py +4 -2
  90. snowflake/ml/modeling/decomposition/incremental_pca.py +4 -2
  91. snowflake/ml/modeling/decomposition/kernel_pca.py +4 -2
  92. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +4 -2
  93. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +4 -2
  94. snowflake/ml/modeling/decomposition/pca.py +4 -2
  95. snowflake/ml/modeling/decomposition/sparse_pca.py +4 -2
  96. snowflake/ml/modeling/decomposition/truncated_svd.py +4 -2
  97. snowflake/ml/modeling/ensemble/isolation_forest.py +4 -2
  98. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +4 -2
  99. snowflake/ml/modeling/feature_selection/variance_threshold.py +4 -2
  100. snowflake/ml/modeling/impute/iterative_imputer.py +4 -2
  101. snowflake/ml/modeling/impute/knn_imputer.py +4 -2
  102. snowflake/ml/modeling/impute/missing_indicator.py +4 -2
  103. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +4 -2
  104. snowflake/ml/modeling/kernel_approximation/nystroem.py +4 -2
  105. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +4 -2
  106. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +4 -2
  107. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +4 -2
  108. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +4 -2
  109. snowflake/ml/modeling/manifold/isomap.py +4 -2
  110. snowflake/ml/modeling/manifold/mds.py +4 -2
  111. snowflake/ml/modeling/manifold/spectral_embedding.py +4 -2
  112. snowflake/ml/modeling/manifold/tsne.py +4 -2
  113. snowflake/ml/modeling/metrics/ranking.py +3 -0
  114. snowflake/ml/modeling/metrics/regression.py +3 -0
  115. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +4 -2
  116. snowflake/ml/modeling/mixture/gaussian_mixture.py +4 -2
  117. snowflake/ml/modeling/neighbors/kernel_density.py +4 -2
  118. snowflake/ml/modeling/neighbors/local_outlier_factor.py +4 -2
  119. snowflake/ml/modeling/neighbors/nearest_neighbors.py +4 -2
  120. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +4 -2
  121. snowflake/ml/modeling/pipeline/pipeline.py +1 -0
  122. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +43 -9
  123. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +36 -8
  124. snowflake/ml/modeling/preprocessing/polynomial_features.py +4 -2
  125. snowflake/ml/registry/_manager/model_manager.py +16 -3
  126. snowflake/ml/version.py +1 -1
  127. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +35 -7
  128. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/RECORD +131 -127
  129. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
  130. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
  131. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -286,6 +286,7 @@ class SnowparkTransformHandlers:
286
286
  session=session,
287
287
  statement_params=statement_params,
288
288
  anonymous=True,
289
+ execute_as="caller",
289
290
  )
290
291
  def score_wrapper_sproc(
291
292
  session: Session,
@@ -207,6 +207,7 @@ class SnowparkModelTrainer:
207
207
  session=self.session,
208
208
  statement_params=statement_params,
209
209
  anonymous=True,
210
+ execute_as="caller",
210
211
  )
211
212
 
212
213
  return fit_wrapper_sproc
@@ -236,6 +237,7 @@ class SnowparkModelTrainer:
236
237
  replace=True,
237
238
  session=self.session,
238
239
  statement_params=statement_params,
240
+ execute_as="caller",
239
241
  )
240
242
 
241
243
  self.session._FIT_WRAPPER_SPROCS[fit_sproc_key] = fit_wrapper_sproc # type: ignore[attr-defined]
@@ -493,6 +495,7 @@ class SnowparkModelTrainer:
493
495
  session=self.session,
494
496
  statement_params=statement_params,
495
497
  anonymous=True,
498
+ execute_as="caller",
496
499
  )
497
500
 
498
501
  return fit_predict_wrapper_sproc
@@ -524,6 +527,7 @@ class SnowparkModelTrainer:
524
527
  replace=True,
525
528
  session=self.session,
526
529
  statement_params=statement_params,
530
+ execute_as="caller",
527
531
  )
528
532
 
529
533
  self.session._FIT_WRAPPER_SPROCS[ # type: ignore[attr-defined]
@@ -550,6 +554,7 @@ class SnowparkModelTrainer:
550
554
  session=self.session,
551
555
  statement_params=statement_params,
552
556
  anonymous=True,
557
+ execute_as="caller",
553
558
  )
554
559
  return fit_transform_wrapper_sproc
555
560
 
@@ -580,6 +585,7 @@ class SnowparkModelTrainer:
580
585
  replace=True,
581
586
  session=self.session,
582
587
  statement_params=statement_params,
588
+ execute_as="caller",
583
589
  )
584
590
 
585
591
  self.session._FIT_WRAPPER_SPROCS[ # type: ignore[attr-defined]
@@ -303,6 +303,7 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
303
303
  statement_params=statement_params,
304
304
  anonymous=True,
305
305
  imports=list(import_file_paths),
306
+ execute_as="caller",
306
307
  ) # type: ignore[misc]
307
308
  def fit_wrapper_sproc(
308
309
  session: Session,
@@ -76,8 +76,10 @@ class AffinityPropagation(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class AgglomerativeClustering(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class Birch(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class BisectingKMeans(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class DBSCAN(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class FeatureAgglomeration(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class KMeans(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class MeanShift(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class MiniBatchKMeans(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class OPTICS(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class SpectralBiclustering(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class SpectralClustering(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class SpectralCoclustering(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class ColumnTransformer(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class EllipticEnvelope(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class EmpiricalCovariance(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class GraphicalLasso(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class GraphicalLassoCV(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class LedoitWolf(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class MinCovDet(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class OAS(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class ShrunkCovariance(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class DictionaryLearning(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class FactorAnalysis(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class FastICA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class IncrementalPCA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class KernelPCA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class MiniBatchSparsePCA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class PCA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class SparsePCA(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class TruncatedSVD(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class IsolationForest(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class SequentialFeatureSelector(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class VarianceThreshold(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must
@@ -77,8 +77,10 @@ class IterativeImputer(BaseTransformer):
77
77
  initialization with the `set_input_cols` method.
78
78
 
79
79
  label_cols: Optional[Union[str, List[str]]]
80
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
81
-
80
+ A string or list of strings representing column names that contain labels.
81
+ Label columns must be specified with this parameter during initialization
82
+ or with the `set_label_cols` method before fitting.
83
+
82
84
  output_cols: Optional[Union[str, List[str]]]
83
85
  A string or list of strings representing column names that will store the
84
86
  output of predict and transform operations. The length of output_cols must
@@ -76,8 +76,10 @@ class KNNImputer(BaseTransformer):
76
76
  initialization with the `set_input_cols` method.
77
77
 
78
78
  label_cols: Optional[Union[str, List[str]]]
79
- This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
80
-
79
+ A string or list of strings representing column names that contain labels.
80
+ Label columns must be specified with this parameter during initialization
81
+ or with the `set_label_cols` method before fitting.
82
+
81
83
  output_cols: Optional[Union[str, List[str]]]
82
84
  A string or list of strings representing column names that will store the
83
85
  output of predict and transform operations. The length of output_cols must