snowflake-ml-python 1.11.0__py3-none-any.whl → 1.13.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. snowflake/cortex/_complete.py +3 -2
  2. snowflake/ml/_internal/telemetry.py +3 -1
  3. snowflake/ml/_internal/utils/service_logger.py +26 -1
  4. snowflake/ml/experiment/_client/artifact.py +76 -0
  5. snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +64 -1
  6. snowflake/ml/experiment/experiment_tracking.py +113 -6
  7. snowflake/ml/feature_store/feature_store.py +1150 -131
  8. snowflake/ml/feature_store/feature_view.py +122 -0
  9. snowflake/ml/jobs/_utils/constants.py +8 -16
  10. snowflake/ml/jobs/_utils/feature_flags.py +16 -0
  11. snowflake/ml/jobs/_utils/payload_utils.py +19 -5
  12. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +18 -7
  13. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +23 -5
  14. snowflake/ml/jobs/_utils/spec_utils.py +4 -6
  15. snowflake/ml/jobs/_utils/types.py +2 -1
  16. snowflake/ml/jobs/job.py +38 -19
  17. snowflake/ml/jobs/manager.py +136 -19
  18. snowflake/ml/model/__init__.py +6 -1
  19. snowflake/ml/model/_client/model/batch_inference_specs.py +25 -0
  20. snowflake/ml/model/_client/model/model_version_impl.py +62 -65
  21. snowflake/ml/model/_client/ops/model_ops.py +42 -9
  22. snowflake/ml/model/_client/ops/service_ops.py +75 -154
  23. snowflake/ml/model/_client/service/model_deployment_spec.py +23 -37
  24. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +15 -4
  25. snowflake/ml/model/_client/sql/service.py +4 -0
  26. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +309 -22
  27. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +5 -0
  29. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  30. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +3 -3
  31. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  32. snowflake/ml/model/_signatures/utils.py +4 -2
  33. snowflake/ml/model/models/huggingface_pipeline.py +23 -0
  34. snowflake/ml/model/openai_signatures.py +57 -0
  35. snowflake/ml/modeling/_internal/estimator_utils.py +43 -1
  36. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +14 -3
  37. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +17 -6
  38. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  39. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  40. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  41. snowflake/ml/modeling/cluster/birch.py +1 -1
  42. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  43. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  44. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  45. snowflake/ml/modeling/cluster/k_means.py +1 -1
  46. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  47. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  48. snowflake/ml/modeling/cluster/optics.py +1 -1
  49. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  50. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  51. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  52. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  53. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  54. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  55. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  56. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  57. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  58. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  59. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  60. snowflake/ml/modeling/covariance/oas.py +1 -1
  61. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  62. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  63. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  64. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  65. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  66. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  67. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  68. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  69. snowflake/ml/modeling/decomposition/pca.py +1 -1
  70. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  71. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  72. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  73. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  74. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  75. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  76. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  77. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  78. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  79. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  80. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  81. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  82. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  83. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  84. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  85. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  86. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  87. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  88. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  89. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  90. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  91. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  92. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  93. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  94. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  95. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  96. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  97. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  98. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  99. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  100. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  101. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  102. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  103. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  104. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  105. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  106. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  107. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  108. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  109. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  110. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  111. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  112. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  113. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  114. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  115. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  116. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  117. snowflake/ml/modeling/linear_model/lars.py +1 -1
  118. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  119. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  120. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  121. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  122. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  123. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  124. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  125. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  126. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  127. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  128. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  129. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  130. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  131. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  132. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  133. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  134. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  135. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  136. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  137. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  138. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  139. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  140. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  141. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  142. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  143. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  144. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  145. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  146. snowflake/ml/modeling/manifold/isomap.py +1 -1
  147. snowflake/ml/modeling/manifold/mds.py +1 -1
  148. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  149. snowflake/ml/modeling/manifold/tsne.py +1 -1
  150. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  151. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  152. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  153. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  154. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  155. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  156. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  157. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  158. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  159. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  160. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  161. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  162. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  163. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  164. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  165. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  166. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  167. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  168. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  169. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  170. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  171. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  172. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  173. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  174. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  175. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  176. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  177. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  178. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  179. snowflake/ml/modeling/svm/svc.py +1 -1
  180. snowflake/ml/modeling/svm/svr.py +1 -1
  181. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  182. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  183. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  184. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  185. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  186. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  187. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  189. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +91 -6
  190. snowflake/ml/monitoring/_manager/model_monitor_manager.py +3 -0
  191. snowflake/ml/monitoring/entities/model_monitor_config.py +3 -0
  192. snowflake/ml/monitoring/model_monitor.py +26 -0
  193. snowflake/ml/version.py +1 -1
  194. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/METADATA +82 -5
  195. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/RECORD +198 -194
  196. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/WHEEL +0 -0
  197. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/licenses/LICENSE.txt +0 -0
  198. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/top_level.txt +0 -0
@@ -42,6 +42,26 @@ def validate_sklearn_args(args: dict[str, tuple[Any, Any, bool]], klass: type) -
42
42
  error_code=error_codes.DEPENDENCY_VERSION_ERROR,
43
43
  original_exception=RuntimeError(f"Arg {k} is not supported by current version of SKLearn/XGBoost."),
44
44
  )
45
+ elif v[0] == v[1] and v[0] != signature.parameters[k].default:
46
+ # If default value (pulled at autogen time) is not the same as the installed library's default value,
47
+ # we need to validate the parameter value against the parameter constraints.
48
+ # If the parameter value is invalid, we drop it.
49
+ try:
50
+ from sklearn.utils._param_validation import (
51
+ InvalidParameterError,
52
+ validate_parameter_constraints,
53
+ )
54
+
55
+ try:
56
+ validate_parameter_constraints(
57
+ klass._parameter_constraints, # type: ignore[attr-defined]
58
+ {k: v[0]},
59
+ klass.__name__,
60
+ )
61
+ except InvalidParameterError:
62
+ continue # Let the underlying estimator fill in the default value.
63
+ except (ImportError, AttributeError, TypeError):
64
+ result[k] = v[0] # Try to use the value as is.
45
65
  else:
46
66
  result[k] = v[0]
47
67
  return result
@@ -199,7 +219,12 @@ def handle_inference_result(
199
219
  transformed_numpy_array = np.hstack(transformed_numpy_array) # type: ignore[call-overload]
200
220
 
201
221
  if len(transformed_numpy_array.shape) == 1:
202
- transformed_numpy_array = np.reshape(transformed_numpy_array, (-1, 1))
222
+ # Within a vectorized UDF, a single-row batch often yields a 1D array of length n_components.
223
+ # That must be reshaped to (1, n_components) to keep the number of rows aligned with the input batch.
224
+ if len(output_cols) > 1:
225
+ transformed_numpy_array = np.reshape(transformed_numpy_array, (1, -1))
226
+ else:
227
+ transformed_numpy_array = np.reshape(transformed_numpy_array, (-1, 1))
203
228
 
204
229
  shape = transformed_numpy_array.shape
205
230
  if len(shape) > 1:
@@ -292,3 +317,20 @@ def should_include_sample_weight(estimator: object, method_name: str) -> bool:
292
317
  return True
293
318
 
294
319
  return False
320
+
321
+
322
+ def is_multi_task_estimator(estimator: object) -> bool:
323
+ """
324
+ Check if the estimator is a multi-task estimator that requires 2D targets.
325
+
326
+ Args:
327
+ estimator: The estimator to check
328
+
329
+ Returns:
330
+ True if the estimator is a multi-task estimator, False otherwise
331
+ """
332
+ # List of known multi-task estimators that require 2D targets
333
+ multi_task_estimators = {"MultiTaskElasticNet", "MultiTaskElasticNetCV", "MultiTaskLasso", "MultiTaskLassoCV"}
334
+
335
+ estimator_name = estimator.__class__.__name__
336
+ return estimator_name in multi_task_estimators
@@ -3,7 +3,10 @@ from typing import Optional
3
3
 
4
4
  import pandas as pd
5
5
 
6
- from snowflake.ml.modeling._internal.estimator_utils import handle_inference_result
6
+ from snowflake.ml.modeling._internal.estimator_utils import (
7
+ handle_inference_result,
8
+ is_multi_task_estimator,
9
+ )
7
10
 
8
11
 
9
12
  class PandasModelTrainer:
@@ -48,7 +51,11 @@ class PandasModelTrainer:
48
51
 
49
52
  if self.label_cols:
50
53
  label_arg_name = "Y" if "Y" in params else "y"
51
- args[label_arg_name] = self.dataset[self.label_cols].squeeze()
54
+ # For multi-task estimators, avoid squeezing to maintain 2D shape
55
+ if is_multi_task_estimator(self.estimator):
56
+ args[label_arg_name] = self.dataset[self.label_cols]
57
+ else:
58
+ args[label_arg_name] = self.dataset[self.label_cols].squeeze()
52
59
 
53
60
  if self.sample_weight_col is not None and "sample_weight" in params:
54
61
  args["sample_weight"] = self.dataset[self.sample_weight_col].squeeze()
@@ -115,7 +122,11 @@ class PandasModelTrainer:
115
122
  args = {"X": self.dataset[self.input_cols]}
116
123
  if self.label_cols:
117
124
  label_arg_name = "Y" if "Y" in params else "y"
118
- args[label_arg_name] = self.dataset[self.label_cols].squeeze()
125
+ # For multi-task estimators, avoid squeezing to maintain 2D shape
126
+ if is_multi_task_estimator(self.estimator):
127
+ args[label_arg_name] = self.dataset[self.label_cols]
128
+ else:
129
+ args[label_arg_name] = self.dataset[self.label_cols].squeeze()
119
130
 
120
131
  if self.sample_weight_col is not None and "sample_weight" in params:
121
132
  args["sample_weight"] = self.dataset[self.sample_weight_col].squeeze()
@@ -22,6 +22,7 @@ from snowflake.ml._internal.utils import (
22
22
  from snowflake.ml.modeling._internal import estimator_utils
23
23
  from snowflake.ml.modeling._internal.estimator_utils import (
24
24
  handle_inference_result,
25
+ is_multi_task_estimator,
25
26
  should_include_sample_weight,
26
27
  )
27
28
  from snowflake.ml.modeling._internal.model_specifications import (
@@ -178,7 +179,11 @@ class SnowparkModelTrainer:
178
179
  args = {"X": df[input_cols]}
179
180
  if label_cols:
180
181
  label_arg_name = "Y" if "Y" in params else "y"
181
- args[label_arg_name] = df[label_cols].squeeze()
182
+ # For multi-task estimators, avoid squeezing to maintain 2D shape
183
+ if is_multi_task_estimator(estimator):
184
+ args[label_arg_name] = df[label_cols]
185
+ else:
186
+ args[label_arg_name] = df[label_cols].squeeze()
182
187
 
183
188
  # Sample weight is not included in search estimators parameters, check the underlying estimator.
184
189
  if sample_weight_col is not None and should_include_sample_weight(estimator, "fit"):
@@ -416,7 +421,11 @@ class SnowparkModelTrainer:
416
421
  args = {"X": df[input_cols]}
417
422
  if label_cols:
418
423
  label_arg_name = "Y" if "Y" in params else "y"
419
- args[label_arg_name] = df[label_cols].squeeze()
424
+ # For multi-task estimators, avoid squeezing to maintain 2D shape
425
+ if is_multi_task_estimator(estimator):
426
+ args[label_arg_name] = df[label_cols]
427
+ else:
428
+ args[label_arg_name] = df[label_cols].squeeze()
420
429
 
421
430
  if sample_weight_col is not None and should_include_sample_weight(estimator, "fit"):
422
431
  args["sample_weight"] = df[sample_weight_col].squeeze()
@@ -734,12 +743,14 @@ class SnowparkModelTrainer:
734
743
  # Create a temp table in advance to store the output
735
744
  # This would allow us to use the same table outside the stored procedure
736
745
  df_one_line = dataset.limit(1).to_pandas(statement_params=statement_params)
737
- df_one_line[
738
- expected_output_cols_list[0]
739
- ] = "[0]" # Add one column as the output_col; this is a dummy value to represent the OBJECT type
746
+ # Pre-create ALL expected output columns so subsequent writes can target the same schema.
747
+ # Use a simple dummy string value to represent OBJECT-typed payloads.
748
+ for out_col in expected_output_cols_list:
749
+ df_one_line[out_col] = "[0]"
740
750
  if drop_input_cols:
751
+ # When input columns are dropped, the table should only contain the output columns.
741
752
  self.session.write_pandas(
742
- df_one_line[expected_output_cols_list[0]],
753
+ df_one_line[expected_output_cols_list],
743
754
  fit_transform_result_name,
744
755
  auto_create_table=True,
745
756
  table_type="temp",
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(
@@ -60,7 +60,7 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
- SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.7')
64
64
  # Modeling library estimators require a smaller sklearn version range.
65
65
  if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
66
  raise Exception(