snowflake-ml-python 1.11.0__py3-none-any.whl → 1.13.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. snowflake/cortex/_complete.py +3 -2
  2. snowflake/ml/_internal/telemetry.py +3 -1
  3. snowflake/ml/_internal/utils/service_logger.py +26 -1
  4. snowflake/ml/experiment/_client/artifact.py +76 -0
  5. snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +64 -1
  6. snowflake/ml/experiment/experiment_tracking.py +113 -6
  7. snowflake/ml/feature_store/feature_store.py +1150 -131
  8. snowflake/ml/feature_store/feature_view.py +122 -0
  9. snowflake/ml/jobs/_utils/constants.py +8 -16
  10. snowflake/ml/jobs/_utils/feature_flags.py +16 -0
  11. snowflake/ml/jobs/_utils/payload_utils.py +19 -5
  12. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +18 -7
  13. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +23 -5
  14. snowflake/ml/jobs/_utils/spec_utils.py +4 -6
  15. snowflake/ml/jobs/_utils/types.py +2 -1
  16. snowflake/ml/jobs/job.py +38 -19
  17. snowflake/ml/jobs/manager.py +136 -19
  18. snowflake/ml/model/__init__.py +6 -1
  19. snowflake/ml/model/_client/model/batch_inference_specs.py +25 -0
  20. snowflake/ml/model/_client/model/model_version_impl.py +62 -65
  21. snowflake/ml/model/_client/ops/model_ops.py +42 -9
  22. snowflake/ml/model/_client/ops/service_ops.py +75 -154
  23. snowflake/ml/model/_client/service/model_deployment_spec.py +23 -37
  24. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +15 -4
  25. snowflake/ml/model/_client/sql/service.py +4 -0
  26. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +309 -22
  27. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +5 -0
  29. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  30. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +3 -3
  31. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  32. snowflake/ml/model/_signatures/utils.py +4 -2
  33. snowflake/ml/model/models/huggingface_pipeline.py +23 -0
  34. snowflake/ml/model/openai_signatures.py +57 -0
  35. snowflake/ml/modeling/_internal/estimator_utils.py +43 -1
  36. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +14 -3
  37. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +17 -6
  38. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  39. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  40. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  41. snowflake/ml/modeling/cluster/birch.py +1 -1
  42. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  43. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  44. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  45. snowflake/ml/modeling/cluster/k_means.py +1 -1
  46. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  47. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  48. snowflake/ml/modeling/cluster/optics.py +1 -1
  49. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  50. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  51. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  52. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  53. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  54. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  55. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  56. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  57. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  58. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  59. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  60. snowflake/ml/modeling/covariance/oas.py +1 -1
  61. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  62. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  63. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  64. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  65. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  66. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  67. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  68. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  69. snowflake/ml/modeling/decomposition/pca.py +1 -1
  70. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  71. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  72. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  73. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  74. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  75. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  76. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  77. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  78. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  79. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  80. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  81. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  82. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  83. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  84. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  85. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  86. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  87. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  88. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  89. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  90. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  91. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  92. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  93. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  94. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  95. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  96. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  97. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  98. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  99. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  100. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  101. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  102. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  103. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  104. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  105. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  106. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  107. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  108. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  109. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  110. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  111. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  112. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  113. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  114. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  115. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  116. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  117. snowflake/ml/modeling/linear_model/lars.py +1 -1
  118. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  119. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  120. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  121. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  122. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  123. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  124. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  125. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  126. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  127. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  128. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  129. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  130. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  131. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  132. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  133. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  134. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  135. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  136. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  137. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  138. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  139. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  140. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  141. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  142. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  143. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  144. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  145. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  146. snowflake/ml/modeling/manifold/isomap.py +1 -1
  147. snowflake/ml/modeling/manifold/mds.py +1 -1
  148. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  149. snowflake/ml/modeling/manifold/tsne.py +1 -1
  150. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  151. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  152. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  153. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  154. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  155. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  156. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  157. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  158. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  159. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  160. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  161. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  162. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  163. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  164. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  165. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  166. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  167. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  168. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  169. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  170. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  171. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  172. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  173. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  174. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  175. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  176. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  177. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  178. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  179. snowflake/ml/modeling/svm/svc.py +1 -1
  180. snowflake/ml/modeling/svm/svr.py +1 -1
  181. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  182. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  183. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  184. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  185. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  186. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  187. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  189. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +91 -6
  190. snowflake/ml/monitoring/_manager/model_monitor_manager.py +3 -0
  191. snowflake/ml/monitoring/entities/model_monitor_config.py +3 -0
  192. snowflake/ml/monitoring/model_monitor.py +26 -0
  193. snowflake/ml/version.py +1 -1
  194. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/METADATA +82 -5
  195. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/RECORD +198 -194
  196. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/WHEEL +0 -0
  197. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/licenses/LICENSE.txt +0 -0
  198. {snowflake_ml_python-1.11.0.dist-info → snowflake_ml_python-1.13.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  snowflake/cortex/__init__.py,sha256=Z51KTLHGAC2L1DXYaKeDIoTjBEeRGNZHpHZ47vj6aBk,1101
2
2
  snowflake/cortex/_classify_text.py,sha256=2AYJBABEn8pngFJ2eL7Vt6Ed0t1xEOVWfwb6SHLQKRY,1634
3
- snowflake/cortex/_complete.py,sha256=1JRD9Ye1FX9cM6g4QfZn80EiY1X_9mQtM3zHU2tnHjU,19733
3
+ snowflake/cortex/_complete.py,sha256=b-tHVtAut5b38PL4rb4mu2pZ_RSFOtrbxRR-y1C2ac4,19812
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=18DhgNj1zWbmGfEvZyIV8vIBGjF3DbwvlhCxMAxXFAw,1645
5
5
  snowflake/cortex/_embed_text_768.py,sha256=UdsVuPsGeMRZAuk3aFa98xQrj-RsOgolNJKC9lQNhn8,1637
6
6
  snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
@@ -10,7 +10,7 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=0qOy-uzl0gJVrPEVGTPIvvArEhwh9YH6ggaoY0gl0h4,99
13
+ snowflake/ml/version.py,sha256=AGFrDevyvV6eDph0eyz5QYMtk3gQG8WYL19gYzcfRUk,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
@@ -18,7 +18,7 @@ snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
19
  snowflake/ml/_internal/platform_capabilities.py,sha256=HkTr2RI5oR54QNmwg3FTrqs0ygOV-fwGkKsWb30WKvQ,7344
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
- snowflake/ml/_internal/telemetry.py,sha256=7obh4QrCvtgVa5QW2_5nMBRv-K-DZrUlDx_Exzn86FI,31788
21
+ snowflake/ml/_internal/telemetry.py,sha256=GCut6xG7SvAV8JRCxuQjvno9t7cLGLByECpMNUY1q30,31867
22
22
  snowflake/ml/_internal/type_utils.py,sha256=bNNW0I9rOvwhx-Y274vGd0qWA0fMIPA3SGnaDE09wvc,2198
23
23
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
24
24
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
@@ -45,7 +45,7 @@ snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MR
45
45
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
46
46
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
47
47
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
48
- snowflake/ml/_internal/utils/service_logger.py,sha256=LmADyxsSE3-TYBX1gCYtxvaEDdH_Lf6d5gRt44uue0I,6267
48
+ snowflake/ml/_internal/utils/service_logger.py,sha256=Vi6fh3drClDYkwm9OGSw3TBIU6pJq8e8Jye54d0jEKk,7183
49
49
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=k4ddzs8iJpRpVvgbbOtU8j4fUvqa77Awk65EJ5j2uxk,4253
50
50
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=tm2leAu_oDTNUQZJ98UpKtS79k-A-c72pKxd-8AE-tg,6353
51
51
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=YHIwXpb8E1U6LVUVpT8q7s9ZygONAXKPVMD4IucwXx8,4669
@@ -65,9 +65,10 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=ljY2HA1E724qnBmvuEzQA8o3ZT0XMJkeIYJ97vXPx5A,11316
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=fvn3EvkMiE9_Ls-ShiRIuvtfFUc6vVbyKioiwD38A6I,15483
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
- snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=rdCBHRqTYW6I2ztCpO-Zyb9nd_0HV26QdpGMDwxZ144,4446
70
+ snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
+ snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=v1NwaNcBCOiff8mHShelbVl0Rm94BnwqqnG_KTEmI2E,6692
71
72
  snowflake/ml/experiment/_entities/__init__.py,sha256=ThrslBFuDxOUvdS8j_bVmEaEAms8nR1aY0ocYFnVPFg,155
72
73
  snowflake/ml/experiment/_entities/experiment.py,sha256=lKmQj59K8fGDWVwRqeIesxorrChb-m78vX_WUmI7PV0,225
73
74
  snowflake/ml/experiment/_entities/run.py,sha256=_bWt1YpP8iulg5jeBXMXw8zGZHr9zSE9IVIBHcCdfto,2293
@@ -78,8 +79,8 @@ snowflake/ml/experiment/callback/xgboost.py,sha256=eZMRFAebMERwdqMFm7i6S9wkHD7_V
78
79
  snowflake/ml/feature_store/__init__.py,sha256=MJr2Gp_EimDgDxD6DtenOEdLTzg6NYPfdNiPM-5rEtw,406
79
80
  snowflake/ml/feature_store/access_manager.py,sha256=Q5ImMXRY8WA5X5dpBMzHnIJmeyKVShjNAlbn3cQb4N8,10654
80
81
  snowflake/ml/feature_store/entity.py,sha256=ViOSlqCV17ouiO4iH-_KvkvJZqSzpf-nfsjijG6G1Uk,4047
81
- snowflake/ml/feature_store/feature_store.py,sha256=kZOQ-ldcpN9C8oYQLmYJgI5YCDVKOb5ZySDn2r1HMfs,114217
82
- snowflake/ml/feature_store/feature_view.py,sha256=VDvK5R-C5crxwACV9QsCeakX9oSzlRBgH6lqA2bzGb4,38979
82
+ snowflake/ml/feature_store/feature_store.py,sha256=r51z1SC6e7Sz68dz8pIWQYscVgtG68yiOncBJe6Fcyc,161425
83
+ snowflake/ml/feature_store/feature_view.py,sha256=fCciDGC8qd-ySGVEHKHo-PYIFrAuFlVAFDu8ZiRTDIY,44141
83
84
  snowflake/ml/feature_store/examples/example_helper.py,sha256=eaD2vLe7y4C5hMZQTeMXylbTtLacbq9gJcAluGHrkug,12470
84
85
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=mzHRS-InHpXON0eHds-QLmi7nK9ciOnCruhPZI4niLs,438
85
86
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
@@ -109,44 +110,47 @@ snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3n
109
110
  snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
110
111
  snowflake/ml/jobs/__init__.py,sha256=v-v9-SA1Vy-M98B31-NlqJgpI6uEg9jEEghJLub1RUY,468
111
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
112
- snowflake/ml/jobs/job.py,sha256=jj5MtZYEPG2chAKIDy50T0noz4hbelvsLTSVQyUvO1s,21101
113
- snowflake/ml/jobs/manager.py,sha256=iBo0Ol21um4FM53BNaFxAc14SXCqaKhGGQ1zlUfLNHc,21945
113
+ snowflake/ml/jobs/job.py,sha256=h88Tj0aQDRywDXk5KbAEVp9q7jZfcGT1xagrkR1tNEM,21981
114
+ snowflake/ml/jobs/manager.py,sha256=Ij1ZTKc2JaCUkOVYLR5N9hBgCj0PcT3fdpIow15QvI8,26132
114
115
  snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
115
- snowflake/ml/jobs/_utils/constants.py,sha256=PgFTpxHfqLNalfzPJqLQ7nOao8XLw1JeRqdz4nkNAjs,4168
116
+ snowflake/ml/jobs/_utils/constants.py,sha256=FRsmwGLYLbESf3c65mLEA34DuGajhBRC8BkHJw9BiMU,3838
117
+ snowflake/ml/jobs/_utils/feature_flags.py,sha256=cH_NyeOncL3_tzbk0WvL1siNyodxBgn1ziPk2yBW6wY,404
116
118
  snowflake/ml/jobs/_utils/function_payload_utils.py,sha256=4LBaStMdhRxcqwRkwFje-WwiEKRWnBfkaOYouF3N3Kg,1308
117
119
  snowflake/ml/jobs/_utils/interop_utils.py,sha256=7mODMTjKCLXkJloACG6_9b2wvmRgjXF0Jx3wpWYyJeA,21413
118
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=WNSPw7Ph4urAw6R6qorEMU5O-e4MPhVM3WS9OM04xr4,30131
120
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=1Xon3jlBgzfv1SQgQkJ1ir3xt9PVviP8-UC6P-FOmwc,30807
119
121
  snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
120
122
  snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
121
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=EhCLZURZjooHYGGL3HCd0o5N4P0Ug8bFtaL2pT9XHQY,14875
123
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=_USJN0H7wjprPcS5p6SbAUQJOQjljEbLcdMrtnBkRrM,14751
122
124
  snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
123
- snowflake/ml/jobs/_utils/types.py,sha256=MOyUTgzkcWqCKYgIZZwm9kcXsxqD_QpLYVTsO5L9CWs,2260
125
+ snowflake/ml/jobs/_utils/types.py,sha256=AGLu0kPTNRUki26rah_KBwWp0bBJEtUP3zcfxkj5kB0,2326
124
126
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
125
- snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=QOP2LkfaK59BzWU1-_XbVYUvuztodD-kF8vv0m13eVE,5380
126
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=VUBpbwMWaDtZj5ZR5NsuTxjCW31IE6QbafoYnDU8s9I,14987
127
+ snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=N2wJYMPlwg-hidwgHhDhiBWOE6TskqCfWLMRRNnZBQs,5776
128
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=29_zaKjvcLkwqBqYHObtQIT933UsdJGvb82EGwyvk48,15704
127
129
  snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtcxaV0rI7IQ2ZiO0Li7zZ3U,7433
128
130
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
129
131
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
130
132
  snowflake/ml/lineage/lineage_node.py,sha256=vmikk4qaZuVFhQqW-VM6DuW4tDvmQlNbACvIVZEamcU,5830
131
- snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
133
+ snowflake/ml/model/__init__.py,sha256=S9Q77g_uxiSVkPd8fbMsP7h3y3lp0sj6UJQYH9OdeO4,467
132
134
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
133
135
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
134
136
  snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
135
137
  snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TMkBR67XKY,32324
138
+ snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
136
139
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
137
140
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
138
141
  snowflake/ml/model/type_hints.py,sha256=G0kp85-ksnYoAUHRdXxLFQBLq3XURuqYOpu_YeKEaNA,9847
142
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=kzS7YfrBxZ8QTsWE4vx7jMyOjTopPOmGZSqc1t6cCqc,611
139
143
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
140
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=waHYE2GN3SHWonn9eq6vmnXUUNxuo4z3aEUY-MVWEIU,55387
144
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=azf94-xWOIvpa-1F6pvkbe7ErOLmBY2f16nONq80mgw,55002
141
145
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
142
- snowflake/ml/model/_client/ops/model_ops.py,sha256=z3T71w9ZNIU5eEA5G59Ous59WzEBs3YBcPO1_zeMI8M,48586
143
- snowflake/ml/model/_client/ops/service_ops.py,sha256=6aZfxY1iLe-0FpwSwgo8rgye7AoJOU3bAN17QoNWnjA,45942
144
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=_lveWfsSvumzO3fJPL7gO7mwTYNeA9uORzhT5qqI3hs,20479
145
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=z063hgCDwkHa36SUB_PL9cjMYdxfj8Vsm3KV74D2dNM,2219
146
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=dcyV0PgAUynVWBfhPhzRmKe7S0R484-xng5ajJOtHaI,50048
147
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=pMKBJDza1AAhzBPELcNU6iIjOLhY_6kxrMWYmiB9Kvc,41887
148
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=LxdhU1m4YGc1MNyApQ0IyUetcH4IXOmwYOY9X3wjznY,19499
149
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=QpDso2bjx2eCRKIG4-ppc3z46B7hgYMZehOTRoR9IJs,2425
146
150
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
147
151
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
148
152
  snowflake/ml/model/_client/sql/model_version.py,sha256=QwzFlDH5laTqK2qF7SJQSbt28DgspWj3R11l-yD1Da0,23496
149
- snowflake/ml/model/_client/sql/service.py,sha256=j-JdXeWy4oATTH_Yz6OEqhW81t1vM70b5JpAtymar5g,10360
153
+ snowflake/ml/model/_client/sql/service.py,sha256=LheEjXaXOKBPl1M9xwcV6EakMZX2pcyjljWPj_8NE5k,10614
150
154
  snowflake/ml/model/_client/sql/stage.py,sha256=2gxYNtmEXricwxeACVUr63OUDCy_iQvCi-kRT4qQtBA,887
151
155
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
152
156
  snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
@@ -166,17 +170,17 @@ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021
166
170
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=8y-LfiBfoj2txQD4Yh_GM0eEEOrm1S0R1149J5z31O0,12572
167
171
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
168
172
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=fM_13N5ejT0Ta0-M_Uzsqr_TwGVk_3jSjsLJiMEfyR4,8514
169
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=n9ufjUozWdTXH0DQhEplYWYLHcqgBujuNVcv7hmABKc,24090
173
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=iIYDJljLRW22XNQn8fLCSHTZfMW5x8m-7hyO40mMSPA,37045
170
174
  snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
171
175
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
172
176
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
173
177
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=mF-pzH1kqL7egpYA3kP1NVwOLNPYdOViEkywdzRXYJc,9867
174
178
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=sKp-bt-fAnruDMZJ5cN6F_m9dJRY0G2FjJ4-KjNLgcg,11380
175
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=LP8QSh1Id8o7ZP-0c5PVVXeirVchG-oJeSoHDvsDbJA,18266
179
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=_D1YE7TmEJDsuOUt-mT-2Nza2Bz0sIzSGRKn9sxuDhI,18340
176
180
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=uvz-hosuNbtcQFprnS8GzjnM8fWULBDMRbXq8immW9Q,18352
177
181
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=2J2XWYOC70axWaoNJa9aQLMyjLAKIskrT31t_LgqcIk,11350
178
182
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3IbMoVGlBR-RsQAdYZxjAz1ST-jDMQIyhhdwM5e3NeE,9531
179
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Nj80oPwvg1Ng9Nfdtf1nRxyBdStoyz9CVe4jPqksxuk,12190
183
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=t9xSB4Phv56Ev5CLav_k8UM8ZPZ5zJBLpI46-edXqpY,12511
180
184
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
181
185
  snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py,sha256=GVpfYllXa3Voxa54PGNsZ3Hea1kOJe3T_AoA9nrs60A,764
182
186
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py,sha256=dXIisQteU55QMw5OvC_1E_sGqFgE88WRhGCWFqUyauM,2239
@@ -184,11 +188,11 @@ snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01
184
188
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
185
189
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=CzY_MhiSshKi9dWzXc4lrC9PysU0FCdHG2oRlz1vCb8,1943
186
190
  snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=CctjNVwdC7ghVIPqbhb62t43SOFsmk2j2FdoZMZ8KXs,20063
187
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=e4TUbWl998xQOZUzEWvb9CrUyHwGHBGb0TNbtezAeQ0,3707
191
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=UGPTjzxLBUKn8XSAuMvGnJGdjEvlUZjjfvI9rDRAQl4,3759
188
192
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
189
193
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
190
194
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
191
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=vAPfRaEatkKfmtp4HCIYgjRzsoN-yISKfaRT39KamHs,929
195
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=LEhIRVHqSrSWzc5B1g_sPknbyjv1-JrE4sXUqBQ_tM4,936
192
196
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
193
197
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
194
198
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -198,153 +202,153 @@ snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=ldcWqadJ9fJp9cOaZ3Mn-hT
198
202
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=xy7mBEAs9U5eM8F51NLabLbWXRmyQUffhVweO6jmLBA,5461
199
203
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=Gz2olwWzT4Kb3yBH0uYn3o92vT_lFoIx4yySh7T2tTQ,10790
200
204
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=Xy-ITCCX_EgHcyIIqeYSDUIvE2kiqECa8swy1hmohyc,5036
201
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=YOBC_Wx-H8bQ967A47nYgqcqLjEA15FbZK69TyAEgvU,7590
205
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=aNGPa2v0kTMuSZ80NBdHeAWYva0Nc1vo17ZjQwIjf2E,7621
202
206
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=_yrvMg-w_jJoYuyrGXKPX4Dv7Vt8z1e6xIKiWGuZcc4,5660
203
- snowflake/ml/model/_signatures/utils.py,sha256=vIs12OF_UKH7qrY0JATU-yZhLTgaKt1MJoEemRULA20,17275
204
- snowflake/ml/model/models/huggingface_pipeline.py,sha256=VCLhlW_CBJAgU-uKSY5a6BrFjc7ANFWSzNaarR6IBq0,19658
205
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=oGi5qbZeV-1cM1Pl-rZLBvcr3YRoUzN_te_l-18apLI,11993
207
+ snowflake/ml/model/_signatures/utils.py,sha256=RY4ZNWKCQhEJ80N5fb4TdjZLQ7ktYTzUqjpwbtZgtX4,17285
208
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=jSUihxi6TygN-nsf0wy70fg349buQghlJZVSItJ-TOA,20783
209
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=dfPPWO-RHf5C3Tya3VQ4KEqoa32pm-WKwRrjzjDInLk,13956
206
210
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=3wFMcKPCSoiEzU7Mx6RVem89BRlBBENpX__-Rd7GwdU,4851
207
211
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=5Ck1lbdyzcd-TpzAxEyovIN9fjaaVIqugyMHXt0wzH0,971
208
212
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=Kye5l4_Y307Qa4ZcGGthtAO8cB9Mqg406phHByXZcYo,8056
209
213
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=E7Psa14Z-Us5MD9yOdRbGTlR6r4Fq7BQSCcHwFlh1Ig,2815
210
214
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=CEWZXSc7QLZVRJmg3sC5yiNI-tN_wCZmZnySXZhLgto,6476
211
215
  snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=PAvVEoyEKTIH3bpRj9ddSd4xj5JC8Ft4orA8uUWAbFA,7983
212
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=40zepXyRA9lkzGTxGQs74fqcuCQAkFAfnzyIBi4-ozU,5947
216
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=ngvXWydZFoSbzfim3qU_Ygpa_ewf8Ysm7ckzWo5fm2Q,6435
213
217
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=XfWSd1H5B6lcIb1eAapyODl6L6x1lbJ6jm0XtwM8-ag,54977
214
218
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
215
219
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=oXumJxQFMokoxsrXZ03X8NKLWr3yGuUGB3OM8qTTH4E,16416
216
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=ckeh8plxm0sHIDheYwR4etBfZ9mNy0hySd9ApahUG-k,32240
220
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=xem3xtoOHi_HFoi85wvSx7F1BhzxVrGYqMhuyrFz4Ik,32919
217
221
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
218
222
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
219
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=PN-fBoZIjD3Jl5yn7Av5BPveExrpJn3n2Y1xTGVC_b0,54177
223
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=4h420OqHN2JYG7FKYwAwT3RG03sOh8u9vdTnabRr-cY,54177
220
224
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
221
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XiphFPZDckJ_6bUWMO-8XatkTklUcjpdAH8lR00OuFo,52430
222
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=Mdsnf4kiEP3S_4WrjfykEw3eZWsSJoaewvWbzgqYXTQ,54343
223
- snowflake/ml/modeling/cluster/birch.py,sha256=Jo6TkZfLD5aLs4eAJtcyZtwlgL9DpXz-P0t8e15Mvpw,52343
224
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=BiuRlG8SgJZfb8uwc188PJsd5qSLWvRF3hdsvDIQADA,55112
225
- snowflake/ml/modeling/cluster/dbscan.py,sha256=a_EVi5I77x-ieKwwILizlki_ofCoA_L7BwkgpNY1pEs,52684
226
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=xqMUcExCDQQVjvl_ol23KHAz5uB7x7hxjGq8K4uYuA4,54637
227
- snowflake/ml/modeling/cluster/k_means.py,sha256=OW5V0N2EtY7LQdbjcpVaW8pyUKTiNuwWWCjj-G7R7RA,54838
228
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=AlidvXHbUm0BQqCsqykcCI2xImCpCPR8ElLIXXWSlNk,52717
229
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=can2LP4Vvpl9yQt4neUrwRnAtwZAihBO-QF1xiU8IYg,56035
230
- snowflake/ml/modeling/cluster/optics.py,sha256=uTFULCzoDgZ0adK4IX6mqgVAuMv0Gygd25o8zlf7HEE,55894
231
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=DrEwe-67GQKZXEcHDaV38mRWKG9_deTBzq92ZfDk3rg,52727
232
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=gPwW_o2f9KcJfTkYKzrRbWbCR23Vk1n70Z0JjIHT-BU,56011
233
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=mMQme1WyTGyK7WJmHrEIPaMY4xmUksXfFlBFBqE8FuM,51860
225
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hhEEDmf_7Rcd0_nh4PKhQuLEbOcq6F5Q7UgaxIBoxE0,52430
226
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=P88_8O5B9BijnAwkUErVIk59go3tTNC1qlNAnAyAx3M,54343
227
+ snowflake/ml/modeling/cluster/birch.py,sha256=1tqVZGRHa44TT-Q15eBYa4pfBkMq2aOtM_T5zw5AFBY,52343
228
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=muIuhv-fC-rAAN-Q4eT9Lz2vmYYY4f6owfhyy441MBA,55112
229
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=lP3GhtEm4SvZKfzLRFUMIohDQORmgYTEeRX3xt3hEls,52684
230
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=b2KooSg3jLLOazr9itI6txGi2EhWb0DmR2nZJk7TjOU,54637
231
+ snowflake/ml/modeling/cluster/k_means.py,sha256=TvMN2o8xqxTVHmaONgHIeEylSUyX1eYGAkxLrlJmK_s,54838
232
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=bwZNCGb12LWReRI5dIXlT0CY2frdCB9wI1-rPTWPL8g,52717
233
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=xSeHFzoXTUAWQfr0ekaXZ7-POh9_bzc6kl2oD0sRvKg,56035
234
+ snowflake/ml/modeling/cluster/optics.py,sha256=0EeDzyeRR28SyQSS5t-bLgWbnwilN7OzR5cJ26D2QPE,55894
235
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=fs57CErGTlvZqxVrAESBHj3IuaMbJsZX9GZG1hDS39U,52727
236
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=qzZe8QUOTCCjx975p5Xg7J8i6L_DQep6RETCTRvpNE8,56011
237
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=uYuiIBFR1T44tXuSZdQVPam8eUNSBrcXDSw4e36yRco,51860
234
238
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/compose/column_transformer.py,sha256=3OQQggsNoYpYbDewCUYuBi_qWWYRsV0w185LAwu2N2w,55185
236
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=XPvXGr2Tlbn3OeDCDU_IGrPf-utPkE4jjXHsW9rGEeM,52472
239
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=LHcJ39mmAwlqryf2-8pXVdP8kuXeIwC9S8tDvUaLAG8,55185
240
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=TCYzw4WkdQBmyOBbDI3dWUWq3qta4Foiqw7enLl7f_s,52472
237
241
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
238
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=9LIpOcLW--RF25jrpoSSJsJM5asbh3gnAwsCFkC6Jvc,52761
239
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=G6fI9hevwGyr3cL14oqJVLdNvncoeiF2vkYjXpEukx8,50559
240
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Uc35kzMzAZwIo15Y3qcRrvciaRMx2VJLxH64aFqwe-g,52418
241
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=Q0V3LS0sAgJgLgRFNvdwwsRxxT592hlDJIIKQNwHmsI,53610
242
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=xML2bb31xCUykM40bQELyItRMES-p03aoO9gPNEOeow,50688
243
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=fBXLS8hEpY7Iyv7126bEXV_WBUz1sfwm9N_JY82EM48,51455
244
- snowflake/ml/modeling/covariance/oas.py,sha256=K7lDGHpWELONnZmprN2YVHdWl-lE7n2UKRyGO5MmF08,50302
245
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yLfYUr1yhMGUnD1B8dNdjeYTCIWESOHsxrHrXophYFc,50711
242
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=udQIgxCcl7UI0wg81Jt6n0gw-CqZ6430g-biGXM31j8,52761
243
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=UpR2fJ4tVAn2_FKqQKsfYptOY1t3hEnZfweVMp2drtU,50559
244
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=IjvlmpKDQXsnXRmTypisGVKAjfYMOT-7nwcatmrGY80,52418
245
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=E5ZQB1Lu7vt9wdEtHBJlX0IpLb_fyeVFXdQqEqISHg8,53610
246
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GO83MDcAFqxHu2IANpSghyTV7AM0d2Y-97BBqiNK0-Q,50688
247
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sPOYsy80WTsriKmrZUii097Ok7O9jMsRfmDEpNizLzs,51455
248
+ snowflake/ml/modeling/covariance/oas.py,sha256=LlGWvL00tQaSku23a1_PZCivln8KmwXX8N37v6fREJE,50302
249
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nrU72bUxnhuyZ5q_DV5mvhk40FJmjjREd-sTtAzLuik,50711
246
250
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
247
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=sBg2xt7mT_SW4iaUHf2YMpLwSgIXlg2YoDB5jCo-AwI,55710
248
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=Ut-tYVcqMSXaaLE0putxSz8Aatdt9tbDD5BOtMnDe2Y,53369
249
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=IxXCMNcvLb7j9QRK6pq37qhTV0h3u3sJrtS613rz9Xo,53296
250
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=qpiboaU7doR4Ak2RlSLpv5WiF0f0AMwmysZEsZ-zvLA,51663
251
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=hc9LRrdn3hlWsoLVaYtGkbIS9CKcZv7TtPycSKDixdk,55653
252
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=4X7770WbECY94vsZyfLpjw9eLHHps5ftJaA55x1U-3Q,56442
253
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=cKmHEgNpAgAp2is0MRFDEi7FdXn_zETrDmG3eHj2l0U,53705
254
- snowflake/ml/modeling/decomposition/pca.py,sha256=DL--DHcMxjoER-gYpKjyUCE3q5ZGi_0I7X8Y_-4tWu4,55873
255
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=dcaCTtxiTHBWqgry6w9ADQNvxP3bZ2N_DzBMxppPUhA,52812
256
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UR5x27eWCbRwzz4y4gZa6zlc7wfWDrm5XiUvfEVMG18,52438
251
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4BCi3SpwYLXtkT9tltU8MeDEGK8OnZ0HY6QOtleWLS4,55710
252
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=OiR42u5l2FfX1gmr9hNtxczwzSS4azf_LX7g8k4jg3s,53369
253
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=bKK3xDuichdh11HWHy3od1feEqL0nJXU0b3SWk_GypA,53296
254
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=KH_qcARGUK16j-cHWC9nOoyWRYfTVX1wWdo2XCq0T-s,51663
255
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=nuxqk1FLSJEY8YqJgcLFelG46fcRP6vr_HUDDXeMEx0,55653
256
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=9egcKgnjZOxR71x-7Kg06-U4Bz1pCjSU2zWvVEe6_WU,56442
257
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=oV9ajBzClXmWKYrrEC0KfyohI0SwBsMAuwxl99fpu7k,53705
258
+ snowflake/ml/modeling/decomposition/pca.py,sha256=_ybuLQHLf-nueGRY1UJt9ICmL1X3bOvH-c-PRTJewqw,55873
259
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=VI3xl-hXhPqiqS-2n9O8Z60WrkLfROJ-fkcrsm1s1vM,52812
260
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=EdCwIHZbriYswrb5DZ0spWTQ2z2JXwzWWqa2PO_Mabs,52438
257
261
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
258
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9qZc2XDOMQS-hVeDcSf7Gi7INnu2PczKF0NgB86Mez8,55329
259
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=HzfQbabMIKkGZa975yKumqsOg0gloA5Vw6AX7DH0svQ,52908
262
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=_OG85UPee-TMgmj-cozucFwMRs0AmDnA6yHkBtSjTbM,55329
263
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=cqWVxZzmm0eZbqwseotsVLeXWHeVoue9t0wBUfTTfAw,52908
260
264
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=rfOlUx4fc3zfc9YUop8UJh4UyKvL7zTgpK8EDhw77kc,53110
262
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=u5V38S4XEc7PpgMywrLv9bBj8p2pmkPYHXBUFoPx6-w,52113
263
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=ilghs_lbcCZ-UJx4WzgV7LRE8q2GTZaAUt4f9ORt-d0,54302
264
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=NlBi6e1Ik9tSdb7AibiJR1VP8QIw7ST40SoaHuC3_yc,53537
265
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=CaOG7EMFb9szt2wWql2bVtFQLOHDU8vg_cs_pHUrLD0,60351
266
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=k9aK1uGdm9KEkHWerXoNsjZ710Ddp5fYBY_OIKlkGCs,58804
267
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=uNcKO35j_pRJdyVu-qwmzzt_RHUQyl5f2Rq9J46a93c,61110
268
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=a7O5iVOGSHjheqnKCVjnH5K9Ld-SmTWllhPBFqeMEv4,60702
269
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=SHSA_bYMRyTkdVaHc9-d2fGd4H_P7y8shWHbqFBrWVU,61596
270
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=4FbSw_o-7LWGNzcqweeB3UYIkvfJJGjLBbU_r66UmVU,59931
271
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=valmvjZxGeLzQuA7El-gGKLiW2Y6bymMlU6tjWT29XE,53895
272
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=jaD7spMP7ozsxdStwvlovUxx2VbVaf9fbo8ZwWKqPpo,60324
273
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=-arnzokzT_qmftZ-Vp-CFBHLcq07vpj4KFvAzFhm8kg,58777
274
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=QLw56XDhTdNjHOgGbAHHbmRQNzuAUxp3rEdF5fncrg4,53839
275
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=v1ZztvpeqOmkStHQsmgOW3DGc2IPrtX5ritRwkDkCjQ,53391
276
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=Lcl6m5gAD8u7Oagu3_ZCzISU5QdygGiIkAfnehansRI,51916
265
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=X6OnK0zNWQ0awL1B9wqLd713OsiSSRmXmOaEaeIWlx0,53110
266
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=8ETFFsCb1UjeC8-smV7alpPz3gx_PNuEczsnmsJ-DfE,52113
267
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=rtc5OKzthDFd9LrT-3v1iDX5NjPnResPbNqJBZyiadk,54302
268
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=G4hMysxv8WmdK7Ng7skgljUIQqUVy-zJNeEQ515i898,53537
269
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=RrC6X3K5KurJl_QTF_Fq9MCn7RPikidDk1sQlEc3Dxw,60351
270
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=eM42h5z0pj7At5xASxs_Dq4Sgfkj8GaGaqQurXzIKqI,58804
271
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=H4pv_EMvoX0vwowg0Zy26zvJYFK1ILji-HGDFjTNaX8,61110
272
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=sY43QWkOhyH0C_70ASi-BoN_zv7UnIozxXf9scM1iT0,60702
273
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=JHWxXKtuAGN6ZZt5XQLxQBpm9eWYsFOQ8YrDYzG2rKE,61596
274
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UDCLnxaGN657vPWsUS7n8FuOTIHP9BXhJj1Gr6m-lHo,59931
275
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=u7dSxs_iFN-7a3Wy2RTymUBkSbEAyBjE24o4rJy1aiQ,53895
276
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=nmjQDX__xwZfHWDEXKbfSFj0IdhhYugMQQcDXv9SwvE,60324
277
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=g45YEEvmzgWR4IDFINcJ8drHHeoCgvFiI3duciFxwqI,58777
278
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=ho6T70nctk2mvMk4gqcScqBSuuI0AHhogmSLcl6lsBQ,53839
279
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=5ol0kwo9QxsRew7oMoxd70tjdseomR4hX-AL-e54CQg,53391
280
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=yKsAYuM3gEqzhJg-h5bpu_ynv6gGNbmEj_j9kJIyjKs,51916
277
281
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
278
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=AOHtDD6nvoL0n-OR_bQToeRHTLwLFgv3y5cvnPhVz_k,51386
279
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=0MPBvzKLLq804ZHWOdubbUNZlyzue2WFMXZQE3PGtsA,50848
280
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=vVPZ2iN_EzbgHQLj5s7HIGb5a_DMvRw1d-i0cykIfqI,50842
281
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=MTUByQDm-T0FwvonKX1Q5XPMDKvLoBLWpK_8jUC1ePg,50850
282
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=CWBHTaR1k79NphpRemJTGaXSQH_8-v7HYXOoQwVyeFA,50943
283
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=J8tbZQpz2tJn-diy3S-O-MxCoak00pfOcTderrPtRwo,51003
284
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Kyzf2jziMQp2Q5nq8ar5-JAEV9cRZX2axlN9orZMOBI,53782
285
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=DombmnjBuNvDItNEXH_OMV-4wkOVAZmXCMTE9kW0j0Y,50644
282
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=nix50a4yDR4z7FX4dEeT3TBSZRf66sHYWumITcEJ4UY,51386
283
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=61qkpUUTKUWVNIMK7sC-elUNzfr6FtMi5Fr9Z3srY-I,50848
284
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=a0O0NGClsBQrbC7--p9vIfF6D-zuogyF8TxHAIJsCs0,50842
285
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=pexrtxanFshhlfRL1GbOPRHp2Kw4n0ex1-FTKbLgzIw,50850
286
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=avMa179Pmb5eaU0U43AFJegbC5BDxxPnhl3Vi5oBE7I,50943
287
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=wRxpUQr4k2fm8O7YYRoeB1BrRyXvQh72j67n4sNsP90,51003
288
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=TnbKMWYj4ui8L1AjxXVUelcbhHg0aANZRe_r9Ov44uk,53782
289
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=i-CJH0XQbp_yqmmBQW8jMGqsKBJir38PQoZvUYloyLQ,50644
286
290
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
287
291
  snowflake/ml/modeling/framework/base.py,sha256=DZAsRuPDV_NX7Epqfu2kHuT0oBdAVKPIX43L2Z63NP0,31943
288
292
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
289
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=53AOs2kSN7Y6humFHfzQ_b1UdsLKKyvFg3RmPe3jwys,56274
290
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=Gt3NvazKv-JN84mBCs40PmGWcJqo65hhJLZS1ZK1TIo,55338
293
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=aduPyn2geozr8vKsP5q0tZIjBf2Q3xUPAt2bkbzEmvI,56274
294
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=pQUdutVW3SUNFZhDIynvPKnhrW5ib8LcCbz3UNOkM3Y,55338
291
295
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
292
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=O3H0l0c2eIOtlaXeI0YMIlNeABIJdfo6H1mkJlNtVzI,57167
293
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=GLYIS2aEcdYb73SQa7S-MHk5639yoCRGQSvSipTD_jE,52877
294
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=cjajFF4_f_ogSvmfNgvFCZZZWoxtxfZZi7z3LpQA3vs,51740
296
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=oCLli0ZSsYWxUE19anmPnoOvDFMzclWR-gXZpiaTVZU,57167
297
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=4H-9PI-wHPSvBkisyViyskkeH1yNxBGPcdsfRzAIf4M,52877
298
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=oIAoFiwpaYVYGGmUKFrOwvXzT69u-RvP7I8tiX7jTXc,51740
295
299
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
296
300
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
297
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=kofj3unubKoZkk0hz9nkAdE889UWAWfS9giPXzSJewk,50774
298
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=P1kBUm1RR85CsJuNXAdKl4O0g2tt0HVykEMqySH9K58,52534
299
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Fn2oMHNMRnvmhkfnSXOJyhE2lg6PCwSYsitQbshQyDk,51795
300
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=2xr8in9M9M4n_OFsQLr5PtbE1K_3M83ZFg6vq59eoU0,51138
301
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=u9qXtk-ZvCYKy6eotHZA0EWsNrbnhfqw_Hhp78VDGAg,51193
301
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=3Gm_Vve-EI4kJQPLWC0OeCWSeJ0h6hWcx5dI2KEQ7r4,50774
302
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=uDivdkvNa0sFeEQncGx6AtaUO3VlnV-_o1Q76UjmIGw,52534
303
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Pji_6I_IVABShOWXYb5tukclCzF4VZV1n9I06id3Xm8,51795
304
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=QuKDIYu4bntOnSG8Q9geB2fyD5wQx1jcx2bL5bSohuw,51138
305
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=iNOduIbLkC3F1WI_UNkTGFjIpojPX_5fsH6DotJuEx4,51193
302
306
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
303
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YzK3c6HcrbGykQ8hPa6pXJMsuVVHavRkjuNEyLavbm8,52642
307
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=gId-qhl4Enp3rlNb_1KfvP3SqSj-NNuMu1lwTeI9VdI,52642
304
308
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
305
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=aqu_9wuJTO0b02jjwIa8Pa9AWJ7ZSjPJNGZjrhDBPFY,52145
306
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=QM2wAK8olzrzI-q_dXv_kAc7CIvV7sGs32AKCTmJcPE,51647
309
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=PSCx7L__aH4tnPAlxoYGcf1iSXRuAb-QqFdnjwYtScM,52145
310
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SYTj57vjjgSV8awExIRIxtc5b8pwBJMOU9pTyyw6Mdo,51647
307
311
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
308
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=W1gl4IGFaX_AXONDbA_gfC-LZHiAGf0DC6ELYp62pZk,52402
309
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=w-Pc6xF2ytch-HfPWIgAGadTf64J5e3lsWFHPUISR2Q,52772
310
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=UOy7Pc3KIytN9gyRydt56uUoZ4oLc-ng09-uUMF8keA,53790
311
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=551rCj5fGimvmNhWHV7F-ug7x-BwkyHK2GbtRZcYRsg,54866
312
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=HqjrLTaY4EROwp66xGCekuQ_kpHN8InKyf3PEhNML8M,52655
313
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=Rr7aGYwkaBpM-zYBPXeI6W2xXswA7-h77_VB0IzHD4E,51852
314
- snowflake/ml/modeling/linear_model/lars.py,sha256=qszoPQvf2fPWBIee6CB-e8kij8gUoGGPpLAjaqzNkQk,52558
315
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=om9N6A2L6AvNLN7ZGmLYyBkZ-2Vt_dYis6MimNkxW8I,52806
316
- snowflake/ml/modeling/linear_model/lasso.py,sha256=_sI_TRshSX2nYl8HB0p5ogBtIOoi5crI4GrcJgBeqzQ,53172
317
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=C5TNLWaT3LH4XsSZ_THjWgKSasEEnzGbUEfhpEWBYZc,53984
318
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=knYCrHCOaXBf47AAdhJ9wDDELGSpudj6E-_AnHgMUlI,53699
319
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=-F6A1QHVn6ULJG12ZrRkNZdGbwYm7YZIWG3Ejsr3J8A,53687
320
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=SgdksEfanuFEXzaTSADndsvt99CrcKjhE0Gq-40o_y0,53008
321
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=x6XurxKT0F-rSkpsog-kMH4dqf8IGkT7bS1oYz_fFfc,51396
322
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=IlDx28zrwblP-8DdZ5tN1CeaOfrHMunRMP-fbi8RosM,58161
323
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=El5o3udl4EXCeqE3UQchb5TbrGXbApvRoktiMgc6_Vw,59225
324
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=j59Bb4DfPOPbvV3ekxCPaLlXyN_ZsDFH0VIUkBcKIVE,52871
325
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LmsFrKdIQrbTuhoxTo-Ta83IUuAZu85R6A0oHw7YAYc,54536
326
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=MnsTR1ZzNxEiOzPtJh5ClKcgKxzyeyDCxkuEZhC4cu0,52414
327
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=8k8kpcFy48NDr0s3c3-BL4PjOHSkjly0dCMUkKXKmDg,53703
328
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=JgWKwDHYI43j1A3GNCjS4NWo4hT0cibil0L-0gC9fA4,51619
329
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=PcAHLuuFMDDOZL45yatHIWN61jw61msOXsNfMNGcjWg,55443
330
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=NCfQHD9VJiIDl-eGCPQZ4492yTPZzZN5RYz72PCOWVQ,54505
331
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=hSpgHC4XO-08h2AXqnfTbScHUzRH460_V4FyPQ1siT0,54760
332
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=2H46W-XbwX-8GwBh5Eca3kV5LioYIcwohYaLIpo3yGI,52702
333
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=_cVkRspXP0ljSe7YdxYFRv-5JBeiamaibk509NTCDgw,55841
334
- snowflake/ml/modeling/linear_model/ridge.py,sha256=L5Ajz3PwJteqcflPslez66NTr7IAKjbigUTHxMYpiDg,54716
335
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=niM44vDmpoRMMGJ9g-5qIuUHqeDkrsOk5TJpHZMvlAU,55114
336
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=6sawX5avdKR0ZOStnFom-FbcjCRXySoTPtHksMnNaj0,53579
337
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=iiTABk8xZD1T3QY1WrmicduN2Jk3UZ_wutFHdGrXwUM,54186
338
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=CGymVQuwdfbip_YfDqz-pniCGTFd7NI82UUDTGp1c_g,60171
339
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mTAzO2gVL5TtDRExgpytgNEVxt7DvPTYPb6xNbxRYt8,55253
340
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=ToIeH8C32chpaXf8v8DgqozfwwKa12-22shdBcmJ-QU,58148
341
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=wEtbl-3q1w62qVnE-GRgjhTmq7ItQsR063Igm9k8QX0,53138
342
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=c0kO63RiGi1N8d_xtmROUgLX6edbRSbHw5byrA7aMY8,54093
312
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=Gw4gyVGrMlPvkkzyOfPhs5JcRWR1Xke5gp5iXQ7jIbI,52402
313
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-1o1eak3QCAuj4TxuzUSovxbt5TB9c5pq_hKQnaYEeg,52772
314
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=zQh4KoiP3LRJAI4rpfFBL3Wm-0OaO08NxllPaKlrPSQ,53790
315
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Vnvhk7Kqa0-E2UAj8Fnz4uddF8WusaV7HYlLHQ0BTOM,54866
316
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=oFJgET3M0somaOMiqXSeqkWlLT7IDYPq3aK4-5Fgnkw,52655
317
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=t1XJjA4IJOxuwCtHNBmUlRQC4GMLMao1z0fYy7WjsmY,51852
318
+ snowflake/ml/modeling/linear_model/lars.py,sha256=9EWnmtoXtQ7qfPDysIEscYI0URVW7Erz87faNHWSnB8,52558
319
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=MOVCchqvi3ig51Mdj4fxgIOnFQPT4IiOQwyNy994POI,52806
320
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=P4J8YiQGhce2aEQ3-Dt6zhJDi_435PUuRc6-AND20b0,53172
321
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=H301rhXQ6FLmRnllLa0Xj-bXhrqvX72iSQhtT6vnNr0,53984
322
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=i2VFYA3sDSdkxjzr0ZfP17G__AuZvF-4FSXpvq4ItIU,53699
323
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=dPOQ1taHXpEZiIxoAQM0_A60yb-h6sydB5QWpLw3yQ0,53687
324
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=laCliDcS1zCMNMXfsViJGOGnVK4c7RWrs1Lp5O-KLmQ,53008
325
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Ff_lG_X-trFgRd1NTS8imvizRgXz4Bwcjc-E1J6DDdk,51396
326
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ERAsDCJotCVSEZ0mV16TC2gE_jK_pCBGbEnDCZqLJzQ,58161
327
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=1EjeRpIhVOFgzEviAxMSxyQ_41frzpUAo1UixdVGX90,59225
328
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=UHtV00Q03_NC16quLOfseA4UXgh8taxnW5g41ewjqOs,52871
329
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=uDGIRgfM8igt3G7moQC7enGlxidKYvokk5aUUpioiCM,54536
330
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lC1DwiYq77sIBgIN1wY0UIZgq39zlHIkzCKopzRJfqY,52414
331
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=5D7E6aQ1ai-KJAtrN3sPoOwFBz6JHUXtuSEzX7zL0UA,53703
332
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=3TX4B198YtQaOlgDQECkycdu5bHg2JDS-VKUQ_oxQmc,51619
333
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=IK6h28zVJRtM39D3aYmolORbYAN-w1pb073i1GOleIw,55443
334
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_bTXS9tF6fLzvnuP3xl3UFtqPwc1CjjaYg8tvHufj3I,54505
335
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=TFSw4k_iVgJkCT-2mFY-iOwwQFeCcLODaVExLXWmV60,54760
336
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=_tHgFG75s9KWY09j0EVjYbzESVfc1n8mKcde9FoV_6Q,52702
337
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=-UbBiILWGC5QZ3ZgCJPCOWhS0rqIs5j-3f6cBRvamQk,55841
338
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=m44D16wifl6ddFPiTzDwvXEe5oN1T3SbRg3wznHmLuE,54716
339
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=poqerGrJudOW_uJ8TqWD9L7VlcMK7Ighq4-C_rI2tXE,55114
340
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=qi2FXUnAoBH9GYOCoT92DNiSLetuiASMPzpgXkK4Mz0,53579
341
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=Kp-7RKsryYRaPjOSDCi0KX3-XUX-0OxjlH30NXKlMic,54186
342
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=7paDupysLP2v9KwiLk2Kr8V7ga3m590SVX_9pPA1WCo,60171
343
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9KnZ1bDYdxvTvBu26is0ZShldse5kzAePlmVbCg4RCs,55253
344
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=eMtVqclhBeK2SERRsSJDd9q_bKpAhFJvqVdcd0M_WUY,58148
345
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=tC-ZKgIh3jirmJQ4pz9q-gx_VAg2g1lU1W3ySBmqmUg,53138
346
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=n2b9wJ_JsjEP9eCtXXPVL0Zwyi8WAbcDy3Gox_x22f4,54093
343
347
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
344
- snowflake/ml/modeling/manifold/isomap.py,sha256=aFdaFP0fRxXtHnWDxiyOdas2xjjTFB0JqFBSrXxbqEE,53396
345
- snowflake/ml/modeling/manifold/mds.py,sha256=I_QuAmmAvR_XVhC02S1Id8_86onuZVDn3C2vmEIaskY,52612
346
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=WWXDnycP_jkLO5krDH_HkF8RGmvGbc0p5UcNpojImRs,53476
347
- snowflake/ml/modeling/manifold/tsne.py,sha256=oSHMII0dVUst6ezVmfTlyP3wJywVJIt7Aj965a1p1PY,56599
348
+ snowflake/ml/modeling/manifold/isomap.py,sha256=40qlogth5GJ-OvbfwJ4uiNnAGy6toDMkgFrdhuvubv0,53396
349
+ snowflake/ml/modeling/manifold/mds.py,sha256=kqtvzO4U7dMFvJyk7-dk_CO4KFqj4a52QdWqVlxC0F0,52612
350
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=3hoL1EeGhWHbskUhrqKopE6f-__TNwEBPk4FxX1fSao,53476
351
+ snowflake/ml/modeling/manifold/tsne.py,sha256=LsguZKjlriDl-TGRyb7dM3LPBIhEnkzFfP8gxULJ9t8,56599
348
352
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
349
353
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
350
354
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
@@ -353,35 +357,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jg
353
357
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
354
358
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
355
359
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
356
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=vKF2eQnrB63KmDKv0uRytR9-1CYOYU52fr79q0Mfvp8,57984
357
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=-RLbWrJUJTZ1GZwNn0yrZKwGQpSJZgof6iJpYJG0Wz0,55877
360
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=BSU-QkKxHAhmXvvrvJNMRSD97i8big99ddn3prcG3tA,57984
361
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LjF-eH_jVwiYHSYcYoKhAQdu1zbGh625-1wrWVOawN4,55877
358
362
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
359
363
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
360
364
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
361
365
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
362
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=Wfh4mMKFKbh82cZYSVSn1Ra0CrWdw1uplrpuUl9z3RU,51398
363
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=-Hpcu72UIFh2TjPavGXl4GLfuQ6KBProKFc0omJvF54,52333
364
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=qlTdJpZ_kG68l2suCDc2Q-lFhZAzof8DuH7Fpn2kxH4,51670
366
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=RFKcpcQ6V67zYA8B8Ie_HegCKcC7WP8mb7fw5vCLBOc,51398
367
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=jGJYLbIoGoe5YApV15c1-U66Ru5MEjjipmJWbMz1uUQ,52333
368
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=JzN-_s5-HB8iYn008dfRYBm0vVXUakHGp7g0F6E0yaM,51670
365
369
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
366
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=KNaMA7jiWY1k2y1NJQti6DjHJDmNDjn9GNpmdik_EqY,51925
367
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=4y2cpGa7I49_yA8mUTnVk3yHFl8I02-5-C1zFSbPzwo,52262
368
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=AIl4z8cJywDBWB9Aj77mWqwPQM2FXDJa3iZbX-HFFyg,51941
369
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=J6jl4rFzTu3wXEXCE0gg_XHGKYMqKdsJrw7KEmEqGu4,51073
370
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=J1-OnSpbELzx5N75mXU4DwoKQQVQV6cExx37E9YPBXI,51707
370
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=FF2aeMo3SPtzPJaS3uxWtbqOe9QELkWfLKy2mr2VyL0,51925
371
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=2PZm3AjauUH6JwJV1qKkH6P4VJyx1nmA_qUc5gDKtxU,52262
372
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=m9E8wrfEWdz-nZa6YbeQ6HKEkMHvlJ9rN_gIRug-qTs,51941
373
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=MD5opflzY1Z6RkvTO__q8bz-dO1byZACNXlk8RtHuqw,51073
374
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Rph7Qx7AaILxFiRwkmxLcq9Mp7tcB9Zldnk_TGnjM7E,51707
371
375
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
372
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=_Yf9GV5V48Odh-xD4urNQKgtEisQz-V85RCAmdZDcS0,55039
373
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KUAfOp5spxNgiy1sx_S9B8iugvRdCXwPOkgtK_pwrtM,54405
374
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=PMX2ee5gmtnBk2Tn6QVe0tvLJWHtntAkvCbRqI07-9M,52694
375
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=C-BHWY1LTSUxet9Cq2RRNOuYp1PBAc8U9tEGmZOn1l0,55270
376
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=54-5Z0s0UqOzgbW12mBrRLJXX-b2s1rLLE40zGJtqyA,50858
377
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=cT7OHKZZz3ZVBSCF2sEv3eigrJfdZ4ceXIJTbU6uk50,53177
378
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=kmwYOcG7oEPRSYRACms6lnAwBbaTr5ZpLWRkI_qkILA,54759
379
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=_n3tarqrvg-YrNOpOVuQIsgQL0YdPoJ2g-eXPVPoaTk,55488
380
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N1CaJ-AEcYnzcQg8XzKq-JDJIqvi01xxCAeTh7TJQPM,54088
376
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=DV0nOvJOON9nGjnVUQ-ZGTo6tDYZVwwZ9x0rx_F92xQ,55039
377
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=Gmm1EuNwVRP8Tg_JQgsUZQAkGV5FLAoQuXPhElBI1W8,54405
378
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=V0BvTtIbqoKLC8YxtucLOsEOhvqn3f7dk6t27Pqhnj8,52694
379
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iMBCeK3MWsVQaTCHzpnwDykFJ01Qt6H6W7C1WvjN92M,55270
380
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DMhr-Liybn0-xjtOamrlZDlGOFvRjXWbQcHZUpkto7k,50858
381
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=H_uFZBPw_TzQJ2ss1JUwkzawJR55SXYkChOSHwddrlU,53177
382
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=d1yhmcaF_ykTEM9l8CIOfIBvwmEig1MhDG6pPBPsznA,54759
383
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=8x2CFYZ8PJc1auXzsrfJaon1qh44N7MUk4wIw2C4XmA,55488
384
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VVaX6vWhonNGEWozb-tvfCw1yr22lzfrNHs1PFwgHD8,54088
381
385
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
382
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=e5iUpcB_ZHpHjtf2uZD5N0qwPKaIiy2sxdv9I6dr7tQ,51901
383
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=DV9IQYwGTW-12O2tP2vEl5Y4lkB653sP4Bw6PEsZHho,59455
384
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=evzApQusrUFssU6PDu4YXk3apyOGnTDKberoXANN1VU,58567
386
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Yc-lI8mnWqrFw4eA6eDkBUcQoNRCWelefdyuI0BG5IY,51901
387
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=jqweN_4dDGdUVTWk-YbMPrgwu1HB6UJqlIo2ekX7qIM,59455
388
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=oI9lQJlJcB6YkAZz3MEpZgr-yA89XfW80JNIPqmx2aQ,58567
385
389
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
386
390
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
387
391
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -396,37 +400,37 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
396
400
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
397
401
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
398
402
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
399
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=r22lF0Qw3ylUesyu4SDX0rqXzs4MYmdJoqlakCBz7_c,51843
403
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=SKYrRTkTS9Jsx2l0jTRoVrWyzWqJUw7StnOlfp-3pBw,51843
400
404
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
401
405
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
402
406
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
403
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=QvurssFENi7-aHTkLyyWxS9rQ_s_dmmxr7kjDmn7Ygg,52172
404
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=4FsxD-Owdu_a7jr6lO3LPWEaRqtlODg-8MIokB-Avbo,52519
407
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=swPlF0NThzMS-3bCa28R6NWh9i-lpngshdKtp6yamVc,52172
408
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jkDezUzyTieSWdPj0w3xMXwePeqVeAlmPDmIylzmcBg,52519
405
409
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
406
- snowflake/ml/modeling/svm/linear_svc.py,sha256=ccGMbftE9R49lKdZfBMlpT4B0LefdJSaNSP--8v8InU,55744
407
- snowflake/ml/modeling/svm/linear_svr.py,sha256=1lI0VDv_huwEE0lBZaMhtJ3qi2ZJ3dNeKzvyVpE5PUo,53927
408
- snowflake/ml/modeling/svm/nu_svc.py,sha256=qijEUvsgmjfStiyyvg8_TTMv_BVFq69R39M5olbLyHc,55412
409
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Fti-_OEaYxMlP_7KQnmSJ5J6JfPZowSrXQVeGxnPATE,52526
410
- snowflake/ml/modeling/svm/svc.py,sha256=-6AL1e6eoReuwD34wiC3fKAEy7oXrLwSIAJLFPHYb1o,55726
411
- snowflake/ml/modeling/svm/svr.py,sha256=-c39k9sfWZGOshzQDblh-IH_SM1AAywevOXw93G9GlI,52705
410
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=H5uBK6-hIbZ07UBuLk8cT4fOCr6IWJAAoiEl5NkoQR0,55744
411
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=RoT53AR6Mxf51Qz7iUiDOx9bbx6sVHj7TQuqFDuodUA,53927
412
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=UlEqjXs6a1nLoAew4HMRUEc44eCeKgQUM2Zzz-nE61M,55412
413
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=5iKVXl-VNItqx90T6LdiFfp826JpU43pXnPpCDVmTv0,52526
414
+ snowflake/ml/modeling/svm/svc.py,sha256=xrz4ewWJPcuUHKddohzRdMi-jGY6CbmbiHjopf_7h9w,55726
415
+ snowflake/ml/modeling/svm/svr.py,sha256=72iX4D41zCQoJzwsHVkCnILlT_DlGRwAPgAoRImgRGE,52705
412
416
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
413
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=sikvjQMyaD0ji8cHERdCSvhY161wWpWzT8EYAEcoBl4,58512
414
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=999NuwdM3ioYv6bgvtAA6RhSmUHj9fpwLEzigLQmWsg,57060
415
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=4qCZ_LgKEn1CjJwe-jvYqYrEG03s89_AVBCevaR3zcc,57823
416
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=1WP5zhhdXsNbFtZ38RLGj0THvMpVUF_zZr-j5qlEzds,56408
417
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D9p2cce4dsg8LtUpWSAMXrw2zPHrzBxV4qwJPIabLhA,58512
418
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kUCcY_Zx7s8XMbTVuEJr_DyyOQIhXBa43NVFSfFgCcg,57060
419
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=MmWQQoB1weztkYYlbqick8QLhRfihHk9oKDC8KCsJBs,57823
420
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=kbWsKxEKXpPg-5IK3K9BWTdpO49jPCANdFB5Ihn5xRw,56408
417
421
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
418
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=SF5F4elDdHmt8Wtth8BIH2Sc60l7ZgVen_XsGoKraIo,63977
419
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=5x-N1Yym0OfF3D7lHNzLByaazc4aoDNVmCQ-TgbYOGg,63580
420
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=H3SAtx-2mIwS3N_ltBXVHlbLeYun5TtdBBN_goeKrBg,64253
421
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Up3rbL7pfeglVKx920UpLhBzHxteXLTWHqIk5WX9iPY,63778
422
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=q0KnKqzxkLjg4c8FjKF343k-PyvdqpnQIkKyK7Fohwk,63977
423
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=-k0ZHkTZkVybwNTbnRkR4O0MglbPvqbyD8M58daeN04,63580
424
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=e7WgTxM3xHVxkOIhgUWnDrvFt1lZIGPJel4LhIGk46I,64253
425
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=tnCllaN_BEgRybZcxyvI3vZYzsEpCIIM7oGEPgF6y60,63778
422
426
  snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
423
- snowflake/ml/monitoring/model_monitor.py,sha256=-PlqiIc3R2a_eh789KaeApbK-RV4VUfRucWGqjKhOKs,1885
427
+ snowflake/ml/monitoring/model_monitor.py,sha256=1NOub1Cm9mtyawTj0H6pA1KtmEZ_yKVpn76PMdXWh0Y,3216
424
428
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
425
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=Ke1fsN4347APII-EETEBY7hTydY9MRgQubinCE6eI_U,12700
429
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=DzEEpIshNaPnBZl2EL81J7Eltpv7mitCtVGOVKBFrBM,15913
426
430
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
427
431
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
428
- snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=0jpT1-aRU2tsxSM87I-C2kfJeLevCgM-a-OwU_-VUdI,10302
429
- snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=1W6TFTPicC6YAbjD7A0w8WMhWireyUxyuEy0RQXmqyY,1787
432
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=ZENYZwAQXJEEyamX841qVViJBD0UwS-bdVQnEz7lBKg,10484
433
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=navyOSsDvbJ6RIuFge8ECsD9FxWcRKxd4bopMiHybS0,1931
430
434
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
431
435
  snowflake/ml/registry/registry.py,sha256=Ro7flVHv3FnEU9Ly3zWRnDAqWiwRSOA2uw_MSKmCBTI,32936
432
436
  snowflake/ml/registry/_manager/model_manager.py,sha256=QsEpIbg3FPEbDOQXb_oo41hBjojrdVibdrNPCyJ0Cb0,17650
@@ -436,8 +440,8 @@ snowflake/ml/utils/connection_params.py,sha256=JuadbzKlgDZLZ5vJ9cnyAiSitvZT9jGSf
436
440
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
437
441
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
438
442
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
439
- snowflake_ml_python-1.11.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
440
- snowflake_ml_python-1.11.0.dist-info/METADATA,sha256=4LIdsNhVtufUS0AOud8IBw-7Y0duaQxLbAJWvIn_eZc,91614
441
- snowflake_ml_python-1.11.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
442
- snowflake_ml_python-1.11.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
443
- snowflake_ml_python-1.11.0.dist-info/RECORD,,
443
+ snowflake_ml_python-1.13.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
444
+ snowflake_ml_python-1.13.0.dist-info/METADATA,sha256=2qYBLI9oOcJD_9nibGr83ZmW8fBFPqqLrbvjaPfrhDM,94503
445
+ snowflake_ml_python-1.13.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
446
+ snowflake_ml_python-1.13.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
447
+ snowflake_ml_python-1.13.0.dist-info/RECORD,,