snowflake-ml-python 1.10.0__py3-none-any.whl → 1.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (205) hide show
  1. snowflake/cortex/_complete.py +3 -2
  2. snowflake/ml/_internal/utils/service_logger.py +26 -1
  3. snowflake/ml/experiment/_client/artifact.py +76 -0
  4. snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +64 -1
  5. snowflake/ml/experiment/callback/keras.py +63 -0
  6. snowflake/ml/experiment/callback/lightgbm.py +5 -1
  7. snowflake/ml/experiment/callback/xgboost.py +5 -1
  8. snowflake/ml/experiment/experiment_tracking.py +89 -4
  9. snowflake/ml/feature_store/feature_store.py +1150 -131
  10. snowflake/ml/feature_store/feature_view.py +122 -0
  11. snowflake/ml/jobs/_utils/__init__.py +0 -0
  12. snowflake/ml/jobs/_utils/constants.py +9 -14
  13. snowflake/ml/jobs/_utils/feature_flags.py +16 -0
  14. snowflake/ml/jobs/_utils/payload_utils.py +61 -19
  15. snowflake/ml/jobs/_utils/query_helper.py +5 -1
  16. snowflake/ml/jobs/_utils/runtime_env_utils.py +63 -0
  17. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +18 -7
  18. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +15 -7
  19. snowflake/ml/jobs/_utils/spec_utils.py +44 -13
  20. snowflake/ml/jobs/_utils/stage_utils.py +22 -9
  21. snowflake/ml/jobs/_utils/types.py +7 -8
  22. snowflake/ml/jobs/job.py +34 -18
  23. snowflake/ml/jobs/manager.py +107 -24
  24. snowflake/ml/model/__init__.py +6 -1
  25. snowflake/ml/model/_client/model/batch_inference_specs.py +27 -0
  26. snowflake/ml/model/_client/model/model_version_impl.py +225 -73
  27. snowflake/ml/model/_client/ops/service_ops.py +128 -174
  28. snowflake/ml/model/_client/service/model_deployment_spec.py +123 -64
  29. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -9
  30. snowflake/ml/model/_model_composer/model_composer.py +1 -70
  31. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +2 -43
  32. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +207 -2
  33. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -1
  34. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +3 -3
  35. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  36. snowflake/ml/model/_signatures/utils.py +4 -2
  37. snowflake/ml/model/inference_engine.py +5 -0
  38. snowflake/ml/model/models/huggingface_pipeline.py +4 -3
  39. snowflake/ml/model/openai_signatures.py +57 -0
  40. snowflake/ml/modeling/_internal/estimator_utils.py +43 -1
  41. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +14 -3
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +17 -6
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  46. snowflake/ml/modeling/cluster/birch.py +1 -1
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  48. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  50. snowflake/ml/modeling/cluster/k_means.py +1 -1
  51. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  53. snowflake/ml/modeling/cluster/optics.py +1 -1
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  57. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  64. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  65. snowflake/ml/modeling/covariance/oas.py +1 -1
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  69. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  74. snowflake/ml/modeling/decomposition/pca.py +1 -1
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  103. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  104. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  105. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  106. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  107. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  108. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  109. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  110. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  111. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  112. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  113. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  114. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  115. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  116. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  117. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  118. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  119. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  120. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  121. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  122. snowflake/ml/modeling/linear_model/lars.py +1 -1
  123. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  124. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  125. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  126. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  127. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  128. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  129. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  130. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  131. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  132. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  133. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  134. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  135. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  136. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  137. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  138. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  139. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  140. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  141. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  142. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  143. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  144. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  145. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  146. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  147. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  148. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  149. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  150. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  151. snowflake/ml/modeling/manifold/isomap.py +1 -1
  152. snowflake/ml/modeling/manifold/mds.py +1 -1
  153. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  154. snowflake/ml/modeling/manifold/tsne.py +1 -1
  155. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  156. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  157. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  158. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  159. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  160. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  161. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  162. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  163. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  164. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  165. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  166. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  167. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  168. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  169. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  170. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  171. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  172. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  173. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  174. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  175. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  176. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  178. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  179. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  180. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  181. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  182. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  183. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  184. snowflake/ml/modeling/svm/svc.py +1 -1
  185. snowflake/ml/modeling/svm/svr.py +1 -1
  186. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  187. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  188. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  189. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  190. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  191. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  192. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  193. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  194. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +91 -6
  195. snowflake/ml/monitoring/_manager/model_monitor_manager.py +3 -0
  196. snowflake/ml/monitoring/entities/model_monitor_config.py +3 -0
  197. snowflake/ml/monitoring/model_monitor.py +26 -0
  198. snowflake/ml/registry/_manager/model_manager.py +7 -35
  199. snowflake/ml/registry/_manager/model_parameter_reconciler.py +194 -5
  200. snowflake/ml/version.py +1 -1
  201. {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/METADATA +87 -7
  202. {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/RECORD +205 -197
  203. {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/WHEEL +0 -0
  204. {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/licenses/LICENSE.txt +0 -0
  205. {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  snowflake/cortex/__init__.py,sha256=Z51KTLHGAC2L1DXYaKeDIoTjBEeRGNZHpHZ47vj6aBk,1101
2
2
  snowflake/cortex/_classify_text.py,sha256=2AYJBABEn8pngFJ2eL7Vt6Ed0t1xEOVWfwb6SHLQKRY,1634
3
- snowflake/cortex/_complete.py,sha256=1JRD9Ye1FX9cM6g4QfZn80EiY1X_9mQtM3zHU2tnHjU,19733
3
+ snowflake/cortex/_complete.py,sha256=b-tHVtAut5b38PL4rb4mu2pZ_RSFOtrbxRR-y1C2ac4,19812
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=18DhgNj1zWbmGfEvZyIV8vIBGjF3DbwvlhCxMAxXFAw,1645
5
5
  snowflake/cortex/_embed_text_768.py,sha256=UdsVuPsGeMRZAuk3aFa98xQrj-RsOgolNJKC9lQNhn8,1637
6
6
  snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
@@ -10,7 +10,7 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=B5r4kxP_Y86tCkMrzCJRl5C4J8HJqV-KhqQGS6r0Klo,99
13
+ snowflake/ml/version.py,sha256=5tlizwZvedjvjGdJByUlVBEhnQ4MZljXjYxb1SotXp0,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
@@ -45,7 +45,7 @@ snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MR
45
45
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
46
46
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
47
47
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
48
- snowflake/ml/_internal/utils/service_logger.py,sha256=LmADyxsSE3-TYBX1gCYtxvaEDdH_Lf6d5gRt44uue0I,6267
48
+ snowflake/ml/_internal/utils/service_logger.py,sha256=Vi6fh3drClDYkwm9OGSw3TBIU6pJq8e8Jye54d0jEKk,7183
49
49
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=k4ddzs8iJpRpVvgbbOtU8j4fUvqa77Awk65EJ5j2uxk,4253
50
50
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=tm2leAu_oDTNUQZJ98UpKtS79k-A-c72pKxd-8AE-tg,6353
51
51
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=YHIwXpb8E1U6LVUVpT8q7s9ZygONAXKPVMD4IucwXx8,4669
@@ -65,20 +65,22 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=ljY2HA1E724qnBmvuEzQA8o3ZT0XMJkeIYJ97vXPx5A,11316
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=TgkBE3NDGPdIcyZTlXcouVw2CtDKtFnPnp-BDnknIdE,14675
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
- snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=rdCBHRqTYW6I2ztCpO-Zyb9nd_0HV26QdpGMDwxZ144,4446
70
+ snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
+ snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=v1NwaNcBCOiff8mHShelbVl0Rm94BnwqqnG_KTEmI2E,6692
71
72
  snowflake/ml/experiment/_entities/__init__.py,sha256=ThrslBFuDxOUvdS8j_bVmEaEAms8nR1aY0ocYFnVPFg,155
72
73
  snowflake/ml/experiment/_entities/experiment.py,sha256=lKmQj59K8fGDWVwRqeIesxorrChb-m78vX_WUmI7PV0,225
73
74
  snowflake/ml/experiment/_entities/run.py,sha256=_bWt1YpP8iulg5jeBXMXw8zGZHr9zSE9IVIBHcCdfto,2293
74
75
  snowflake/ml/experiment/_entities/run_metadata.py,sha256=j8V2N6QBAx4TP4h7MLIPXqquYI8KyNZnkW6wzm-peuY,1589
75
- snowflake/ml/experiment/callback/lightgbm.py,sha256=JypczGEpvAtYmXT4785Obny7B2-zNkpBurnAWFVIM-Y,2368
76
- snowflake/ml/experiment/callback/xgboost.py,sha256=RiXL6ft4GOwKjE_POJcNgon44pq3BIOAy2SYmAwJMuc,2384
76
+ snowflake/ml/experiment/callback/keras.py,sha256=7oq23irYkBV7bLFBCxxKlf9pL4YuDFJDCZ8xtffVRFI,2547
77
+ snowflake/ml/experiment/callback/lightgbm.py,sha256=5co7eR_t651cq1WTK9JCQjhSlYc2oIvxaf3aVnVOlR4,2613
78
+ snowflake/ml/experiment/callback/xgboost.py,sha256=eZMRFAebMERwdqMFm7i6S9wkHD7_VLcwIP0OkWHDOMM,2621
77
79
  snowflake/ml/feature_store/__init__.py,sha256=MJr2Gp_EimDgDxD6DtenOEdLTzg6NYPfdNiPM-5rEtw,406
78
80
  snowflake/ml/feature_store/access_manager.py,sha256=Q5ImMXRY8WA5X5dpBMzHnIJmeyKVShjNAlbn3cQb4N8,10654
79
81
  snowflake/ml/feature_store/entity.py,sha256=ViOSlqCV17ouiO4iH-_KvkvJZqSzpf-nfsjijG6G1Uk,4047
80
- snowflake/ml/feature_store/feature_store.py,sha256=kZOQ-ldcpN9C8oYQLmYJgI5YCDVKOb5ZySDn2r1HMfs,114217
81
- snowflake/ml/feature_store/feature_view.py,sha256=VDvK5R-C5crxwACV9QsCeakX9oSzlRBgH6lqA2bzGb4,38979
82
+ snowflake/ml/feature_store/feature_store.py,sha256=r51z1SC6e7Sz68dz8pIWQYscVgtG68yiOncBJe6Fcyc,161425
83
+ snowflake/ml/feature_store/feature_view.py,sha256=fCciDGC8qd-ySGVEHKHo-PYIFrAuFlVAFDu8ZiRTDIY,44141
82
84
  snowflake/ml/feature_store/examples/example_helper.py,sha256=eaD2vLe7y4C5hMZQTeMXylbTtLacbq9gJcAluGHrkug,12470
83
85
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=mzHRS-InHpXON0eHds-QLmi7nK9ciOnCruhPZI4niLs,438
84
86
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
@@ -108,45 +110,51 @@ snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3n
108
110
  snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
109
111
  snowflake/ml/jobs/__init__.py,sha256=v-v9-SA1Vy-M98B31-NlqJgpI6uEg9jEEghJLub1RUY,468
110
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
111
- snowflake/ml/jobs/job.py,sha256=VIRT9K5lhW3tqq1rB-H9GYq_qkraM5DEXZteHnWhdPc,21101
112
- snowflake/ml/jobs/manager.py,sha256=M_qhnAdMDYPWL2hQscDQqzeavzEricQ5WjztcGn5XGo,22621
113
- snowflake/ml/jobs/_utils/constants.py,sha256=sdidOyW2X81u0E30DU4K5aPjBTzNQmYtVyZ9D8mQaL4,4066
113
+ snowflake/ml/jobs/job.py,sha256=h0hb-37VY9bUIsW0e-UybCtLhylFGsxO-mqIlzPPv40,21811
114
+ snowflake/ml/jobs/manager.py,sha256=cr_z_Q5F2BGL8P9el0Xf0Vs5ad_S947ATn37SzDdjZU,25187
115
+ snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
+ snowflake/ml/jobs/_utils/constants.py,sha256=FRsmwGLYLbESf3c65mLEA34DuGajhBRC8BkHJw9BiMU,3838
117
+ snowflake/ml/jobs/_utils/feature_flags.py,sha256=cH_NyeOncL3_tzbk0WvL1siNyodxBgn1ziPk2yBW6wY,404
114
118
  snowflake/ml/jobs/_utils/function_payload_utils.py,sha256=4LBaStMdhRxcqwRkwFje-WwiEKRWnBfkaOYouF3N3Kg,1308
115
119
  snowflake/ml/jobs/_utils/interop_utils.py,sha256=7mODMTjKCLXkJloACG6_9b2wvmRgjXF0Jx3wpWYyJeA,21413
116
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=Qhj4NRrZG1Wx3GijyiFTsJyIv6fdgPfREmvQ5uDybvw,28870
117
- snowflake/ml/jobs/_utils/query_helper.py,sha256=h5s-_MgHc_f9AmXD5C06frHdP84n9Rmevb1Yu6R1w7s,910
118
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=VhdLXtDJXi5RJpC4exUUmx2gIb39qu-SQ5VraQi4KLc,13429
119
- snowflake/ml/jobs/_utils/stage_utils.py,sha256=frjXVvnzFIJCoCWeLF_5x6LsKMq20vp4q1fZvwbXONc,4734
120
- snowflake/ml/jobs/_utils/types.py,sha256=jXePdeg_KWVSDzs-afRTNx0m4U4MRdRF0rZxDobuNq8,2346
120
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=1Xon3jlBgzfv1SQgQkJ1ir3xt9PVviP8-UC6P-FOmwc,30807
121
+ snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
122
+ snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
123
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=_USJN0H7wjprPcS5p6SbAUQJOQjljEbLcdMrtnBkRrM,14751
124
+ snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
125
+ snowflake/ml/jobs/_utils/types.py,sha256=AGLu0kPTNRUki26rah_KBwWp0bBJEtUP3zcfxkj5kB0,2326
121
126
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
122
- snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=DmWs5cVpNmUcrqnwhrUvxE5PycDWFN88Pdut8vFDHPg,5293
123
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=TgadoKeIG0he3kxeUij_-K9SYIrS6iKGzO0JT2d-O3k,14954
127
+ snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=N2wJYMPlwg-hidwgHhDhiBWOE6TskqCfWLMRRNnZBQs,5776
128
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=wYzNamptbra1M2U85hAPZyA2t88JfaEWB6xRESxCVcQ,15412
124
129
  snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtcxaV0rI7IQ2ZiO0Li7zZ3U,7433
125
130
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
126
131
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
127
132
  snowflake/ml/lineage/lineage_node.py,sha256=vmikk4qaZuVFhQqW-VM6DuW4tDvmQlNbACvIVZEamcU,5830
128
- snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
133
+ snowflake/ml/model/__init__.py,sha256=S9Q77g_uxiSVkPd8fbMsP7h3y3lp0sj6UJQYH9OdeO4,467
129
134
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
130
135
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
136
+ snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
131
137
  snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TMkBR67XKY,32324
138
+ snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
132
139
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
133
140
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
134
141
  snowflake/ml/model/type_hints.py,sha256=G0kp85-ksnYoAUHRdXxLFQBLq3XURuqYOpu_YeKEaNA,9847
142
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=89YLUNtPv3OM1L1Jo_-RD6ot1Dg0KWCLZqd-wcCzivs,710
135
143
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
136
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=z4jl0aVSXywi3DBtKU4zvvQZpkfsri9ZmULiyeLx3Tc,48132
144
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=qjiRgNItMuN2Gk0zKBcQvNCY28HCbRniDtXQnOrkqnE,55022
137
145
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
138
146
  snowflake/ml/model/_client/ops/model_ops.py,sha256=z3T71w9ZNIU5eEA5G59Ous59WzEBs3YBcPO1_zeMI8M,48586
139
- snowflake/ml/model/_client/ops/service_ops.py,sha256=Io7Onza0fH3M6vV_HznurBk8HSrlpjJcnpjbvyOm95A,44843
140
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=07b2vdtUEq-a6BZOqX5sqGhK8SI-L1597IgBgoX0XW0,17505
141
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=esuS0MsBEzEyh8ifJH4JOUkSsdX_KL1-KT8KswEHltg,1945
147
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=n53NrVhmCmVBsDrpSer-WKVm6mdIEP8hXEyQji2M-8c,41823
148
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=-JUzVlCLvyifxjHvk5m3ifIWJw6jU5xuTja3og06e0I,19386
149
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=5CMFdgaKN9lZg2m8Np68LiGjxNbQ8bd9MSaZG9mYHGk,2390
142
150
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
143
151
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
144
152
  snowflake/ml/model/_client/sql/model_version.py,sha256=QwzFlDH5laTqK2qF7SJQSbt28DgspWj3R11l-yD1Da0,23496
145
153
  snowflake/ml/model/_client/sql/service.py,sha256=j-JdXeWy4oATTH_Yz6OEqhW81t1vM70b5JpAtymar5g,10360
146
154
  snowflake/ml/model/_client/sql/stage.py,sha256=2gxYNtmEXricwxeACVUr63OUDCy_iQvCi-kRT4qQtBA,887
147
155
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
148
- snowflake/ml/model/_model_composer/model_composer.py,sha256=VIEAY9nW8t9dGKdauoa0QwHf75wEndD4cEzWSz9sENE,11842
149
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=fan34qAiV13PuT_mPW3yke5KRQiLJId1emQRN2EEnhU,11220
156
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
157
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=y6lu1_4UC7pfosBKofc0dl-LWF8mpcTqhY5sKSkUH_I,9247
150
158
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=Oc_PvWG3u0E2pb35w4uMYQdDFEuHdUdOb2gnqnVLE3Q,2917
151
159
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
152
160
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
@@ -162,13 +170,13 @@ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021
162
170
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=8y-LfiBfoj2txQD4Yh_GM0eEEOrm1S0R1149J5z31O0,12572
163
171
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
164
172
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=fM_13N5ejT0Ta0-M_Uzsqr_TwGVk_3jSjsLJiMEfyR4,8514
165
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=n9ufjUozWdTXH0DQhEplYWYLHcqgBujuNVcv7hmABKc,24090
173
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=zTp3-oWLfH3auq7uUhLZxB_WHoIp2GTyqY1rSog6t-Q,32673
166
174
  snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
167
175
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
168
176
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
169
177
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=mF-pzH1kqL7egpYA3kP1NVwOLNPYdOViEkywdzRXYJc,9867
170
178
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=sKp-bt-fAnruDMZJ5cN6F_m9dJRY0G2FjJ4-KjNLgcg,11380
171
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=LP8QSh1Id8o7ZP-0c5PVVXeirVchG-oJeSoHDvsDbJA,18266
179
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=_D1YE7TmEJDsuOUt-mT-2Nza2Bz0sIzSGRKn9sxuDhI,18340
172
180
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=uvz-hosuNbtcQFprnS8GzjnM8fWULBDMRbXq8immW9Q,18352
173
181
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=2J2XWYOC70axWaoNJa9aQLMyjLAKIskrT31t_LgqcIk,11350
174
182
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3IbMoVGlBR-RsQAdYZxjAz1ST-jDMQIyhhdwM5e3NeE,9531
@@ -184,7 +192,7 @@ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=e4TUbWl998xQ
184
192
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
185
193
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
186
194
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
187
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=vAPfRaEatkKfmtp4HCIYgjRzsoN-yISKfaRT39KamHs,929
195
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=LEhIRVHqSrSWzc5B1g_sPknbyjv1-JrE4sXUqBQ_tM4,936
188
196
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
189
197
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
190
198
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -194,153 +202,153 @@ snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=ldcWqadJ9fJp9cOaZ3Mn-hT
194
202
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=xy7mBEAs9U5eM8F51NLabLbWXRmyQUffhVweO6jmLBA,5461
195
203
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=Gz2olwWzT4Kb3yBH0uYn3o92vT_lFoIx4yySh7T2tTQ,10790
196
204
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=Xy-ITCCX_EgHcyIIqeYSDUIvE2kiqECa8swy1hmohyc,5036
197
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=YOBC_Wx-H8bQ967A47nYgqcqLjEA15FbZK69TyAEgvU,7590
205
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=aNGPa2v0kTMuSZ80NBdHeAWYva0Nc1vo17ZjQwIjf2E,7621
198
206
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=_yrvMg-w_jJoYuyrGXKPX4Dv7Vt8z1e6xIKiWGuZcc4,5660
199
- snowflake/ml/model/_signatures/utils.py,sha256=vIs12OF_UKH7qrY0JATU-yZhLTgaKt1MJoEemRULA20,17275
200
- snowflake/ml/model/models/huggingface_pipeline.py,sha256=XNR3MhQpY8Mf7uLOao3r0_oDgPft_-0GStPyvSND-a0,19541
201
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=oGi5qbZeV-1cM1Pl-rZLBvcr3YRoUzN_te_l-18apLI,11993
207
+ snowflake/ml/model/_signatures/utils.py,sha256=RY4ZNWKCQhEJ80N5fb4TdjZLQ7ktYTzUqjpwbtZgtX4,17285
208
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=VCLhlW_CBJAgU-uKSY5a6BrFjc7ANFWSzNaarR6IBq0,19658
209
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=dfPPWO-RHf5C3Tya3VQ4KEqoa32pm-WKwRrjzjDInLk,13956
202
210
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=3wFMcKPCSoiEzU7Mx6RVem89BRlBBENpX__-Rd7GwdU,4851
203
211
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=5Ck1lbdyzcd-TpzAxEyovIN9fjaaVIqugyMHXt0wzH0,971
204
212
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=Kye5l4_Y307Qa4ZcGGthtAO8cB9Mqg406phHByXZcYo,8056
205
213
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=E7Psa14Z-Us5MD9yOdRbGTlR6r4Fq7BQSCcHwFlh1Ig,2815
206
214
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=CEWZXSc7QLZVRJmg3sC5yiNI-tN_wCZmZnySXZhLgto,6476
207
215
  snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=PAvVEoyEKTIH3bpRj9ddSd4xj5JC8Ft4orA8uUWAbFA,7983
208
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=40zepXyRA9lkzGTxGQs74fqcuCQAkFAfnzyIBi4-ozU,5947
216
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=ngvXWydZFoSbzfim3qU_Ygpa_ewf8Ysm7ckzWo5fm2Q,6435
209
217
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=XfWSd1H5B6lcIb1eAapyODl6L6x1lbJ6jm0XtwM8-ag,54977
210
218
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
211
219
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=oXumJxQFMokoxsrXZ03X8NKLWr3yGuUGB3OM8qTTH4E,16416
212
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=ckeh8plxm0sHIDheYwR4etBfZ9mNy0hySd9ApahUG-k,32240
220
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=xem3xtoOHi_HFoi85wvSx7F1BhzxVrGYqMhuyrFz4Ik,32919
213
221
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
214
222
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
215
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=PN-fBoZIjD3Jl5yn7Av5BPveExrpJn3n2Y1xTGVC_b0,54177
223
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=4h420OqHN2JYG7FKYwAwT3RG03sOh8u9vdTnabRr-cY,54177
216
224
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
217
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XiphFPZDckJ_6bUWMO-8XatkTklUcjpdAH8lR00OuFo,52430
218
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=Mdsnf4kiEP3S_4WrjfykEw3eZWsSJoaewvWbzgqYXTQ,54343
219
- snowflake/ml/modeling/cluster/birch.py,sha256=Jo6TkZfLD5aLs4eAJtcyZtwlgL9DpXz-P0t8e15Mvpw,52343
220
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=BiuRlG8SgJZfb8uwc188PJsd5qSLWvRF3hdsvDIQADA,55112
221
- snowflake/ml/modeling/cluster/dbscan.py,sha256=a_EVi5I77x-ieKwwILizlki_ofCoA_L7BwkgpNY1pEs,52684
222
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=xqMUcExCDQQVjvl_ol23KHAz5uB7x7hxjGq8K4uYuA4,54637
223
- snowflake/ml/modeling/cluster/k_means.py,sha256=OW5V0N2EtY7LQdbjcpVaW8pyUKTiNuwWWCjj-G7R7RA,54838
224
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=AlidvXHbUm0BQqCsqykcCI2xImCpCPR8ElLIXXWSlNk,52717
225
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=can2LP4Vvpl9yQt4neUrwRnAtwZAihBO-QF1xiU8IYg,56035
226
- snowflake/ml/modeling/cluster/optics.py,sha256=uTFULCzoDgZ0adK4IX6mqgVAuMv0Gygd25o8zlf7HEE,55894
227
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=DrEwe-67GQKZXEcHDaV38mRWKG9_deTBzq92ZfDk3rg,52727
228
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=gPwW_o2f9KcJfTkYKzrRbWbCR23Vk1n70Z0JjIHT-BU,56011
229
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=mMQme1WyTGyK7WJmHrEIPaMY4xmUksXfFlBFBqE8FuM,51860
225
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hhEEDmf_7Rcd0_nh4PKhQuLEbOcq6F5Q7UgaxIBoxE0,52430
226
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=P88_8O5B9BijnAwkUErVIk59go3tTNC1qlNAnAyAx3M,54343
227
+ snowflake/ml/modeling/cluster/birch.py,sha256=1tqVZGRHa44TT-Q15eBYa4pfBkMq2aOtM_T5zw5AFBY,52343
228
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=muIuhv-fC-rAAN-Q4eT9Lz2vmYYY4f6owfhyy441MBA,55112
229
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=lP3GhtEm4SvZKfzLRFUMIohDQORmgYTEeRX3xt3hEls,52684
230
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=b2KooSg3jLLOazr9itI6txGi2EhWb0DmR2nZJk7TjOU,54637
231
+ snowflake/ml/modeling/cluster/k_means.py,sha256=TvMN2o8xqxTVHmaONgHIeEylSUyX1eYGAkxLrlJmK_s,54838
232
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=bwZNCGb12LWReRI5dIXlT0CY2frdCB9wI1-rPTWPL8g,52717
233
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=xSeHFzoXTUAWQfr0ekaXZ7-POh9_bzc6kl2oD0sRvKg,56035
234
+ snowflake/ml/modeling/cluster/optics.py,sha256=0EeDzyeRR28SyQSS5t-bLgWbnwilN7OzR5cJ26D2QPE,55894
235
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=fs57CErGTlvZqxVrAESBHj3IuaMbJsZX9GZG1hDS39U,52727
236
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=qzZe8QUOTCCjx975p5Xg7J8i6L_DQep6RETCTRvpNE8,56011
237
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=uYuiIBFR1T44tXuSZdQVPam8eUNSBrcXDSw4e36yRco,51860
230
238
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
231
- snowflake/ml/modeling/compose/column_transformer.py,sha256=3OQQggsNoYpYbDewCUYuBi_qWWYRsV0w185LAwu2N2w,55185
232
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=XPvXGr2Tlbn3OeDCDU_IGrPf-utPkE4jjXHsW9rGEeM,52472
239
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=LHcJ39mmAwlqryf2-8pXVdP8kuXeIwC9S8tDvUaLAG8,55185
240
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=TCYzw4WkdQBmyOBbDI3dWUWq3qta4Foiqw7enLl7f_s,52472
233
241
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
234
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=9LIpOcLW--RF25jrpoSSJsJM5asbh3gnAwsCFkC6Jvc,52761
235
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=G6fI9hevwGyr3cL14oqJVLdNvncoeiF2vkYjXpEukx8,50559
236
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Uc35kzMzAZwIo15Y3qcRrvciaRMx2VJLxH64aFqwe-g,52418
237
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=Q0V3LS0sAgJgLgRFNvdwwsRxxT592hlDJIIKQNwHmsI,53610
238
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=xML2bb31xCUykM40bQELyItRMES-p03aoO9gPNEOeow,50688
239
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=fBXLS8hEpY7Iyv7126bEXV_WBUz1sfwm9N_JY82EM48,51455
240
- snowflake/ml/modeling/covariance/oas.py,sha256=K7lDGHpWELONnZmprN2YVHdWl-lE7n2UKRyGO5MmF08,50302
241
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yLfYUr1yhMGUnD1B8dNdjeYTCIWESOHsxrHrXophYFc,50711
242
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=udQIgxCcl7UI0wg81Jt6n0gw-CqZ6430g-biGXM31j8,52761
243
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=UpR2fJ4tVAn2_FKqQKsfYptOY1t3hEnZfweVMp2drtU,50559
244
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=IjvlmpKDQXsnXRmTypisGVKAjfYMOT-7nwcatmrGY80,52418
245
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=E5ZQB1Lu7vt9wdEtHBJlX0IpLb_fyeVFXdQqEqISHg8,53610
246
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GO83MDcAFqxHu2IANpSghyTV7AM0d2Y-97BBqiNK0-Q,50688
247
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sPOYsy80WTsriKmrZUii097Ok7O9jMsRfmDEpNizLzs,51455
248
+ snowflake/ml/modeling/covariance/oas.py,sha256=LlGWvL00tQaSku23a1_PZCivln8KmwXX8N37v6fREJE,50302
249
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nrU72bUxnhuyZ5q_DV5mvhk40FJmjjREd-sTtAzLuik,50711
242
250
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=sBg2xt7mT_SW4iaUHf2YMpLwSgIXlg2YoDB5jCo-AwI,55710
244
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=Ut-tYVcqMSXaaLE0putxSz8Aatdt9tbDD5BOtMnDe2Y,53369
245
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=IxXCMNcvLb7j9QRK6pq37qhTV0h3u3sJrtS613rz9Xo,53296
246
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=qpiboaU7doR4Ak2RlSLpv5WiF0f0AMwmysZEsZ-zvLA,51663
247
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=hc9LRrdn3hlWsoLVaYtGkbIS9CKcZv7TtPycSKDixdk,55653
248
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=4X7770WbECY94vsZyfLpjw9eLHHps5ftJaA55x1U-3Q,56442
249
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=cKmHEgNpAgAp2is0MRFDEi7FdXn_zETrDmG3eHj2l0U,53705
250
- snowflake/ml/modeling/decomposition/pca.py,sha256=DL--DHcMxjoER-gYpKjyUCE3q5ZGi_0I7X8Y_-4tWu4,55873
251
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=dcaCTtxiTHBWqgry6w9ADQNvxP3bZ2N_DzBMxppPUhA,52812
252
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UR5x27eWCbRwzz4y4gZa6zlc7wfWDrm5XiUvfEVMG18,52438
251
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4BCi3SpwYLXtkT9tltU8MeDEGK8OnZ0HY6QOtleWLS4,55710
252
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=OiR42u5l2FfX1gmr9hNtxczwzSS4azf_LX7g8k4jg3s,53369
253
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=bKK3xDuichdh11HWHy3od1feEqL0nJXU0b3SWk_GypA,53296
254
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=KH_qcARGUK16j-cHWC9nOoyWRYfTVX1wWdo2XCq0T-s,51663
255
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=nuxqk1FLSJEY8YqJgcLFelG46fcRP6vr_HUDDXeMEx0,55653
256
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=9egcKgnjZOxR71x-7Kg06-U4Bz1pCjSU2zWvVEe6_WU,56442
257
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=oV9ajBzClXmWKYrrEC0KfyohI0SwBsMAuwxl99fpu7k,53705
258
+ snowflake/ml/modeling/decomposition/pca.py,sha256=_ybuLQHLf-nueGRY1UJt9ICmL1X3bOvH-c-PRTJewqw,55873
259
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=VI3xl-hXhPqiqS-2n9O8Z60WrkLfROJ-fkcrsm1s1vM,52812
260
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=EdCwIHZbriYswrb5DZ0spWTQ2z2JXwzWWqa2PO_Mabs,52438
253
261
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
254
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9qZc2XDOMQS-hVeDcSf7Gi7INnu2PczKF0NgB86Mez8,55329
255
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=HzfQbabMIKkGZa975yKumqsOg0gloA5Vw6AX7DH0svQ,52908
262
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=_OG85UPee-TMgmj-cozucFwMRs0AmDnA6yHkBtSjTbM,55329
263
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=cqWVxZzmm0eZbqwseotsVLeXWHeVoue9t0wBUfTTfAw,52908
256
264
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
257
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=rfOlUx4fc3zfc9YUop8UJh4UyKvL7zTgpK8EDhw77kc,53110
258
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=u5V38S4XEc7PpgMywrLv9bBj8p2pmkPYHXBUFoPx6-w,52113
259
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=ilghs_lbcCZ-UJx4WzgV7LRE8q2GTZaAUt4f9ORt-d0,54302
260
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=NlBi6e1Ik9tSdb7AibiJR1VP8QIw7ST40SoaHuC3_yc,53537
261
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=CaOG7EMFb9szt2wWql2bVtFQLOHDU8vg_cs_pHUrLD0,60351
262
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=k9aK1uGdm9KEkHWerXoNsjZ710Ddp5fYBY_OIKlkGCs,58804
263
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=uNcKO35j_pRJdyVu-qwmzzt_RHUQyl5f2Rq9J46a93c,61110
264
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=a7O5iVOGSHjheqnKCVjnH5K9Ld-SmTWllhPBFqeMEv4,60702
265
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=SHSA_bYMRyTkdVaHc9-d2fGd4H_P7y8shWHbqFBrWVU,61596
266
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=4FbSw_o-7LWGNzcqweeB3UYIkvfJJGjLBbU_r66UmVU,59931
267
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=valmvjZxGeLzQuA7El-gGKLiW2Y6bymMlU6tjWT29XE,53895
268
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=jaD7spMP7ozsxdStwvlovUxx2VbVaf9fbo8ZwWKqPpo,60324
269
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=-arnzokzT_qmftZ-Vp-CFBHLcq07vpj4KFvAzFhm8kg,58777
270
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=QLw56XDhTdNjHOgGbAHHbmRQNzuAUxp3rEdF5fncrg4,53839
271
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=v1ZztvpeqOmkStHQsmgOW3DGc2IPrtX5ritRwkDkCjQ,53391
272
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=Lcl6m5gAD8u7Oagu3_ZCzISU5QdygGiIkAfnehansRI,51916
265
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=X6OnK0zNWQ0awL1B9wqLd713OsiSSRmXmOaEaeIWlx0,53110
266
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=8ETFFsCb1UjeC8-smV7alpPz3gx_PNuEczsnmsJ-DfE,52113
267
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=rtc5OKzthDFd9LrT-3v1iDX5NjPnResPbNqJBZyiadk,54302
268
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=G4hMysxv8WmdK7Ng7skgljUIQqUVy-zJNeEQ515i898,53537
269
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=RrC6X3K5KurJl_QTF_Fq9MCn7RPikidDk1sQlEc3Dxw,60351
270
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=eM42h5z0pj7At5xASxs_Dq4Sgfkj8GaGaqQurXzIKqI,58804
271
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=H4pv_EMvoX0vwowg0Zy26zvJYFK1ILji-HGDFjTNaX8,61110
272
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=sY43QWkOhyH0C_70ASi-BoN_zv7UnIozxXf9scM1iT0,60702
273
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=JHWxXKtuAGN6ZZt5XQLxQBpm9eWYsFOQ8YrDYzG2rKE,61596
274
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UDCLnxaGN657vPWsUS7n8FuOTIHP9BXhJj1Gr6m-lHo,59931
275
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=u7dSxs_iFN-7a3Wy2RTymUBkSbEAyBjE24o4rJy1aiQ,53895
276
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=nmjQDX__xwZfHWDEXKbfSFj0IdhhYugMQQcDXv9SwvE,60324
277
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=g45YEEvmzgWR4IDFINcJ8drHHeoCgvFiI3duciFxwqI,58777
278
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=ho6T70nctk2mvMk4gqcScqBSuuI0AHhogmSLcl6lsBQ,53839
279
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=5ol0kwo9QxsRew7oMoxd70tjdseomR4hX-AL-e54CQg,53391
280
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=yKsAYuM3gEqzhJg-h5bpu_ynv6gGNbmEj_j9kJIyjKs,51916
273
281
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
274
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=AOHtDD6nvoL0n-OR_bQToeRHTLwLFgv3y5cvnPhVz_k,51386
275
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=0MPBvzKLLq804ZHWOdubbUNZlyzue2WFMXZQE3PGtsA,50848
276
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=vVPZ2iN_EzbgHQLj5s7HIGb5a_DMvRw1d-i0cykIfqI,50842
277
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=MTUByQDm-T0FwvonKX1Q5XPMDKvLoBLWpK_8jUC1ePg,50850
278
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=CWBHTaR1k79NphpRemJTGaXSQH_8-v7HYXOoQwVyeFA,50943
279
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=J8tbZQpz2tJn-diy3S-O-MxCoak00pfOcTderrPtRwo,51003
280
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Kyzf2jziMQp2Q5nq8ar5-JAEV9cRZX2axlN9orZMOBI,53782
281
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=DombmnjBuNvDItNEXH_OMV-4wkOVAZmXCMTE9kW0j0Y,50644
282
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=nix50a4yDR4z7FX4dEeT3TBSZRf66sHYWumITcEJ4UY,51386
283
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=61qkpUUTKUWVNIMK7sC-elUNzfr6FtMi5Fr9Z3srY-I,50848
284
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=a0O0NGClsBQrbC7--p9vIfF6D-zuogyF8TxHAIJsCs0,50842
285
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=pexrtxanFshhlfRL1GbOPRHp2Kw4n0ex1-FTKbLgzIw,50850
286
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=avMa179Pmb5eaU0U43AFJegbC5BDxxPnhl3Vi5oBE7I,50943
287
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=wRxpUQr4k2fm8O7YYRoeB1BrRyXvQh72j67n4sNsP90,51003
288
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=TnbKMWYj4ui8L1AjxXVUelcbhHg0aANZRe_r9Ov44uk,53782
289
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=i-CJH0XQbp_yqmmBQW8jMGqsKBJir38PQoZvUYloyLQ,50644
282
290
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
283
291
  snowflake/ml/modeling/framework/base.py,sha256=DZAsRuPDV_NX7Epqfu2kHuT0oBdAVKPIX43L2Z63NP0,31943
284
292
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
285
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=53AOs2kSN7Y6humFHfzQ_b1UdsLKKyvFg3RmPe3jwys,56274
286
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=Gt3NvazKv-JN84mBCs40PmGWcJqo65hhJLZS1ZK1TIo,55338
293
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=aduPyn2geozr8vKsP5q0tZIjBf2Q3xUPAt2bkbzEmvI,56274
294
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=pQUdutVW3SUNFZhDIynvPKnhrW5ib8LcCbz3UNOkM3Y,55338
287
295
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
288
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=O3H0l0c2eIOtlaXeI0YMIlNeABIJdfo6H1mkJlNtVzI,57167
289
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=GLYIS2aEcdYb73SQa7S-MHk5639yoCRGQSvSipTD_jE,52877
290
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=cjajFF4_f_ogSvmfNgvFCZZZWoxtxfZZi7z3LpQA3vs,51740
296
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=oCLli0ZSsYWxUE19anmPnoOvDFMzclWR-gXZpiaTVZU,57167
297
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=4H-9PI-wHPSvBkisyViyskkeH1yNxBGPcdsfRzAIf4M,52877
298
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=oIAoFiwpaYVYGGmUKFrOwvXzT69u-RvP7I8tiX7jTXc,51740
291
299
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
292
300
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
293
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=kofj3unubKoZkk0hz9nkAdE889UWAWfS9giPXzSJewk,50774
294
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=P1kBUm1RR85CsJuNXAdKl4O0g2tt0HVykEMqySH9K58,52534
295
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Fn2oMHNMRnvmhkfnSXOJyhE2lg6PCwSYsitQbshQyDk,51795
296
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=2xr8in9M9M4n_OFsQLr5PtbE1K_3M83ZFg6vq59eoU0,51138
297
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=u9qXtk-ZvCYKy6eotHZA0EWsNrbnhfqw_Hhp78VDGAg,51193
301
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=3Gm_Vve-EI4kJQPLWC0OeCWSeJ0h6hWcx5dI2KEQ7r4,50774
302
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=uDivdkvNa0sFeEQncGx6AtaUO3VlnV-_o1Q76UjmIGw,52534
303
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Pji_6I_IVABShOWXYb5tukclCzF4VZV1n9I06id3Xm8,51795
304
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=QuKDIYu4bntOnSG8Q9geB2fyD5wQx1jcx2bL5bSohuw,51138
305
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=iNOduIbLkC3F1WI_UNkTGFjIpojPX_5fsH6DotJuEx4,51193
298
306
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
299
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YzK3c6HcrbGykQ8hPa6pXJMsuVVHavRkjuNEyLavbm8,52642
307
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=gId-qhl4Enp3rlNb_1KfvP3SqSj-NNuMu1lwTeI9VdI,52642
300
308
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
301
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=aqu_9wuJTO0b02jjwIa8Pa9AWJ7ZSjPJNGZjrhDBPFY,52145
302
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=QM2wAK8olzrzI-q_dXv_kAc7CIvV7sGs32AKCTmJcPE,51647
309
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=PSCx7L__aH4tnPAlxoYGcf1iSXRuAb-QqFdnjwYtScM,52145
310
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SYTj57vjjgSV8awExIRIxtc5b8pwBJMOU9pTyyw6Mdo,51647
303
311
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
304
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=W1gl4IGFaX_AXONDbA_gfC-LZHiAGf0DC6ELYp62pZk,52402
305
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=w-Pc6xF2ytch-HfPWIgAGadTf64J5e3lsWFHPUISR2Q,52772
306
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=UOy7Pc3KIytN9gyRydt56uUoZ4oLc-ng09-uUMF8keA,53790
307
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=551rCj5fGimvmNhWHV7F-ug7x-BwkyHK2GbtRZcYRsg,54866
308
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=HqjrLTaY4EROwp66xGCekuQ_kpHN8InKyf3PEhNML8M,52655
309
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=Rr7aGYwkaBpM-zYBPXeI6W2xXswA7-h77_VB0IzHD4E,51852
310
- snowflake/ml/modeling/linear_model/lars.py,sha256=qszoPQvf2fPWBIee6CB-e8kij8gUoGGPpLAjaqzNkQk,52558
311
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=om9N6A2L6AvNLN7ZGmLYyBkZ-2Vt_dYis6MimNkxW8I,52806
312
- snowflake/ml/modeling/linear_model/lasso.py,sha256=_sI_TRshSX2nYl8HB0p5ogBtIOoi5crI4GrcJgBeqzQ,53172
313
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=C5TNLWaT3LH4XsSZ_THjWgKSasEEnzGbUEfhpEWBYZc,53984
314
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=knYCrHCOaXBf47AAdhJ9wDDELGSpudj6E-_AnHgMUlI,53699
315
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=-F6A1QHVn6ULJG12ZrRkNZdGbwYm7YZIWG3Ejsr3J8A,53687
316
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=SgdksEfanuFEXzaTSADndsvt99CrcKjhE0Gq-40o_y0,53008
317
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=x6XurxKT0F-rSkpsog-kMH4dqf8IGkT7bS1oYz_fFfc,51396
318
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=IlDx28zrwblP-8DdZ5tN1CeaOfrHMunRMP-fbi8RosM,58161
319
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=El5o3udl4EXCeqE3UQchb5TbrGXbApvRoktiMgc6_Vw,59225
320
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=j59Bb4DfPOPbvV3ekxCPaLlXyN_ZsDFH0VIUkBcKIVE,52871
321
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LmsFrKdIQrbTuhoxTo-Ta83IUuAZu85R6A0oHw7YAYc,54536
322
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=MnsTR1ZzNxEiOzPtJh5ClKcgKxzyeyDCxkuEZhC4cu0,52414
323
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=8k8kpcFy48NDr0s3c3-BL4PjOHSkjly0dCMUkKXKmDg,53703
324
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=JgWKwDHYI43j1A3GNCjS4NWo4hT0cibil0L-0gC9fA4,51619
325
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=PcAHLuuFMDDOZL45yatHIWN61jw61msOXsNfMNGcjWg,55443
326
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=NCfQHD9VJiIDl-eGCPQZ4492yTPZzZN5RYz72PCOWVQ,54505
327
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=hSpgHC4XO-08h2AXqnfTbScHUzRH460_V4FyPQ1siT0,54760
328
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=2H46W-XbwX-8GwBh5Eca3kV5LioYIcwohYaLIpo3yGI,52702
329
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=_cVkRspXP0ljSe7YdxYFRv-5JBeiamaibk509NTCDgw,55841
330
- snowflake/ml/modeling/linear_model/ridge.py,sha256=L5Ajz3PwJteqcflPslez66NTr7IAKjbigUTHxMYpiDg,54716
331
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=niM44vDmpoRMMGJ9g-5qIuUHqeDkrsOk5TJpHZMvlAU,55114
332
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=6sawX5avdKR0ZOStnFom-FbcjCRXySoTPtHksMnNaj0,53579
333
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=iiTABk8xZD1T3QY1WrmicduN2Jk3UZ_wutFHdGrXwUM,54186
334
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=CGymVQuwdfbip_YfDqz-pniCGTFd7NI82UUDTGp1c_g,60171
335
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mTAzO2gVL5TtDRExgpytgNEVxt7DvPTYPb6xNbxRYt8,55253
336
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=ToIeH8C32chpaXf8v8DgqozfwwKa12-22shdBcmJ-QU,58148
337
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=wEtbl-3q1w62qVnE-GRgjhTmq7ItQsR063Igm9k8QX0,53138
338
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=c0kO63RiGi1N8d_xtmROUgLX6edbRSbHw5byrA7aMY8,54093
312
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=Gw4gyVGrMlPvkkzyOfPhs5JcRWR1Xke5gp5iXQ7jIbI,52402
313
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-1o1eak3QCAuj4TxuzUSovxbt5TB9c5pq_hKQnaYEeg,52772
314
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=zQh4KoiP3LRJAI4rpfFBL3Wm-0OaO08NxllPaKlrPSQ,53790
315
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Vnvhk7Kqa0-E2UAj8Fnz4uddF8WusaV7HYlLHQ0BTOM,54866
316
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=oFJgET3M0somaOMiqXSeqkWlLT7IDYPq3aK4-5Fgnkw,52655
317
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=t1XJjA4IJOxuwCtHNBmUlRQC4GMLMao1z0fYy7WjsmY,51852
318
+ snowflake/ml/modeling/linear_model/lars.py,sha256=9EWnmtoXtQ7qfPDysIEscYI0URVW7Erz87faNHWSnB8,52558
319
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=MOVCchqvi3ig51Mdj4fxgIOnFQPT4IiOQwyNy994POI,52806
320
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=P4J8YiQGhce2aEQ3-Dt6zhJDi_435PUuRc6-AND20b0,53172
321
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=H301rhXQ6FLmRnllLa0Xj-bXhrqvX72iSQhtT6vnNr0,53984
322
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=i2VFYA3sDSdkxjzr0ZfP17G__AuZvF-4FSXpvq4ItIU,53699
323
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=dPOQ1taHXpEZiIxoAQM0_A60yb-h6sydB5QWpLw3yQ0,53687
324
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=laCliDcS1zCMNMXfsViJGOGnVK4c7RWrs1Lp5O-KLmQ,53008
325
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Ff_lG_X-trFgRd1NTS8imvizRgXz4Bwcjc-E1J6DDdk,51396
326
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ERAsDCJotCVSEZ0mV16TC2gE_jK_pCBGbEnDCZqLJzQ,58161
327
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=1EjeRpIhVOFgzEviAxMSxyQ_41frzpUAo1UixdVGX90,59225
328
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=UHtV00Q03_NC16quLOfseA4UXgh8taxnW5g41ewjqOs,52871
329
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=uDGIRgfM8igt3G7moQC7enGlxidKYvokk5aUUpioiCM,54536
330
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lC1DwiYq77sIBgIN1wY0UIZgq39zlHIkzCKopzRJfqY,52414
331
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=5D7E6aQ1ai-KJAtrN3sPoOwFBz6JHUXtuSEzX7zL0UA,53703
332
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=3TX4B198YtQaOlgDQECkycdu5bHg2JDS-VKUQ_oxQmc,51619
333
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=IK6h28zVJRtM39D3aYmolORbYAN-w1pb073i1GOleIw,55443
334
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_bTXS9tF6fLzvnuP3xl3UFtqPwc1CjjaYg8tvHufj3I,54505
335
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=TFSw4k_iVgJkCT-2mFY-iOwwQFeCcLODaVExLXWmV60,54760
336
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=_tHgFG75s9KWY09j0EVjYbzESVfc1n8mKcde9FoV_6Q,52702
337
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=-UbBiILWGC5QZ3ZgCJPCOWhS0rqIs5j-3f6cBRvamQk,55841
338
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=m44D16wifl6ddFPiTzDwvXEe5oN1T3SbRg3wznHmLuE,54716
339
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=poqerGrJudOW_uJ8TqWD9L7VlcMK7Ighq4-C_rI2tXE,55114
340
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=qi2FXUnAoBH9GYOCoT92DNiSLetuiASMPzpgXkK4Mz0,53579
341
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=Kp-7RKsryYRaPjOSDCi0KX3-XUX-0OxjlH30NXKlMic,54186
342
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=7paDupysLP2v9KwiLk2Kr8V7ga3m590SVX_9pPA1WCo,60171
343
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9KnZ1bDYdxvTvBu26is0ZShldse5kzAePlmVbCg4RCs,55253
344
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=eMtVqclhBeK2SERRsSJDd9q_bKpAhFJvqVdcd0M_WUY,58148
345
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=tC-ZKgIh3jirmJQ4pz9q-gx_VAg2g1lU1W3ySBmqmUg,53138
346
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=n2b9wJ_JsjEP9eCtXXPVL0Zwyi8WAbcDy3Gox_x22f4,54093
339
347
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
340
- snowflake/ml/modeling/manifold/isomap.py,sha256=aFdaFP0fRxXtHnWDxiyOdas2xjjTFB0JqFBSrXxbqEE,53396
341
- snowflake/ml/modeling/manifold/mds.py,sha256=I_QuAmmAvR_XVhC02S1Id8_86onuZVDn3C2vmEIaskY,52612
342
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=WWXDnycP_jkLO5krDH_HkF8RGmvGbc0p5UcNpojImRs,53476
343
- snowflake/ml/modeling/manifold/tsne.py,sha256=oSHMII0dVUst6ezVmfTlyP3wJywVJIt7Aj965a1p1PY,56599
348
+ snowflake/ml/modeling/manifold/isomap.py,sha256=40qlogth5GJ-OvbfwJ4uiNnAGy6toDMkgFrdhuvubv0,53396
349
+ snowflake/ml/modeling/manifold/mds.py,sha256=kqtvzO4U7dMFvJyk7-dk_CO4KFqj4a52QdWqVlxC0F0,52612
350
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=3hoL1EeGhWHbskUhrqKopE6f-__TNwEBPk4FxX1fSao,53476
351
+ snowflake/ml/modeling/manifold/tsne.py,sha256=LsguZKjlriDl-TGRyb7dM3LPBIhEnkzFfP8gxULJ9t8,56599
344
352
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
345
353
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
346
354
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
@@ -349,35 +357,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jg
349
357
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
350
358
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
351
359
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
352
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=vKF2eQnrB63KmDKv0uRytR9-1CYOYU52fr79q0Mfvp8,57984
353
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=-RLbWrJUJTZ1GZwNn0yrZKwGQpSJZgof6iJpYJG0Wz0,55877
360
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=BSU-QkKxHAhmXvvrvJNMRSD97i8big99ddn3prcG3tA,57984
361
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LjF-eH_jVwiYHSYcYoKhAQdu1zbGh625-1wrWVOawN4,55877
354
362
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
355
363
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
356
364
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
357
365
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
358
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=Wfh4mMKFKbh82cZYSVSn1Ra0CrWdw1uplrpuUl9z3RU,51398
359
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=-Hpcu72UIFh2TjPavGXl4GLfuQ6KBProKFc0omJvF54,52333
360
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=qlTdJpZ_kG68l2suCDc2Q-lFhZAzof8DuH7Fpn2kxH4,51670
366
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=RFKcpcQ6V67zYA8B8Ie_HegCKcC7WP8mb7fw5vCLBOc,51398
367
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=jGJYLbIoGoe5YApV15c1-U66Ru5MEjjipmJWbMz1uUQ,52333
368
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=JzN-_s5-HB8iYn008dfRYBm0vVXUakHGp7g0F6E0yaM,51670
361
369
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
362
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=KNaMA7jiWY1k2y1NJQti6DjHJDmNDjn9GNpmdik_EqY,51925
363
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=4y2cpGa7I49_yA8mUTnVk3yHFl8I02-5-C1zFSbPzwo,52262
364
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=AIl4z8cJywDBWB9Aj77mWqwPQM2FXDJa3iZbX-HFFyg,51941
365
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=J6jl4rFzTu3wXEXCE0gg_XHGKYMqKdsJrw7KEmEqGu4,51073
366
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=J1-OnSpbELzx5N75mXU4DwoKQQVQV6cExx37E9YPBXI,51707
370
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=FF2aeMo3SPtzPJaS3uxWtbqOe9QELkWfLKy2mr2VyL0,51925
371
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=2PZm3AjauUH6JwJV1qKkH6P4VJyx1nmA_qUc5gDKtxU,52262
372
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=m9E8wrfEWdz-nZa6YbeQ6HKEkMHvlJ9rN_gIRug-qTs,51941
373
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=MD5opflzY1Z6RkvTO__q8bz-dO1byZACNXlk8RtHuqw,51073
374
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Rph7Qx7AaILxFiRwkmxLcq9Mp7tcB9Zldnk_TGnjM7E,51707
367
375
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
368
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=_Yf9GV5V48Odh-xD4urNQKgtEisQz-V85RCAmdZDcS0,55039
369
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KUAfOp5spxNgiy1sx_S9B8iugvRdCXwPOkgtK_pwrtM,54405
370
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=PMX2ee5gmtnBk2Tn6QVe0tvLJWHtntAkvCbRqI07-9M,52694
371
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=C-BHWY1LTSUxet9Cq2RRNOuYp1PBAc8U9tEGmZOn1l0,55270
372
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=54-5Z0s0UqOzgbW12mBrRLJXX-b2s1rLLE40zGJtqyA,50858
373
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=cT7OHKZZz3ZVBSCF2sEv3eigrJfdZ4ceXIJTbU6uk50,53177
374
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=kmwYOcG7oEPRSYRACms6lnAwBbaTr5ZpLWRkI_qkILA,54759
375
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=_n3tarqrvg-YrNOpOVuQIsgQL0YdPoJ2g-eXPVPoaTk,55488
376
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N1CaJ-AEcYnzcQg8XzKq-JDJIqvi01xxCAeTh7TJQPM,54088
376
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=DV0nOvJOON9nGjnVUQ-ZGTo6tDYZVwwZ9x0rx_F92xQ,55039
377
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=Gmm1EuNwVRP8Tg_JQgsUZQAkGV5FLAoQuXPhElBI1W8,54405
378
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=V0BvTtIbqoKLC8YxtucLOsEOhvqn3f7dk6t27Pqhnj8,52694
379
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iMBCeK3MWsVQaTCHzpnwDykFJ01Qt6H6W7C1WvjN92M,55270
380
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DMhr-Liybn0-xjtOamrlZDlGOFvRjXWbQcHZUpkto7k,50858
381
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=H_uFZBPw_TzQJ2ss1JUwkzawJR55SXYkChOSHwddrlU,53177
382
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=d1yhmcaF_ykTEM9l8CIOfIBvwmEig1MhDG6pPBPsznA,54759
383
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=8x2CFYZ8PJc1auXzsrfJaon1qh44N7MUk4wIw2C4XmA,55488
384
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VVaX6vWhonNGEWozb-tvfCw1yr22lzfrNHs1PFwgHD8,54088
377
385
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
378
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=e5iUpcB_ZHpHjtf2uZD5N0qwPKaIiy2sxdv9I6dr7tQ,51901
379
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=DV9IQYwGTW-12O2tP2vEl5Y4lkB653sP4Bw6PEsZHho,59455
380
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=evzApQusrUFssU6PDu4YXk3apyOGnTDKberoXANN1VU,58567
386
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Yc-lI8mnWqrFw4eA6eDkBUcQoNRCWelefdyuI0BG5IY,51901
387
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=jqweN_4dDGdUVTWk-YbMPrgwu1HB6UJqlIo2ekX7qIM,59455
388
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=oI9lQJlJcB6YkAZz3MEpZgr-yA89XfW80JNIPqmx2aQ,58567
381
389
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
382
390
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
383
391
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -392,48 +400,48 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
392
400
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
393
401
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
394
402
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
395
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=r22lF0Qw3ylUesyu4SDX0rqXzs4MYmdJoqlakCBz7_c,51843
403
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=SKYrRTkTS9Jsx2l0jTRoVrWyzWqJUw7StnOlfp-3pBw,51843
396
404
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
397
405
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
398
406
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
399
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=QvurssFENi7-aHTkLyyWxS9rQ_s_dmmxr7kjDmn7Ygg,52172
400
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=4FsxD-Owdu_a7jr6lO3LPWEaRqtlODg-8MIokB-Avbo,52519
407
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=swPlF0NThzMS-3bCa28R6NWh9i-lpngshdKtp6yamVc,52172
408
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jkDezUzyTieSWdPj0w3xMXwePeqVeAlmPDmIylzmcBg,52519
401
409
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
402
- snowflake/ml/modeling/svm/linear_svc.py,sha256=ccGMbftE9R49lKdZfBMlpT4B0LefdJSaNSP--8v8InU,55744
403
- snowflake/ml/modeling/svm/linear_svr.py,sha256=1lI0VDv_huwEE0lBZaMhtJ3qi2ZJ3dNeKzvyVpE5PUo,53927
404
- snowflake/ml/modeling/svm/nu_svc.py,sha256=qijEUvsgmjfStiyyvg8_TTMv_BVFq69R39M5olbLyHc,55412
405
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Fti-_OEaYxMlP_7KQnmSJ5J6JfPZowSrXQVeGxnPATE,52526
406
- snowflake/ml/modeling/svm/svc.py,sha256=-6AL1e6eoReuwD34wiC3fKAEy7oXrLwSIAJLFPHYb1o,55726
407
- snowflake/ml/modeling/svm/svr.py,sha256=-c39k9sfWZGOshzQDblh-IH_SM1AAywevOXw93G9GlI,52705
410
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=H5uBK6-hIbZ07UBuLk8cT4fOCr6IWJAAoiEl5NkoQR0,55744
411
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=RoT53AR6Mxf51Qz7iUiDOx9bbx6sVHj7TQuqFDuodUA,53927
412
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=UlEqjXs6a1nLoAew4HMRUEc44eCeKgQUM2Zzz-nE61M,55412
413
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=5iKVXl-VNItqx90T6LdiFfp826JpU43pXnPpCDVmTv0,52526
414
+ snowflake/ml/modeling/svm/svc.py,sha256=xrz4ewWJPcuUHKddohzRdMi-jGY6CbmbiHjopf_7h9w,55726
415
+ snowflake/ml/modeling/svm/svr.py,sha256=72iX4D41zCQoJzwsHVkCnILlT_DlGRwAPgAoRImgRGE,52705
408
416
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
409
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=sikvjQMyaD0ji8cHERdCSvhY161wWpWzT8EYAEcoBl4,58512
410
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=999NuwdM3ioYv6bgvtAA6RhSmUHj9fpwLEzigLQmWsg,57060
411
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=4qCZ_LgKEn1CjJwe-jvYqYrEG03s89_AVBCevaR3zcc,57823
412
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=1WP5zhhdXsNbFtZ38RLGj0THvMpVUF_zZr-j5qlEzds,56408
417
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D9p2cce4dsg8LtUpWSAMXrw2zPHrzBxV4qwJPIabLhA,58512
418
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kUCcY_Zx7s8XMbTVuEJr_DyyOQIhXBa43NVFSfFgCcg,57060
419
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=MmWQQoB1weztkYYlbqick8QLhRfihHk9oKDC8KCsJBs,57823
420
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=kbWsKxEKXpPg-5IK3K9BWTdpO49jPCANdFB5Ihn5xRw,56408
413
421
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
414
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=SF5F4elDdHmt8Wtth8BIH2Sc60l7ZgVen_XsGoKraIo,63977
415
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=5x-N1Yym0OfF3D7lHNzLByaazc4aoDNVmCQ-TgbYOGg,63580
416
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=H3SAtx-2mIwS3N_ltBXVHlbLeYun5TtdBBN_goeKrBg,64253
417
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Up3rbL7pfeglVKx920UpLhBzHxteXLTWHqIk5WX9iPY,63778
422
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=q0KnKqzxkLjg4c8FjKF343k-PyvdqpnQIkKyK7Fohwk,63977
423
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=-k0ZHkTZkVybwNTbnRkR4O0MglbPvqbyD8M58daeN04,63580
424
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=e7WgTxM3xHVxkOIhgUWnDrvFt1lZIGPJel4LhIGk46I,64253
425
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=tnCllaN_BEgRybZcxyvI3vZYzsEpCIIM7oGEPgF6y60,63778
418
426
  snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
419
- snowflake/ml/monitoring/model_monitor.py,sha256=-PlqiIc3R2a_eh789KaeApbK-RV4VUfRucWGqjKhOKs,1885
427
+ snowflake/ml/monitoring/model_monitor.py,sha256=1NOub1Cm9mtyawTj0H6pA1KtmEZ_yKVpn76PMdXWh0Y,3216
420
428
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
421
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=Ke1fsN4347APII-EETEBY7hTydY9MRgQubinCE6eI_U,12700
429
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=DzEEpIshNaPnBZl2EL81J7Eltpv7mitCtVGOVKBFrBM,15913
422
430
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
423
431
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
424
- snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=0jpT1-aRU2tsxSM87I-C2kfJeLevCgM-a-OwU_-VUdI,10302
425
- snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=1W6TFTPicC6YAbjD7A0w8WMhWireyUxyuEy0RQXmqyY,1787
432
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=ZENYZwAQXJEEyamX841qVViJBD0UwS-bdVQnEz7lBKg,10484
433
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=navyOSsDvbJ6RIuFge8ECsD9FxWcRKxd4bopMiHybS0,1931
426
434
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
427
435
  snowflake/ml/registry/registry.py,sha256=Ro7flVHv3FnEU9Ly3zWRnDAqWiwRSOA2uw_MSKmCBTI,32936
428
- snowflake/ml/registry/_manager/model_manager.py,sha256=0yhu1QAuwK3hucNSwyJWIb7_TFL7w2Hj-fW4hpIueW4,19207
429
- snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=uWM5gD_NMHjVn4XUSdGsl0YpN62okZ2HK56xX8CQFuc,4516
436
+ snowflake/ml/registry/_manager/model_manager.py,sha256=QsEpIbg3FPEbDOQXb_oo41hBjojrdVibdrNPCyJ0Cb0,17650
437
+ snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=McTJSps_K2ozZhZsgPyW2k88xDOwgU2cQ36edABhYwI,14001
430
438
  snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
431
439
  snowflake/ml/utils/connection_params.py,sha256=JuadbzKlgDZLZ5vJ9cnyAiSitvZT9jGSfSSNjIY9P1Q,8282
432
440
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
433
441
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
434
442
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
435
- snowflake_ml_python-1.10.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
436
- snowflake_ml_python-1.10.0.dist-info/METADATA,sha256=G5N7mWVXwReXU_w3-74NYAUtABrIpQpjDODSx6fCCWM,90765
437
- snowflake_ml_python-1.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
438
- snowflake_ml_python-1.10.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
439
- snowflake_ml_python-1.10.0.dist-info/RECORD,,
443
+ snowflake_ml_python-1.12.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
444
+ snowflake_ml_python-1.12.0.dist-info/METADATA,sha256=iZRYiUmETq4j6Wo5RmDWu6MWH1pMMA2jncP2Nz_c3p4,93792
445
+ snowflake_ml_python-1.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
446
+ snowflake_ml_python-1.12.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
447
+ snowflake_ml_python-1.12.0.dist-info/RECORD,,