snowflake-ml-python 1.10.0__py3-none-any.whl → 1.12.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +3 -2
- snowflake/ml/_internal/utils/service_logger.py +26 -1
- snowflake/ml/experiment/_client/artifact.py +76 -0
- snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +64 -1
- snowflake/ml/experiment/callback/keras.py +63 -0
- snowflake/ml/experiment/callback/lightgbm.py +5 -1
- snowflake/ml/experiment/callback/xgboost.py +5 -1
- snowflake/ml/experiment/experiment_tracking.py +89 -4
- snowflake/ml/feature_store/feature_store.py +1150 -131
- snowflake/ml/feature_store/feature_view.py +122 -0
- snowflake/ml/jobs/_utils/__init__.py +0 -0
- snowflake/ml/jobs/_utils/constants.py +9 -14
- snowflake/ml/jobs/_utils/feature_flags.py +16 -0
- snowflake/ml/jobs/_utils/payload_utils.py +61 -19
- snowflake/ml/jobs/_utils/query_helper.py +5 -1
- snowflake/ml/jobs/_utils/runtime_env_utils.py +63 -0
- snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +18 -7
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +15 -7
- snowflake/ml/jobs/_utils/spec_utils.py +44 -13
- snowflake/ml/jobs/_utils/stage_utils.py +22 -9
- snowflake/ml/jobs/_utils/types.py +7 -8
- snowflake/ml/jobs/job.py +34 -18
- snowflake/ml/jobs/manager.py +107 -24
- snowflake/ml/model/__init__.py +6 -1
- snowflake/ml/model/_client/model/batch_inference_specs.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +225 -73
- snowflake/ml/model/_client/ops/service_ops.py +128 -174
- snowflake/ml/model/_client/service/model_deployment_spec.py +123 -64
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -9
- snowflake/ml/model/_model_composer/model_composer.py +1 -70
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +2 -43
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +207 -2
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -1
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +3 -3
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/_signatures/utils.py +4 -2
- snowflake/ml/model/inference_engine.py +5 -0
- snowflake/ml/model/models/huggingface_pipeline.py +4 -3
- snowflake/ml/model/openai_signatures.py +57 -0
- snowflake/ml/modeling/_internal/estimator_utils.py +43 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +14 -3
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +17 -6
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
- snowflake/ml/modeling/cluster/birch.py +1 -1
- snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
- snowflake/ml/modeling/cluster/dbscan.py +1 -1
- snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
- snowflake/ml/modeling/cluster/k_means.py +1 -1
- snowflake/ml/modeling/cluster/mean_shift.py +1 -1
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
- snowflake/ml/modeling/cluster/optics.py +1 -1
- snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
- snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
- snowflake/ml/modeling/compose/column_transformer.py +1 -1
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
- snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
- snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
- snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
- snowflake/ml/modeling/covariance/oas.py +1 -1
- snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
- snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
- snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
- snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
- snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/pca.py +1 -1
- snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
- snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
- snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
- snowflake/ml/modeling/impute/knn_imputer.py +1 -1
- snowflake/ml/modeling/impute/missing_indicator.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +1 -1
- snowflake/ml/modeling/manifold/mds.py +1 -1
- snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
- snowflake/ml/modeling/manifold/tsne.py +1 -1
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
- snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py +91 -6
- snowflake/ml/monitoring/_manager/model_monitor_manager.py +3 -0
- snowflake/ml/monitoring/entities/model_monitor_config.py +3 -0
- snowflake/ml/monitoring/model_monitor.py +26 -0
- snowflake/ml/registry/_manager/model_manager.py +7 -35
- snowflake/ml/registry/_manager/model_parameter_reconciler.py +194 -5
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/METADATA +87 -7
- {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/RECORD +205 -197
- {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/licenses/LICENSE.txt +0 -0
- {snowflake_ml_python-1.10.0.dist-info → snowflake_ml_python-1.12.0.dist-info}/top_level.txt +0 -0
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from enum import Enum, auto
|
|
1
2
|
from typing import Any, Mapping, Optional
|
|
2
3
|
|
|
3
4
|
from snowflake import snowpark
|
|
@@ -15,6 +16,25 @@ MODEL_JSON_MODEL_NAME_FIELD = "model_name"
|
|
|
15
16
|
MODEL_JSON_VERSION_NAME_FIELD = "version_name"
|
|
16
17
|
|
|
17
18
|
|
|
19
|
+
class MonitorOperation(Enum):
|
|
20
|
+
SUSPEND = auto()
|
|
21
|
+
RESUME = auto()
|
|
22
|
+
ADD = auto()
|
|
23
|
+
DROP = auto()
|
|
24
|
+
|
|
25
|
+
@property
|
|
26
|
+
def supported_target_properties(self) -> frozenset[str]:
|
|
27
|
+
return _OPERATION_SUPPORTED_PROPS[self]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
_OPERATION_SUPPORTED_PROPS: dict[MonitorOperation, frozenset[str]] = {
|
|
31
|
+
MonitorOperation.SUSPEND: frozenset(),
|
|
32
|
+
MonitorOperation.RESUME: frozenset(),
|
|
33
|
+
MonitorOperation.ADD: frozenset({"SEGMENT_COLUMN"}),
|
|
34
|
+
MonitorOperation.DROP: frozenset({"SEGMENT_COLUMN"}),
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
|
|
18
38
|
def _build_sql_list_from_columns(columns: list[sql_identifier.SqlIdentifier]) -> str:
|
|
19
39
|
sql_list = ", ".join([f"'{column}'" for column in columns])
|
|
20
40
|
return f"({sql_list})"
|
|
@@ -70,11 +90,17 @@ class ModelMonitorSQLClient:
|
|
|
70
90
|
baseline_database: Optional[sql_identifier.SqlIdentifier] = None,
|
|
71
91
|
baseline_schema: Optional[sql_identifier.SqlIdentifier] = None,
|
|
72
92
|
baseline: Optional[sql_identifier.SqlIdentifier] = None,
|
|
93
|
+
segment_columns: Optional[list[sql_identifier.SqlIdentifier]] = None,
|
|
73
94
|
statement_params: Optional[dict[str, Any]] = None,
|
|
74
95
|
) -> None:
|
|
75
96
|
baseline_sql = ""
|
|
76
97
|
if baseline:
|
|
77
98
|
baseline_sql = f"""BASELINE={self._infer_qualified_schema(baseline_database, baseline_schema)}.{baseline}"""
|
|
99
|
+
|
|
100
|
+
segment_columns_sql = ""
|
|
101
|
+
if segment_columns:
|
|
102
|
+
segment_columns_sql = f"SEGMENT_COLUMNS={_build_sql_list_from_columns(segment_columns)}"
|
|
103
|
+
|
|
78
104
|
query_result_checker.SqlResultValidator(
|
|
79
105
|
self._sql_client._session,
|
|
80
106
|
f"""
|
|
@@ -93,6 +119,7 @@ class ModelMonitorSQLClient:
|
|
|
93
119
|
TIMESTAMP_COLUMN='{timestamp_column}'
|
|
94
120
|
REFRESH_INTERVAL='{refresh_interval}'
|
|
95
121
|
AGGREGATION_WINDOW='{aggregation_window}'
|
|
122
|
+
{segment_columns_sql}
|
|
96
123
|
{baseline_sql}""",
|
|
97
124
|
statement_params=statement_params,
|
|
98
125
|
).has_column("status").has_dimensions(1, 1).validate()
|
|
@@ -182,6 +209,7 @@ class ModelMonitorSQLClient:
|
|
|
182
209
|
actual_score_columns: list[sql_identifier.SqlIdentifier],
|
|
183
210
|
actual_class_columns: list[sql_identifier.SqlIdentifier],
|
|
184
211
|
id_columns: list[sql_identifier.SqlIdentifier],
|
|
212
|
+
segment_columns: Optional[list[sql_identifier.SqlIdentifier]] = None,
|
|
185
213
|
) -> None:
|
|
186
214
|
"""Ensures all columns exist in the source table.
|
|
187
215
|
|
|
@@ -193,11 +221,14 @@ class ModelMonitorSQLClient:
|
|
|
193
221
|
actual_score_columns: List of actual score column names.
|
|
194
222
|
actual_class_columns: List of actual class column names.
|
|
195
223
|
id_columns: List of id column names.
|
|
224
|
+
segment_columns: List of segment column names.
|
|
196
225
|
|
|
197
226
|
Raises:
|
|
198
227
|
ValueError: If any of the columns do not exist in the source.
|
|
199
228
|
"""
|
|
200
229
|
|
|
230
|
+
segment_columns = [] if segment_columns is None else segment_columns
|
|
231
|
+
|
|
201
232
|
if timestamp_column not in source_column_schema:
|
|
202
233
|
raise ValueError(f"Timestamp column {timestamp_column} does not exist in source.")
|
|
203
234
|
|
|
@@ -214,6 +245,9 @@ class ModelMonitorSQLClient:
|
|
|
214
245
|
if not all([column_name in source_column_schema for column_name in id_columns]):
|
|
215
246
|
raise ValueError(f"ID column(s): {id_columns} do not exist in source.")
|
|
216
247
|
|
|
248
|
+
if not all([column_name in source_column_schema for column_name in segment_columns]):
|
|
249
|
+
raise ValueError(f"Segment column(s): {segment_columns} do not exist in source.")
|
|
250
|
+
|
|
217
251
|
def validate_source(
|
|
218
252
|
self,
|
|
219
253
|
*,
|
|
@@ -226,7 +260,9 @@ class ModelMonitorSQLClient:
|
|
|
226
260
|
actual_score_columns: list[sql_identifier.SqlIdentifier],
|
|
227
261
|
actual_class_columns: list[sql_identifier.SqlIdentifier],
|
|
228
262
|
id_columns: list[sql_identifier.SqlIdentifier],
|
|
263
|
+
segment_columns: Optional[list[sql_identifier.SqlIdentifier]] = None,
|
|
229
264
|
) -> None:
|
|
265
|
+
|
|
230
266
|
source_database = source_database or self._database_name
|
|
231
267
|
source_schema = source_schema or self._schema_name
|
|
232
268
|
# Get Schema of the source. Implicitly validates that the source exists.
|
|
@@ -244,19 +280,38 @@ class ModelMonitorSQLClient:
|
|
|
244
280
|
actual_score_columns=actual_score_columns,
|
|
245
281
|
actual_class_columns=actual_class_columns,
|
|
246
282
|
id_columns=id_columns,
|
|
283
|
+
segment_columns=segment_columns,
|
|
247
284
|
)
|
|
248
285
|
|
|
249
286
|
def _alter_monitor(
|
|
250
287
|
self,
|
|
251
|
-
operation:
|
|
288
|
+
operation: MonitorOperation,
|
|
252
289
|
monitor_name: sql_identifier.SqlIdentifier,
|
|
290
|
+
target_property: Optional[str] = None,
|
|
291
|
+
target_value: Optional[sql_identifier.SqlIdentifier] = None,
|
|
253
292
|
statement_params: Optional[dict[str, Any]] = None,
|
|
254
293
|
) -> None:
|
|
255
|
-
|
|
256
|
-
|
|
294
|
+
supported_target_properties = operation.supported_target_properties
|
|
295
|
+
|
|
296
|
+
if supported_target_properties:
|
|
297
|
+
if target_property is None or target_value is None:
|
|
298
|
+
raise ValueError(f"Target property and value must be provided for {operation.name} operation")
|
|
299
|
+
|
|
300
|
+
if target_property not in supported_target_properties:
|
|
301
|
+
raise ValueError(
|
|
302
|
+
f"Only {', '.join(supported_target_properties)} supported as target property "
|
|
303
|
+
f"for {operation.name} operation"
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
property_clause = f"{target_property}={target_value}" if target_property and target_value else ""
|
|
307
|
+
alter_momo_sql = (
|
|
308
|
+
f"""ALTER MODEL MONITOR {self._database_name}.{self._schema_name}.{monitor_name} """
|
|
309
|
+
f"""{operation.name} {property_clause}"""
|
|
310
|
+
)
|
|
311
|
+
|
|
257
312
|
query_result_checker.SqlResultValidator(
|
|
258
313
|
self._sql_client._session,
|
|
259
|
-
|
|
314
|
+
alter_momo_sql,
|
|
260
315
|
statement_params=statement_params,
|
|
261
316
|
).has_column("status").has_dimensions(1, 1).validate()
|
|
262
317
|
|
|
@@ -266,7 +321,7 @@ class ModelMonitorSQLClient:
|
|
|
266
321
|
statement_params: Optional[dict[str, Any]] = None,
|
|
267
322
|
) -> None:
|
|
268
323
|
self._alter_monitor(
|
|
269
|
-
operation=
|
|
324
|
+
operation=MonitorOperation.SUSPEND,
|
|
270
325
|
monitor_name=monitor_name,
|
|
271
326
|
statement_params=statement_params,
|
|
272
327
|
)
|
|
@@ -277,7 +332,37 @@ class ModelMonitorSQLClient:
|
|
|
277
332
|
statement_params: Optional[dict[str, Any]] = None,
|
|
278
333
|
) -> None:
|
|
279
334
|
self._alter_monitor(
|
|
280
|
-
operation=
|
|
335
|
+
operation=MonitorOperation.RESUME,
|
|
336
|
+
monitor_name=monitor_name,
|
|
337
|
+
statement_params=statement_params,
|
|
338
|
+
)
|
|
339
|
+
|
|
340
|
+
def add_segment_column(
|
|
341
|
+
self,
|
|
342
|
+
monitor_name: sql_identifier.SqlIdentifier,
|
|
343
|
+
segment_column: sql_identifier.SqlIdentifier,
|
|
344
|
+
statement_params: Optional[dict[str, Any]] = None,
|
|
345
|
+
) -> None:
|
|
346
|
+
"""Add a segment column to the Model Monitor"""
|
|
347
|
+
self._alter_monitor(
|
|
348
|
+
operation=MonitorOperation.ADD,
|
|
349
|
+
monitor_name=monitor_name,
|
|
350
|
+
target_property="SEGMENT_COLUMN",
|
|
351
|
+
target_value=segment_column,
|
|
352
|
+
statement_params=statement_params,
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
def drop_segment_column(
|
|
356
|
+
self,
|
|
357
|
+
monitor_name: sql_identifier.SqlIdentifier,
|
|
358
|
+
segment_column: sql_identifier.SqlIdentifier,
|
|
359
|
+
statement_params: Optional[dict[str, Any]] = None,
|
|
360
|
+
) -> None:
|
|
361
|
+
"""Drop a segment column from the Model Monitor"""
|
|
362
|
+
self._alter_monitor(
|
|
363
|
+
operation=MonitorOperation.DROP,
|
|
281
364
|
monitor_name=monitor_name,
|
|
365
|
+
target_property="SEGMENT_COLUMN",
|
|
366
|
+
target_value=segment_column,
|
|
282
367
|
statement_params=statement_params,
|
|
283
368
|
)
|
|
@@ -108,6 +108,7 @@ class ModelMonitorManager:
|
|
|
108
108
|
prediction_class_columns = self._build_column_list_from_input(source_config.prediction_class_columns)
|
|
109
109
|
actual_score_columns = self._build_column_list_from_input(source_config.actual_score_columns)
|
|
110
110
|
actual_class_columns = self._build_column_list_from_input(source_config.actual_class_columns)
|
|
111
|
+
segment_columns = self._build_column_list_from_input(source_config.segment_columns)
|
|
111
112
|
|
|
112
113
|
id_columns = [sql_identifier.SqlIdentifier(column_name) for column_name in source_config.id_columns]
|
|
113
114
|
ts_column = sql_identifier.SqlIdentifier(source_config.timestamp_column)
|
|
@@ -123,6 +124,7 @@ class ModelMonitorManager:
|
|
|
123
124
|
actual_score_columns=actual_score_columns,
|
|
124
125
|
actual_class_columns=actual_class_columns,
|
|
125
126
|
id_columns=id_columns,
|
|
127
|
+
segment_columns=segment_columns,
|
|
126
128
|
)
|
|
127
129
|
|
|
128
130
|
self._model_monitor_client.create_model_monitor(
|
|
@@ -144,6 +146,7 @@ class ModelMonitorManager:
|
|
|
144
146
|
prediction_class_columns=prediction_class_columns,
|
|
145
147
|
actual_score_columns=actual_score_columns,
|
|
146
148
|
actual_class_columns=actual_class_columns,
|
|
149
|
+
segment_columns=segment_columns,
|
|
147
150
|
refresh_interval=model_monitor_config.refresh_interval,
|
|
148
151
|
aggregation_window=model_monitor_config.aggregation_window,
|
|
149
152
|
baseline_database=baseline_database_name_id,
|
|
@@ -33,6 +33,9 @@ class ModelMonitorSourceConfig:
|
|
|
33
33
|
baseline: Optional[str] = None
|
|
34
34
|
"""Name of table containing the baseline data."""
|
|
35
35
|
|
|
36
|
+
segment_columns: Optional[list[str]] = None
|
|
37
|
+
"""List of columns in the source containing segment information for grouped monitoring."""
|
|
38
|
+
|
|
36
39
|
|
|
37
40
|
@dataclass
|
|
38
41
|
class ModelMonitorConfig:
|
|
@@ -46,3 +46,29 @@ class ModelMonitor:
|
|
|
46
46
|
telemetry.TelemetrySubProject.MONITORING.value,
|
|
47
47
|
)
|
|
48
48
|
self._model_monitor_client.resume_monitor(self.name, statement_params=statement_params)
|
|
49
|
+
|
|
50
|
+
@telemetry.send_api_usage_telemetry(
|
|
51
|
+
project=telemetry.TelemetryProject.MLOPS.value,
|
|
52
|
+
subproject=telemetry.TelemetrySubProject.MONITORING.value,
|
|
53
|
+
)
|
|
54
|
+
def add_segment_column(self, segment_column: str) -> None:
|
|
55
|
+
"""Add a segment column to the Model Monitor"""
|
|
56
|
+
statement_params = telemetry.get_statement_params(
|
|
57
|
+
telemetry.TelemetryProject.MLOPS.value,
|
|
58
|
+
telemetry.TelemetrySubProject.MONITORING.value,
|
|
59
|
+
)
|
|
60
|
+
segment_column_id = sql_identifier.SqlIdentifier(segment_column)
|
|
61
|
+
self._model_monitor_client.add_segment_column(self.name, segment_column_id, statement_params=statement_params)
|
|
62
|
+
|
|
63
|
+
@telemetry.send_api_usage_telemetry(
|
|
64
|
+
project=telemetry.TelemetryProject.MLOPS.value,
|
|
65
|
+
subproject=telemetry.TelemetrySubProject.MONITORING.value,
|
|
66
|
+
)
|
|
67
|
+
def drop_segment_column(self, segment_column: str) -> None:
|
|
68
|
+
"""Drop a segment column from the Model Monitor"""
|
|
69
|
+
statement_params = telemetry.get_statement_params(
|
|
70
|
+
telemetry.TelemetryProject.MLOPS.value,
|
|
71
|
+
telemetry.TelemetrySubProject.MONITORING.value,
|
|
72
|
+
)
|
|
73
|
+
segment_column_id = sql_identifier.SqlIdentifier(segment_column)
|
|
74
|
+
self._model_monitor_client.drop_segment_column(self.name, segment_column_id, statement_params=statement_params)
|
|
@@ -4,15 +4,14 @@ from typing import TYPE_CHECKING, Any, Optional, Union
|
|
|
4
4
|
import pandas as pd
|
|
5
5
|
from absl.logging import logging
|
|
6
6
|
|
|
7
|
-
from snowflake.ml._internal import
|
|
7
|
+
from snowflake.ml._internal import platform_capabilities, telemetry
|
|
8
8
|
from snowflake.ml._internal.exceptions import error_codes, exceptions
|
|
9
9
|
from snowflake.ml._internal.human_readable_id import hrid_generator
|
|
10
10
|
from snowflake.ml._internal.utils import sql_identifier
|
|
11
|
-
from snowflake.ml.model import model_signature,
|
|
11
|
+
from snowflake.ml.model import model_signature, task, type_hints
|
|
12
12
|
from snowflake.ml.model._client.model import model_impl, model_version_impl
|
|
13
13
|
from snowflake.ml.model._client.ops import metadata_ops, model_ops, service_ops
|
|
14
14
|
from snowflake.ml.model._model_composer import model_composer
|
|
15
|
-
from snowflake.ml.model._model_composer.model_manifest import model_manifest_schema
|
|
16
15
|
from snowflake.ml.model._packager.model_meta import model_meta
|
|
17
16
|
from snowflake.ml.registry._manager import model_parameter_reconciler
|
|
18
17
|
from snowflake.snowpark import exceptions as snowpark_exceptions, session
|
|
@@ -221,37 +220,8 @@ class ModelManager:
|
|
|
221
220
|
statement_params=statement_params,
|
|
222
221
|
)
|
|
223
222
|
|
|
224
|
-
platforms = None
|
|
225
|
-
# User specified target platforms are defaulted to None and will not show up in the generated manifest.
|
|
226
|
-
if target_platforms:
|
|
227
|
-
# Convert any string target platforms to TargetPlatform objects
|
|
228
|
-
platforms = [type_hints.TargetPlatform(platform) for platform in target_platforms]
|
|
229
|
-
else:
|
|
230
|
-
# Default the target platform to warehouse if not specified and any table function exists
|
|
231
|
-
if options and (
|
|
232
|
-
options.get("function_type") == model_manifest_schema.ModelMethodFunctionTypes.TABLE_FUNCTION.value
|
|
233
|
-
or (
|
|
234
|
-
any(
|
|
235
|
-
opt.get("function_type") == "TABLE_FUNCTION"
|
|
236
|
-
for opt in options.get("method_options", {}).values()
|
|
237
|
-
)
|
|
238
|
-
)
|
|
239
|
-
):
|
|
240
|
-
logger.info(
|
|
241
|
-
"Logging a partitioned model with a table function without specifying `target_platforms`. "
|
|
242
|
-
'Default to `target_platforms=["WAREHOUSE"]`.'
|
|
243
|
-
)
|
|
244
|
-
platforms = [target_platform.TargetPlatform.WAREHOUSE]
|
|
245
|
-
|
|
246
|
-
# Default the target platform to SPCS if not specified when running in ML runtime
|
|
247
|
-
if not platforms and env.IN_ML_RUNTIME:
|
|
248
|
-
logger.info(
|
|
249
|
-
"Logging the model on Container Runtime for ML without specifying `target_platforms`. "
|
|
250
|
-
'Default to `target_platforms=["SNOWPARK_CONTAINER_SERVICES"]`.'
|
|
251
|
-
)
|
|
252
|
-
platforms = [target_platform.TargetPlatform.SNOWPARK_CONTAINER_SERVICES]
|
|
253
|
-
|
|
254
223
|
reconciler = model_parameter_reconciler.ModelParameterReconciler(
|
|
224
|
+
session=self._model_ops._session,
|
|
255
225
|
database_name=self._database_name,
|
|
256
226
|
schema_name=self._schema_name,
|
|
257
227
|
conda_dependencies=conda_dependencies,
|
|
@@ -259,6 +229,8 @@ class ModelManager:
|
|
|
259
229
|
target_platforms=target_platforms,
|
|
260
230
|
artifact_repository_map=artifact_repository_map,
|
|
261
231
|
options=options,
|
|
232
|
+
python_version=python_version,
|
|
233
|
+
statement_params=statement_params,
|
|
262
234
|
)
|
|
263
235
|
|
|
264
236
|
model_params = reconciler.reconcile()
|
|
@@ -293,12 +265,12 @@ class ModelManager:
|
|
|
293
265
|
pip_requirements=pip_requirements,
|
|
294
266
|
artifact_repository_map=artifact_repository_map,
|
|
295
267
|
resource_constraint=resource_constraint,
|
|
296
|
-
target_platforms=
|
|
268
|
+
target_platforms=model_params.target_platforms,
|
|
297
269
|
python_version=python_version,
|
|
298
270
|
user_files=user_files,
|
|
299
271
|
code_paths=code_paths,
|
|
300
272
|
ext_modules=ext_modules,
|
|
301
|
-
options=options,
|
|
273
|
+
options=model_params.options,
|
|
302
274
|
task=task,
|
|
303
275
|
experiment_info=experiment_info,
|
|
304
276
|
)
|
|
@@ -1,9 +1,20 @@
|
|
|
1
1
|
import warnings
|
|
2
2
|
from dataclasses import dataclass
|
|
3
|
-
from typing import Optional
|
|
3
|
+
from typing import Any, Optional
|
|
4
4
|
|
|
5
|
+
from absl.logging import logging
|
|
6
|
+
from packaging import requirements
|
|
7
|
+
|
|
8
|
+
from snowflake.ml import version as snowml_version
|
|
9
|
+
from snowflake.ml._internal import env, env as snowml_env, env_utils
|
|
10
|
+
from snowflake.ml._internal.exceptions import error_codes, exceptions
|
|
5
11
|
from snowflake.ml._internal.utils import sql_identifier
|
|
6
|
-
from snowflake.ml.model import type_hints as model_types
|
|
12
|
+
from snowflake.ml.model import target_platform, type_hints as model_types
|
|
13
|
+
from snowflake.ml.model._model_composer.model_manifest import model_manifest_schema
|
|
14
|
+
from snowflake.snowpark import Session
|
|
15
|
+
from snowflake.snowpark._internal import utils as snowpark_utils
|
|
16
|
+
|
|
17
|
+
logger = logging.getLogger(__name__)
|
|
7
18
|
|
|
8
19
|
|
|
9
20
|
@dataclass
|
|
@@ -12,7 +23,7 @@ class ReconciledParameters:
|
|
|
12
23
|
|
|
13
24
|
conda_dependencies: Optional[list[str]] = None
|
|
14
25
|
pip_requirements: Optional[list[str]] = None
|
|
15
|
-
target_platforms: Optional[list[model_types.
|
|
26
|
+
target_platforms: Optional[list[model_types.TargetPlatform]] = None
|
|
16
27
|
artifact_repository_map: Optional[dict[str, str]] = None
|
|
17
28
|
options: Optional[model_types.ModelSaveOption] = None
|
|
18
29
|
save_location: Optional[str] = None
|
|
@@ -23,6 +34,7 @@ class ModelParameterReconciler:
|
|
|
23
34
|
|
|
24
35
|
def __init__(
|
|
25
36
|
self,
|
|
37
|
+
session: Session,
|
|
26
38
|
database_name: sql_identifier.SqlIdentifier,
|
|
27
39
|
schema_name: sql_identifier.SqlIdentifier,
|
|
28
40
|
conda_dependencies: Optional[list[str]] = None,
|
|
@@ -30,7 +42,10 @@ class ModelParameterReconciler:
|
|
|
30
42
|
target_platforms: Optional[list[model_types.SupportedTargetPlatformType]] = None,
|
|
31
43
|
artifact_repository_map: Optional[dict[str, str]] = None,
|
|
32
44
|
options: Optional[model_types.ModelSaveOption] = None,
|
|
45
|
+
python_version: Optional[str] = None,
|
|
46
|
+
statement_params: Optional[dict[str, str]] = None,
|
|
33
47
|
) -> None:
|
|
48
|
+
self._session = session
|
|
34
49
|
self._database_name = database_name
|
|
35
50
|
self._schema_name = schema_name
|
|
36
51
|
self._conda_dependencies = conda_dependencies
|
|
@@ -38,20 +53,27 @@ class ModelParameterReconciler:
|
|
|
38
53
|
self._target_platforms = target_platforms
|
|
39
54
|
self._artifact_repository_map = artifact_repository_map
|
|
40
55
|
self._options = options
|
|
56
|
+
self._python_version = python_version
|
|
57
|
+
self._statement_params = statement_params
|
|
41
58
|
|
|
42
59
|
def reconcile(self) -> ReconciledParameters:
|
|
43
60
|
"""Perform all parameter reconciliation and return clean parameters."""
|
|
61
|
+
|
|
44
62
|
reconciled_artifact_repository_map = self._reconcile_artifact_repository_map()
|
|
45
63
|
reconciled_save_location = self._extract_save_location()
|
|
46
64
|
|
|
47
65
|
self._validate_pip_requirements_warehouse_compatibility(reconciled_artifact_repository_map)
|
|
48
66
|
|
|
67
|
+
reconciled_target_platforms = self._reconcile_target_platforms()
|
|
68
|
+
reconciled_options = self._reconcile_explainability_options(reconciled_target_platforms)
|
|
69
|
+
reconciled_options = self._reconcile_relax_version(reconciled_options, reconciled_target_platforms)
|
|
70
|
+
|
|
49
71
|
return ReconciledParameters(
|
|
50
72
|
conda_dependencies=self._conda_dependencies,
|
|
51
73
|
pip_requirements=self._pip_requirements,
|
|
52
|
-
target_platforms=
|
|
74
|
+
target_platforms=reconciled_target_platforms,
|
|
53
75
|
artifact_repository_map=reconciled_artifact_repository_map,
|
|
54
|
-
options=
|
|
76
|
+
options=reconciled_options,
|
|
55
77
|
save_location=reconciled_save_location,
|
|
56
78
|
)
|
|
57
79
|
|
|
@@ -82,6 +104,45 @@ class ModelParameterReconciler:
|
|
|
82
104
|
|
|
83
105
|
return None
|
|
84
106
|
|
|
107
|
+
def _reconcile_target_platforms(self) -> Optional[list[model_types.TargetPlatform]]:
|
|
108
|
+
"""Reconcile target platforms with proper defaulting logic."""
|
|
109
|
+
# User specified target platforms are defaulted to None and will not show up in the generated manifest.
|
|
110
|
+
if self._target_platforms:
|
|
111
|
+
# Convert any string target platforms to TargetPlatform objects
|
|
112
|
+
return [model_types.TargetPlatform(platform) for platform in self._target_platforms]
|
|
113
|
+
|
|
114
|
+
# Default the target platform to warehouse if not specified and any table function exists
|
|
115
|
+
if self._has_table_function():
|
|
116
|
+
logger.info(
|
|
117
|
+
"Logging a partitioned model with a table function without specifying `target_platforms`. "
|
|
118
|
+
'Default to `target_platforms=["WAREHOUSE"]`.'
|
|
119
|
+
)
|
|
120
|
+
return [target_platform.TargetPlatform.WAREHOUSE]
|
|
121
|
+
|
|
122
|
+
# Default the target platform to SPCS if not specified when running in ML runtime
|
|
123
|
+
if env.IN_ML_RUNTIME:
|
|
124
|
+
logger.info(
|
|
125
|
+
"Logging the model on Container Runtime for ML without specifying `target_platforms`. "
|
|
126
|
+
'Default to `target_platforms=["SNOWPARK_CONTAINER_SERVICES"]`.'
|
|
127
|
+
)
|
|
128
|
+
return [target_platform.TargetPlatform.SNOWPARK_CONTAINER_SERVICES]
|
|
129
|
+
|
|
130
|
+
return None
|
|
131
|
+
|
|
132
|
+
def _has_table_function(self) -> bool:
|
|
133
|
+
"""Check if any table function exists in options."""
|
|
134
|
+
if self._options is None:
|
|
135
|
+
return False
|
|
136
|
+
|
|
137
|
+
if self._options.get("function_type") == model_manifest_schema.ModelMethodFunctionTypes.TABLE_FUNCTION.value:
|
|
138
|
+
return True
|
|
139
|
+
|
|
140
|
+
for opt in self._options.get("method_options", {}).values():
|
|
141
|
+
if opt.get("function_type") == model_manifest_schema.ModelMethodFunctionTypes.TABLE_FUNCTION.value:
|
|
142
|
+
return True
|
|
143
|
+
|
|
144
|
+
return False
|
|
145
|
+
|
|
85
146
|
def _validate_pip_requirements_warehouse_compatibility(
|
|
86
147
|
self, artifact_repository_map: Optional[dict[str, str]]
|
|
87
148
|
) -> None:
|
|
@@ -103,3 +164,131 @@ class ModelParameterReconciler:
|
|
|
103
164
|
or model_types.TargetPlatform.WAREHOUSE in target_platforms
|
|
104
165
|
or "WAREHOUSE" in target_platforms
|
|
105
166
|
)
|
|
167
|
+
|
|
168
|
+
def _reconcile_explainability_options(
|
|
169
|
+
self, target_platforms: Optional[list[model_types.TargetPlatform]]
|
|
170
|
+
) -> model_types.ModelSaveOption:
|
|
171
|
+
"""Reconcile explainability settings and embed_local_ml_library based on warehouse runnability."""
|
|
172
|
+
options = self._options.copy() if self._options else model_types.BaseModelSaveOption()
|
|
173
|
+
|
|
174
|
+
conda_dep_dict = env_utils.validate_conda_dependency_string_list(self._conda_dependencies or [])
|
|
175
|
+
|
|
176
|
+
enable_explainability = options.get("enable_explainability", None)
|
|
177
|
+
|
|
178
|
+
# Handle case where user explicitly disabled explainability
|
|
179
|
+
if enable_explainability is False:
|
|
180
|
+
return self._handle_embed_local_ml_library(options, target_platforms)
|
|
181
|
+
|
|
182
|
+
target_platform_set = set(target_platforms) if target_platforms else set()
|
|
183
|
+
|
|
184
|
+
is_warehouse_runnable = self._is_warehouse_runnable(conda_dep_dict)
|
|
185
|
+
only_spcs = target_platform_set == set(target_platform.SNOWPARK_CONTAINER_SERVICES_ONLY)
|
|
186
|
+
has_both_platforms = target_platform_set == set(target_platform.BOTH_WAREHOUSE_AND_SNOWPARK_CONTAINER_SERVICES)
|
|
187
|
+
|
|
188
|
+
# Handle case where user explicitly requested explainability
|
|
189
|
+
if enable_explainability:
|
|
190
|
+
if only_spcs or not is_warehouse_runnable:
|
|
191
|
+
raise ValueError(
|
|
192
|
+
"`enable_explainability` cannot be set to True when the model is not runnable in WH "
|
|
193
|
+
"or the target platforms include SPCS."
|
|
194
|
+
)
|
|
195
|
+
elif has_both_platforms:
|
|
196
|
+
warnings.warn(
|
|
197
|
+
("Explain function will only be available for model deployed to warehouse."),
|
|
198
|
+
category=UserWarning,
|
|
199
|
+
stacklevel=2,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Handle case where explainability is not specified (None) - set default behavior
|
|
203
|
+
if enable_explainability is None:
|
|
204
|
+
if only_spcs or not is_warehouse_runnable:
|
|
205
|
+
options["enable_explainability"] = False
|
|
206
|
+
|
|
207
|
+
return self._handle_embed_local_ml_library(options, target_platforms)
|
|
208
|
+
|
|
209
|
+
def _handle_embed_local_ml_library(
|
|
210
|
+
self, options: model_types.ModelSaveOption, target_platforms: Optional[list[model_types.TargetPlatform]]
|
|
211
|
+
) -> model_types.ModelSaveOption:
|
|
212
|
+
"""Handle embed_local_ml_library logic."""
|
|
213
|
+
if not snowpark_utils.is_in_stored_procedure() and target_platforms != [ # type: ignore[no-untyped-call]
|
|
214
|
+
model_types.TargetPlatform.SNOWPARK_CONTAINER_SERVICES # no information schema check for SPCS-only models
|
|
215
|
+
]:
|
|
216
|
+
snowml_matched_versions = env_utils.get_matched_package_versions_in_information_schema(
|
|
217
|
+
self._session,
|
|
218
|
+
reqs=[requirements.Requirement(f"{env_utils.SNOWPARK_ML_PKG_NAME}=={snowml_version.VERSION}")],
|
|
219
|
+
python_version=self._python_version or snowml_env.PYTHON_VERSION,
|
|
220
|
+
statement_params=self._statement_params,
|
|
221
|
+
).get(env_utils.SNOWPARK_ML_PKG_NAME, [])
|
|
222
|
+
|
|
223
|
+
if len(snowml_matched_versions) < 1 and not options.get("embed_local_ml_library", False):
|
|
224
|
+
logging.info(
|
|
225
|
+
f"Local snowflake-ml-python library has version {snowml_version.VERSION},"
|
|
226
|
+
" which is not available in the Snowflake server, embedding local ML library automatically."
|
|
227
|
+
)
|
|
228
|
+
options["embed_local_ml_library"] = True
|
|
229
|
+
|
|
230
|
+
return options
|
|
231
|
+
|
|
232
|
+
def _is_warehouse_runnable(self, conda_dep_dict: dict[str, list[Any]]) -> bool:
|
|
233
|
+
"""Check if model can run in warehouse based on conda channels and pip requirements."""
|
|
234
|
+
# If pip requirements are present but no artifact repository map, model cannot run in warehouse
|
|
235
|
+
if self._pip_requirements and not self._artifact_repository_map:
|
|
236
|
+
return False
|
|
237
|
+
|
|
238
|
+
# If no conda dependencies, model can run in warehouse
|
|
239
|
+
if not conda_dep_dict:
|
|
240
|
+
return True
|
|
241
|
+
|
|
242
|
+
# Check if all conda channels are warehouse-compatible
|
|
243
|
+
warehouse_compatible_channels = {env_utils.DEFAULT_CHANNEL_NAME, env_utils.SNOWFLAKE_CONDA_CHANNEL_URL}
|
|
244
|
+
for channel in conda_dep_dict:
|
|
245
|
+
if channel not in warehouse_compatible_channels:
|
|
246
|
+
return False
|
|
247
|
+
|
|
248
|
+
return True
|
|
249
|
+
|
|
250
|
+
def _reconcile_relax_version(
|
|
251
|
+
self,
|
|
252
|
+
options: model_types.ModelSaveOption,
|
|
253
|
+
target_platforms: Optional[list[model_types.TargetPlatform]],
|
|
254
|
+
) -> model_types.ModelSaveOption:
|
|
255
|
+
"""Reconcile relax_version setting based on pip requirements and target platforms."""
|
|
256
|
+
target_platform_set = set(target_platforms) if target_platforms else set()
|
|
257
|
+
has_pip_requirements = bool(self._pip_requirements)
|
|
258
|
+
only_spcs = target_platform_set == set(target_platform.SNOWPARK_CONTAINER_SERVICES_ONLY)
|
|
259
|
+
|
|
260
|
+
if "relax_version" not in options:
|
|
261
|
+
if has_pip_requirements or only_spcs:
|
|
262
|
+
logger.info(
|
|
263
|
+
"Setting `relax_version=False` as this model will run in Snowpark Container Services "
|
|
264
|
+
"or in Warehouse with a specified artifact_repository_map where exact version "
|
|
265
|
+
" specifications will be honored."
|
|
266
|
+
)
|
|
267
|
+
relax_version = False
|
|
268
|
+
else:
|
|
269
|
+
warnings.warn(
|
|
270
|
+
(
|
|
271
|
+
"`relax_version` is not set and therefore defaulted to True. Dependency version constraints"
|
|
272
|
+
" relaxed from ==x.y.z to >=x.y, <(x+1). To use specific dependency versions for compatibility,"
|
|
273
|
+
" reproducibility, etc., set `options={'relax_version': False}` when logging the model."
|
|
274
|
+
),
|
|
275
|
+
category=UserWarning,
|
|
276
|
+
stacklevel=2,
|
|
277
|
+
)
|
|
278
|
+
relax_version = True
|
|
279
|
+
options["relax_version"] = relax_version
|
|
280
|
+
return options
|
|
281
|
+
|
|
282
|
+
# Handle case where relax_version is already set
|
|
283
|
+
relax_version = options["relax_version"]
|
|
284
|
+
if relax_version and (has_pip_requirements or only_spcs):
|
|
285
|
+
raise exceptions.SnowflakeMLException(
|
|
286
|
+
error_code=error_codes.INVALID_ARGUMENT,
|
|
287
|
+
original_exception=ValueError(
|
|
288
|
+
"Setting `relax_version=True` is only allowed for models to be run in Warehouse with "
|
|
289
|
+
"Snowflake Conda Channel dependencies. It cannot be used with pip requirements or when "
|
|
290
|
+
"targeting only Snowpark Container Services."
|
|
291
|
+
),
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
return options
|
snowflake/ml/version.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
|
1
1
|
# This is parsed by regex in conda recipe meta file. Make sure not to break it.
|
|
2
|
-
VERSION = "1.
|
|
2
|
+
VERSION = "1.12.0"
|