snappy 3.1__cp39-cp39-win_amd64.whl → 3.2__cp39-cp39-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cp39-win_amd64.pyd +0 -0
- snappy/SnapPy.cp39-win_amd64.pyd +0 -0
- snappy/SnapPyHP.cp39-win_amd64.pyd +0 -0
- snappy/__init__.py +299 -402
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -40
- snappy/doc/_sources/bugs.rst.txt +14 -14
- snappy/doc/_sources/censuses.rst.txt +51 -51
- snappy/doc/_sources/credits.rst.txt +75 -70
- snappy/doc/_sources/development.rst.txt +259 -239
- snappy/doc/_sources/index.rst.txt +182 -115
- snappy/doc/_sources/installing.rst.txt +247 -264
- snappy/doc/_sources/manifold.rst.txt +6 -6
- snappy/doc/_sources/manifoldhp.rst.txt +46 -46
- snappy/doc/_sources/news.rst.txt +355 -283
- snappy/doc/_sources/other.rst.txt +25 -25
- snappy/doc/_sources/platonic_census.rst.txt +20 -20
- snappy/doc/_sources/plink.rst.txt +102 -102
- snappy/doc/_sources/ptolemy.rst.txt +66 -66
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
- snappy/doc/_sources/screenshots.rst.txt +21 -21
- snappy/doc/_sources/snap.rst.txt +87 -87
- snappy/doc/_sources/snappy.rst.txt +28 -28
- snappy/doc/_sources/spherogram.rst.txt +103 -103
- snappy/doc/_sources/todo.rst.txt +47 -47
- snappy/doc/_sources/triangulation.rst.txt +11 -11
- snappy/doc/_sources/tutorial.rst.txt +49 -49
- snappy/doc/_sources/verify.rst.txt +210 -150
- snappy/doc/_sources/verify_internals.rst.txt +79 -90
- snappy/doc/_static/basic.css +924 -902
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +12 -13
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -199
- snappy/doc/_static/pygments.css +74 -73
- snappy/doc/_static/searchtools.js +125 -71
- snappy/doc/_static/snappy_furo.css +33 -33
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
- snappy/doc/_static/sphinx_highlight.js +13 -3
- snappy/doc/additional_classes.html +1499 -1330
- snappy/doc/bugs.html +131 -134
- snappy/doc/censuses.html +426 -445
- snappy/doc/credits.html +180 -180
- snappy/doc/development.html +383 -363
- snappy/doc/genindex.html +1330 -1409
- snappy/doc/index.html +261 -206
- snappy/doc/installing.html +345 -363
- snappy/doc/manifold.html +3451 -2839
- snappy/doc/manifoldhp.html +179 -182
- snappy/doc/news.html +387 -329
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +160 -162
- snappy/doc/platonic_census.html +374 -377
- snappy/doc/plink.html +209 -212
- snappy/doc/ptolemy.html +253 -255
- snappy/doc/ptolemy_classes.html +1143 -1146
- snappy/doc/ptolemy_examples1.html +408 -410
- snappy/doc/ptolemy_examples2.html +470 -473
- snappy/doc/ptolemy_examples3.html +413 -416
- snappy/doc/ptolemy_examples4.html +194 -197
- snappy/doc/ptolemy_prelim.html +247 -250
- snappy/doc/py-modindex.html +164 -167
- snappy/doc/screenshots.html +140 -142
- snappy/doc/search.html +134 -137
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +201 -204
- snappy/doc/snappy.html +180 -182
- snappy/doc/spherogram.html +1210 -1213
- snappy/doc/todo.html +165 -168
- snappy/doc/triangulation.html +1583 -1474
- snappy/doc/tutorial.html +158 -161
- snappy/doc/verify.html +329 -275
- snappy/doc/verify_internals.html +1234 -1691
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +8 -4
- snappy/phone_home.py +2 -1
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +116 -86
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cp39-win_amd64.pyd +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/__pycache__/browser.cpython-39.pyc +0 -0
- snappy/__pycache__/cache.cpython-39.pyc +0 -0
- snappy/__pycache__/database.cpython-39.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-39.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-39.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-39.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-39.pyc +0 -0
- snappy/__pycache__/gui.cpython-39.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-39.pyc +0 -0
- snappy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/__pycache__/number.cpython-39.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-39.pyc +0 -0
- snappy/__pycache__/pari.cpython-39.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-39.pyc +0 -0
- snappy/__pycache__/version.cpython-39.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/jquery-3.6.0.js +0 -10881
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-39.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-39.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-39.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-39.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy-3.1.dist-info/RECORD +0 -575
- {snappy-3.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,474 +1,471 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
<meta name="viewport" content="width=device-width, initial-scale=1
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
<link rel="stylesheet"
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
<script src="_static/js/theme.js"></script>
|
22
|
-
<link rel="index" title="Index" href="genindex.html" />
|
23
|
-
<link rel="search" title="Search" href="search.html" />
|
24
|
-
<link rel="next" title="Step-by-step examples: Part 3" href="ptolemy_examples3.html" />
|
25
|
-
<link rel="prev" title="Step-by-step examples: Part 1" href="ptolemy_examples1.html" />
|
26
|
-
</head>
|
27
|
-
|
28
|
-
<body class="wy-body-for-nav">
|
29
|
-
<div class="wy-grid-for-nav">
|
30
|
-
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
31
|
-
<div class="wy-side-scroll">
|
32
|
-
<div class="wy-side-nav-search" >
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
<a href="index.html" class="icon icon-home">
|
37
|
-
SnapPy
|
38
|
-
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
39
|
-
</a>
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
<
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
</
|
50
|
-
|
51
|
-
|
52
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
53
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
54
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
55
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
56
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
57
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
58
|
-
<li class="toctree-
|
59
|
-
<li class="toctree-
|
60
|
-
<li class="toctree-
|
61
|
-
<li class="toctree-
|
62
|
-
<li class="toctree-
|
63
|
-
<li class="toctree-
|
64
|
-
<li class="toctree-
|
65
|
-
<li class="toctree-l5"><a class="reference internal" href="
|
66
|
-
<li class="toctree-l5"><a class="reference internal" href="
|
67
|
-
<li class="toctree-l5
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
</
|
72
|
-
</
|
73
|
-
</
|
74
|
-
</li>
|
75
|
-
</ul>
|
76
|
-
</li>
|
77
|
-
<li class="toctree-
|
78
|
-
</
|
79
|
-
</li>
|
80
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
81
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
</
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
<
|
99
|
-
|
100
|
-
<li
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
<
|
114
|
-
<
|
115
|
-
<span
|
116
|
-
<
|
117
|
-
<
|
118
|
-
<span class="
|
119
|
-
<span class="go">
|
120
|
-
<span class="go">
|
121
|
-
<span class="go"> c_0011_0 * c_0101_0
|
122
|
-
<span class="go"> -
|
123
|
-
<span class="go">
|
124
|
-
|
125
|
-
|
126
|
-
<span class="
|
127
|
-
|
128
|
-
</div>
|
129
|
-
|
130
|
-
<
|
131
|
-
|
132
|
-
</
|
133
|
-
<
|
134
|
-
<
|
135
|
-
<span class="go">
|
136
|
-
<span class="go">
|
137
|
-
<span class="go"> '
|
138
|
-
<span class="go">
|
139
|
-
<span class="go">
|
140
|
-
<span class="go">
|
141
|
-
<span class="go">
|
142
|
-
<span class="go">
|
143
|
-
<span class="go">
|
144
|
-
<span class="go"> '
|
145
|
-
<span class="go">
|
146
|
-
|
147
|
-
|
148
|
-
<
|
149
|
-
|
150
|
-
</
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
<
|
156
|
-
</
|
157
|
-
<
|
158
|
-
<
|
159
|
-
<
|
160
|
-
<
|
161
|
-
<span class="
|
162
|
-
|
163
|
-
|
164
|
-
<
|
165
|
-
|
166
|
-
</
|
167
|
-
|
168
|
-
|
169
|
-
<
|
170
|
-
|
171
|
-
</
|
172
|
-
|
173
|
-
<
|
174
|
-
<
|
175
|
-
</
|
176
|
-
<
|
177
|
-
<
|
178
|
-
<
|
179
|
-
<
|
180
|
-
|
181
|
-
|
182
|
-
<span class="
|
183
|
-
</
|
184
|
-
|
185
|
-
<
|
186
|
-
</
|
187
|
-
<
|
188
|
-
<
|
189
|
-
|
190
|
-
|
191
|
-
<
|
192
|
-
</
|
193
|
-
</
|
194
|
-
<
|
195
|
-
<
|
196
|
-
</
|
197
|
-
<
|
198
|
-
<
|
199
|
-
|
200
|
-
|
201
|
-
<
|
202
|
-
|
203
|
-
</
|
204
|
-
|
205
|
-
|
206
|
-
<
|
207
|
-
</
|
208
|
-
</
|
209
|
-
<
|
210
|
-
<
|
211
|
-
|
212
|
-
<
|
213
|
-
<span
|
214
|
-
|
215
|
-
|
216
|
-
<
|
217
|
-
|
218
|
-
</
|
219
|
-
<
|
220
|
-
|
221
|
-
|
222
|
-
<span class="
|
223
|
-
|
224
|
-
</
|
225
|
-
<
|
226
|
-
<
|
227
|
-
<span class="
|
228
|
-
<span class="go">sol.
|
229
|
-
|
230
|
-
|
231
|
-
<
|
232
|
-
</
|
233
|
-
|
234
|
-
<
|
235
|
-
</
|
236
|
-
<
|
237
|
-
<
|
238
|
-
<
|
239
|
-
<
|
240
|
-
<span class="
|
241
|
-
<span class="go">
|
242
|
-
<span class="go">
|
243
|
-
<span class="go"> '
|
244
|
-
<span class="go">
|
245
|
-
<span class="
|
246
|
-
<span class="go">
|
247
|
-
<span class="go">
|
248
|
-
<span class="
|
249
|
-
<span class="go">
|
250
|
-
<span class="go">
|
251
|
-
<span class="go"> '
|
252
|
-
<span class="go">
|
253
|
-
<span class="go">
|
254
|
-
<span class="go">
|
255
|
-
<span class="go">
|
256
|
-
<span class="go">
|
257
|
-
<span class="go">
|
258
|
-
<span class="go"> '
|
259
|
-
<span class="go">
|
260
|
-
|
261
|
-
|
262
|
-
<
|
263
|
-
</
|
264
|
-
</
|
265
|
-
<p>
|
266
|
-
|
267
|
-
<
|
268
|
-
<
|
269
|
-
</
|
270
|
-
<
|
271
|
-
<span
|
272
|
-
<
|
273
|
-
<
|
274
|
-
<span class="
|
275
|
-
<span class="go">
|
276
|
-
<span class="go">
|
277
|
-
<span class="go">
|
278
|
-
<span class="go"> '
|
279
|
-
<span class="go">
|
280
|
-
<span class="
|
281
|
-
<span class="go">
|
282
|
-
<span class="go">
|
283
|
-
|
284
|
-
|
285
|
-
<
|
286
|
-
|
287
|
-
</
|
288
|
-
<
|
289
|
-
<
|
290
|
-
<span class="
|
291
|
-
<span class="go">
|
292
|
-
<span class="go">
|
293
|
-
<span class="go">
|
294
|
-
<span class="go"> '
|
295
|
-
<span class="go">
|
296
|
-
<span class="
|
297
|
-
<span class="go">
|
298
|
-
<span class="go">
|
299
|
-
<span class="
|
300
|
-
<span class="go">
|
301
|
-
|
302
|
-
|
303
|
-
<span class="
|
304
|
-
</
|
305
|
-
</
|
306
|
-
<
|
307
|
-
|
308
|
-
<
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
<
|
316
|
-
<span
|
317
|
-
<
|
318
|
-
<
|
319
|
-
<span class="
|
320
|
-
<span class="go">
|
321
|
-
<span class="go">
|
322
|
-
<span class="go">
|
323
|
-
<span class="go">
|
324
|
-
<span class="go"> '
|
325
|
-
<span class="go">
|
326
|
-
<span class="go">
|
327
|
-
<span class="go">
|
328
|
-
<span class="go">
|
329
|
-
<span class="go">
|
330
|
-
<span class="go">
|
331
|
-
<span class="go">
|
332
|
-
<span class="go"> '
|
333
|
-
<span class="go">
|
334
|
-
|
335
|
-
|
336
|
-
<
|
337
|
-
|
338
|
-
</
|
339
|
-
|
340
|
-
<
|
341
|
-
|
342
|
-
|
343
|
-
<
|
344
|
-
<span
|
345
|
-
<
|
346
|
-
<
|
347
|
-
<span class="
|
348
|
-
<span class="
|
349
|
-
<span class="go">
|
350
|
-
<span class="go">
|
351
|
-
<span class="go"> '
|
352
|
-
<span class="go"> '
|
353
|
-
<span class="go">
|
354
|
-
|
355
|
-
|
356
|
-
<span class="
|
357
|
-
|
358
|
-
</
|
359
|
-
<
|
360
|
-
<
|
361
|
-
<
|
362
|
-
<span class="go">
|
363
|
-
<span class="go">
|
364
|
-
<span class="go">
|
365
|
-
<span class="go"> '
|
366
|
-
<span class="go"> '
|
367
|
-
<span class="go">
|
368
|
-
<span class="go">
|
369
|
-
<span class="go">
|
370
|
-
<span class="go">
|
371
|
-
<span class="go">
|
372
|
-
<span class="go">
|
373
|
-
<span class="go"> '
|
374
|
-
<span class="go"> '
|
375
|
-
<span class="go">
|
376
|
-
<span class="
|
377
|
-
<span class="go">
|
378
|
-
|
379
|
-
|
380
|
-
<span class="
|
381
|
-
</
|
382
|
-
|
383
|
-
<
|
384
|
-
</
|
385
|
-
<
|
386
|
-
<span
|
387
|
-
|
388
|
-
|
389
|
-
<
|
390
|
-
|
391
|
-
</
|
392
|
-
<
|
393
|
-
<
|
394
|
-
<span class="
|
395
|
-
<span class="go">
|
396
|
-
<span class="go">
|
397
|
-
<span class="go">
|
398
|
-
<span class="go"> '
|
399
|
-
<span class="go">
|
400
|
-
<span class="go">
|
401
|
-
|
402
|
-
|
403
|
-
<span class="
|
404
|
-
|
405
|
-
</
|
406
|
-
<
|
407
|
-
<
|
408
|
-
|
409
|
-
|
410
|
-
<
|
411
|
-
</
|
412
|
-
</
|
413
|
-
<
|
414
|
-
<
|
415
|
-
|
416
|
-
|
417
|
-
<span class="
|
418
|
-
|
419
|
-
</
|
420
|
-
|
421
|
-
|
422
|
-
<span class="
|
423
|
-
|
424
|
-
|
425
|
-
<
|
426
|
-
<
|
427
|
-
<span class="go">
|
428
|
-
<span class="go">
|
429
|
-
<span class="go">
|
430
|
-
<span class="go">
|
431
|
-
<span class="go">
|
432
|
-
<span class="go">
|
433
|
-
<span class="go"> 1.17563301006556,</span>
|
434
|
-
<span class="go">
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
</
|
439
|
-
|
440
|
-
|
441
|
-
</
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
</
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
470
|
-
|
471
|
-
</script>
|
472
|
-
|
473
|
-
</body>
|
1
|
+
|
2
|
+
|
3
|
+
<!DOCTYPE html>
|
4
|
+
<html class="writer-html5" lang="en" data-content_root="./">
|
5
|
+
<head>
|
6
|
+
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
7
|
+
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Step-by-step examples: Part 2 — SnapPy 3.2 documentation</title>
|
10
|
+
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
|
11
|
+
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
|
12
|
+
<link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
|
13
|
+
|
14
|
+
|
15
|
+
<link rel="shortcut icon" href="_static/SnapPy.ico"/>
|
16
|
+
<script src="_static/jquery.js?v=5d32c60e"></script>
|
17
|
+
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
18
|
+
<script src="_static/documentation_options.js?v=828ea960"></script>
|
19
|
+
<script src="_static/doctools.js?v=9a2dae69"></script>
|
20
|
+
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
|
21
|
+
<script src="_static/js/theme.js"></script>
|
22
|
+
<link rel="index" title="Index" href="genindex.html" />
|
23
|
+
<link rel="search" title="Search" href="search.html" />
|
24
|
+
<link rel="next" title="Step-by-step examples: Part 3" href="ptolemy_examples3.html" />
|
25
|
+
<link rel="prev" title="Step-by-step examples: Part 1" href="ptolemy_examples1.html" />
|
26
|
+
</head>
|
27
|
+
|
28
|
+
<body class="wy-body-for-nav">
|
29
|
+
<div class="wy-grid-for-nav">
|
30
|
+
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
31
|
+
<div class="wy-side-scroll">
|
32
|
+
<div class="wy-side-nav-search" >
|
33
|
+
|
34
|
+
|
35
|
+
|
36
|
+
<a href="index.html" class="icon icon-home">
|
37
|
+
SnapPy
|
38
|
+
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
39
|
+
</a>
|
40
|
+
<div role="search">
|
41
|
+
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
42
|
+
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
43
|
+
<input type="hidden" name="check_keywords" value="yes" />
|
44
|
+
<input type="hidden" name="area" value="default" />
|
45
|
+
</form>
|
46
|
+
</div>
|
47
|
+
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
48
|
+
<ul class="current">
|
49
|
+
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
|
50
|
+
<li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
|
51
|
+
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
|
52
|
+
<li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
|
53
|
+
<li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
|
54
|
+
<li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
|
55
|
+
<li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
|
56
|
+
<li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
|
57
|
+
<li class="toctree-l1 current"><a class="reference internal" href="other.html">Other components</a><ul class="current">
|
58
|
+
<li class="toctree-l2 current"><a class="reference internal" href="other.html#ptolemy-module">Ptolemy module</a><ul class="current">
|
59
|
+
<li class="toctree-l3 current"><a class="reference internal" href="ptolemy.html">The ptolemy module</a><ul class="current">
|
60
|
+
<li class="toctree-l4"><a class="reference internal" href="ptolemy.html#what-is-the-ptolemy-module">What is the ptolemy module?</a></li>
|
61
|
+
<li class="toctree-l4 current"><a class="reference internal" href="ptolemy.html#documentation">Documentation</a><ul class="current">
|
62
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_prelim.html">Mathematical preliminaries</a></li>
|
63
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples1.html">Step-by-step examples: Part 1</a></li>
|
64
|
+
<li class="toctree-l5 current"><a class="current reference internal" href="#">Step-by-step examples: Part 2</a></li>
|
65
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples3.html">Step-by-step examples: Part 3</a></li>
|
66
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples4.html">Step-by-step examples: Part 4</a></li>
|
67
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_classes.html">Classes</a></li>
|
68
|
+
</ul>
|
69
|
+
</li>
|
70
|
+
</ul>
|
71
|
+
</li>
|
72
|
+
</ul>
|
73
|
+
</li>
|
74
|
+
<li class="toctree-l2"><a class="reference internal" href="other.html#twister">Twister</a></li>
|
75
|
+
</ul>
|
76
|
+
</li>
|
77
|
+
<li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
|
78
|
+
<li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
|
79
|
+
<li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
|
80
|
+
<li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
|
81
|
+
<li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
|
82
|
+
</ul>
|
83
|
+
|
84
|
+
</div>
|
85
|
+
</div>
|
86
|
+
</nav>
|
87
|
+
|
88
|
+
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
89
|
+
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
90
|
+
<a href="index.html">SnapPy</a>
|
91
|
+
</nav>
|
92
|
+
|
93
|
+
<div class="wy-nav-content">
|
94
|
+
<div class="rst-content">
|
95
|
+
<div role="navigation" aria-label="Page navigation">
|
96
|
+
<ul class="wy-breadcrumbs">
|
97
|
+
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
|
98
|
+
<li class="breadcrumb-item"><a href="other.html">Other components</a></li>
|
99
|
+
<li class="breadcrumb-item"><a href="ptolemy.html">The ptolemy module</a></li>
|
100
|
+
<li class="breadcrumb-item active">Step-by-step examples: Part 2</li>
|
101
|
+
<li class="wy-breadcrumbs-aside">
|
102
|
+
</li>
|
103
|
+
</ul>
|
104
|
+
<hr/>
|
105
|
+
</div>
|
106
|
+
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
107
|
+
<div itemprop="articleBody">
|
108
|
+
|
109
|
+
<section id="step-by-step-examples-part-2">
|
110
|
+
<h1>Step-by-step examples: Part 2<a class="headerlink" href="#step-by-step-examples-part-2" title="Link to this heading"></a></h1>
|
111
|
+
<section id="the-ptolemy-list-type">
|
112
|
+
<span id="ptolemy-example-smart-lists"></span><h2>The Ptolemy list type<a class="headerlink" href="#the-ptolemy-list-type" title="Link to this heading"></a></h2>
|
113
|
+
<p>Recall that <code class="docutils literal notranslate"><span class="pre">ptolemy_variety</span></code> with <code class="docutils literal notranslate"><span class="pre">obstruction_class='all'</span></code> returns a list of varieties, one for each obstruction class:</p>
|
114
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span>
|
115
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">'all'</span><span class="p">)</span>
|
116
|
+
<span class="go">[Ptolemy Variety for m003, N = 2, obstruction_class = 0</span>
|
117
|
+
<span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
|
118
|
+
<span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
|
119
|
+
<span class="go"> - 1 + c_0011_0,</span>
|
120
|
+
<span class="go"> Ptolemy Variety for m003, N = 2, obstruction_class = 1</span>
|
121
|
+
<span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
|
122
|
+
<span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
|
123
|
+
<span class="go"> - 1 + c_0011_0]</span>
|
124
|
+
</pre></div>
|
125
|
+
</div>
|
126
|
+
<p>Also recall that <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> was a method of a <code class="docutils literal notranslate"><span class="pre">PtolemyVariety</span></code>. Assume we want to call <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> for each Ptolemy variety. As in the previous example, we could write a loop such as:</p>
|
127
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="p">[</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">'all'</span><span class="p">)]</span>
|
128
|
+
</pre></div>
|
129
|
+
</div>
|
130
|
+
<p>The ptolemy module allows to do this in a much shorter way:</p>
|
131
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
132
|
+
<span class="go">[[PtolemyCoordinates(</span>
|
133
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
134
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
135
|
+
<span class="go"> 'c_0101_0': Mod(x, x^2 - x - 1),</span>
|
136
|
+
<span class="go"> ...,</span>
|
137
|
+
<span class="go"> 's_3_1': 1},</span>
|
138
|
+
<span class="go"> is_numerical = False, ...)],</span>
|
139
|
+
<span class="go"> [PtolemyCoordinates(</span>
|
140
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
141
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
142
|
+
<span class="go"> 'c_0101_0': Mod(x, x^2 + x + 1),</span>
|
143
|
+
<span class="go"> ...,</span>
|
144
|
+
<span class="go"> 's_3_1': 1},</span>
|
145
|
+
<span class="go"> is_numerical = False, ...)]]</span>
|
146
|
+
</pre></div>
|
147
|
+
</div>
|
148
|
+
<p>This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
|
149
|
+
can potentially return more than one object. These methods return a special kind of list (usually
|
150
|
+
<code class="docutils literal notranslate"><span class="pre">MethodMappingList</span></code>, a subclass of python <code class="docutils literal notranslate"><span class="pre">list</span></code>) that tries to call the method of the given name (here <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code>) with
|
151
|
+
the given arguments (here <code class="docutils literal notranslate"><span class="pre">verbose=False</span></code>) on each element in the list (here the two Ptolemy varieties).</p>
|
152
|
+
<p>Since <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> itself actually returns a list, the result is a list of lists of solutions which are of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for <code class="docutils literal notranslate"><span class="pre">m003</span></code>, each inner lists contains only one element).</p>
|
153
|
+
</section>
|
154
|
+
<section id="using-the-ptolemy-list-type-recursively">
|
155
|
+
<h2>Using the Ptolemy list type recursively<a class="headerlink" href="#using-the-ptolemy-list-type-recursively" title="Link to this heading"></a></h2>
|
156
|
+
<p>The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>) has a method <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> that returns a list of volumes:</p>
|
157
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span>
|
158
|
+
<span class="gp">>>> </span><span class="n">p</span><span class="o">=</span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
|
159
|
+
<span class="gp">>>> </span><span class="n">sol</span><span class="o">=</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
|
160
|
+
<span class="gp">>>> </span><span class="n">sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
161
|
+
<span class="go">[0.E-19, 1.88267370443418 E-14]</span>
|
162
|
+
</pre></div>
|
163
|
+
</div>
|
164
|
+
<p>We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, <strong>C</strong>) (that are <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the triangulation) in just one line:</p>
|
165
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
166
|
+
<span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
|
167
|
+
</pre></div>
|
168
|
+
</div>
|
169
|
+
<p>Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.</p>
|
170
|
+
<p><strong>Remark:</strong> There might be an extra level for witness points.</p>
|
171
|
+
<p><strong>Remark:</strong> Unfortunately, this is not compatible with tab-autocompletion, see <a class="reference internal" href="#ptolemy-example-missing-auto-completion"><span class="std std-ref">later</span></a>.</p>
|
172
|
+
</section>
|
173
|
+
<section id="a-comparison-of-m003-and-m004">
|
174
|
+
<h2>A comparison of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code><a class="headerlink" href="#a-comparison-of-m003-and-m004" title="Link to this heading"></a></h2>
|
175
|
+
<p>We can now compare the set of volumes of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code>:</p>
|
176
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
177
|
+
<span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
|
178
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
179
|
+
<span class="go">[[], [[-2.02988321281931, 2.02988321281931]]]</span>
|
180
|
+
</pre></div>
|
181
|
+
</div>
|
182
|
+
<p>We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: <code class="docutils literal notranslate"><span class="pre">m004</span></code> has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, <strong>C</strong>)-representation.</p>
|
183
|
+
</section>
|
184
|
+
<section id="a-non-hyperbolic-example">
|
185
|
+
<h2>A non-hyperbolic example<a class="headerlink" href="#a-non-hyperbolic-example" title="Link to this heading"></a></h2>
|
186
|
+
<p>We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5<sub>1</sub> knot:</p>
|
187
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"5_1"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
188
|
+
<span class="go">[[], [[1.52310839130992 E-14, 0.E-37]]]</span>
|
189
|
+
</pre></div>
|
190
|
+
</div>
|
191
|
+
<p>Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883… of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id1"><span>[GGZ2014]</span></a> that 5<sub>1</sub> is not hyperbolic.</p>
|
192
|
+
<p><strong>Remark:</strong> The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5<sub>1</sub> is not hyperbolic.</p>
|
193
|
+
</section>
|
194
|
+
<section id="flattening-nested-structures">
|
195
|
+
<h2>Flattening nested structures<a class="headerlink" href="#flattening-nested-structures" title="Link to this heading"></a></h2>
|
196
|
+
<p>If we want to loose some of the grouping, we can call <code class="docutils literal notranslate"><span class="pre">flatten</span></code> on the results. Here the grouping by obstruction class is lost:</p>
|
197
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
|
198
|
+
<span class="go">[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]</span>
|
199
|
+
</pre></div>
|
200
|
+
</div>
|
201
|
+
<p>And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list:</p>
|
202
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
|
203
|
+
<span class="go">[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]</span>
|
204
|
+
</pre></div>
|
205
|
+
</div>
|
206
|
+
<p>So the result is just a flat list.</p>
|
207
|
+
<p><strong>Remark:</strong> We cannot <cite>overflatten</cite>. If we give an even larger argument to flatten, the result will just stay a flat list.</p>
|
208
|
+
</section>
|
209
|
+
<section id="lack-of-tab-autocompletion-for-nested-structures">
|
210
|
+
<span id="ptolemy-example-missing-auto-completion"></span><h2>Lack of tab-autocompletion for nested structures<a class="headerlink" href="#lack-of-tab-autocompletion-for-nested-structures" title="Link to this heading"></a></h2>
|
211
|
+
<p>Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example:</p>
|
212
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
213
|
+
<span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span>
|
214
|
+
</pre></div>
|
215
|
+
</div>
|
216
|
+
<p>When we now hit the tab key:</p>
|
217
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span>
|
218
|
+
<span class="go">sols.append sols.extend sols.index sols.pop sols.reverse</span>
|
219
|
+
<span class="go">sols.count sols.flatten sols.insert sols.remove sols.sort</span>
|
220
|
+
</pre></div>
|
221
|
+
</div>
|
222
|
+
<p>… we only get <code class="docutils literal notranslate"><span class="pre">list</span></code> methods, but not the desired <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code>. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key:</p>
|
223
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sol</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
|
224
|
+
<span class="gp">>>> </span><span class="n">sol</span><span class="o">.</span>
|
225
|
+
<span class="go">sol.N sol.keys</span>
|
226
|
+
<span class="go">sol.check_against_manifold sol.long_edge</span>
|
227
|
+
<span class="go">...</span>
|
228
|
+
<span class="go">sol.itervalues sol.volume_numerical</span>
|
229
|
+
</pre></div>
|
230
|
+
</div>
|
231
|
+
<p>The overview diagram might also be helpful.</p>
|
232
|
+
</section>
|
233
|
+
<section id="converting-exact-solutions-into-numerical-solutions">
|
234
|
+
<h2>Converting exact solutions into numerical solutions<a class="headerlink" href="#converting-exact-solutions-into-numerical-solutions" title="Link to this heading"></a></h2>
|
235
|
+
<p>We can turn exact solutions into numerical solutions by calling <code class="docutils literal notranslate"><span class="pre">numerical</span></code>:</p>
|
236
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
|
237
|
+
<span class="gp">>>> </span><span class="n">sol</span>
|
238
|
+
<span class="go">PtolemyCoordinates(</span>
|
239
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
240
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
241
|
+
<span class="go"> 'c_0101_0': Mod(x, x^2 + x + 1),</span>
|
242
|
+
<span class="go"> ...</span>
|
243
|
+
<span class="go"> 's_3_1': 1},</span>
|
244
|
+
<span class="go"> is_numerical = False, ...)</span>
|
245
|
+
<span class="gp">>>> </span><span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
|
246
|
+
<span class="go">[PtolemyCoordinates(</span>
|
247
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
248
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
249
|
+
<span class="go"> 'c_0101_0': -0.500000000000000 - 0.866025403784439*I,</span>
|
250
|
+
<span class="go"> ...,</span>
|
251
|
+
<span class="go"> 's_3_1': 1},</span>
|
252
|
+
<span class="go"> is_numerical = True, ...),</span>
|
253
|
+
<span class="go"> PtolemyCoordinates(</span>
|
254
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
255
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
256
|
+
<span class="go"> 'c_0101_0': -0.500000000000000 + 0.866025403784439*I,</span>
|
257
|
+
<span class="go"> ...,</span>
|
258
|
+
<span class="go"> 's_3_1': 1},</span>
|
259
|
+
<span class="go"> is_numerical = True, ...)]</span>
|
260
|
+
</pre></div>
|
261
|
+
</div>
|
262
|
+
<p>Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.</p>
|
263
|
+
<p><strong>Remark:</strong> This uses the current pari precision. See the <a class="reference internal" href="ptolemy_examples1.html#ptolemy-example-increase-precision"><span class="std std-ref">above example</span></a>, in particular, the comment about interval arithmetics.</p>
|
264
|
+
<p><strong>Remark:</strong> Calling <code class="docutils literal notranslate"><span class="pre">numerical()</span></code> on a numerical solution does nothing.</p>
|
265
|
+
<p><strong>Remark:</strong> <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> also support <code class="docutils literal notranslate"><span class="pre">numerical</span></code>.</p>
|
266
|
+
</section>
|
267
|
+
<section id="working-with-exact-vs-numerical-solutions">
|
268
|
+
<span id="ptolemy-example-numerical-matrix"></span><h2>Working with exact vs numerical solutions<a class="headerlink" href="#working-with-exact-vs-numerical-solutions" title="Link to this heading"></a></h2>
|
269
|
+
<p>Most methods such as <code class="docutils literal notranslate"><span class="pre">evaluate_word</span></code> or <code class="docutils literal notranslate"><span class="pre">cross_ratios</span></code> work just the same way on an exact solution:</p>
|
270
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">exact_sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
|
271
|
+
<span class="gp">>>> </span><span class="n">exact_sol</span>
|
272
|
+
<span class="go">PtolemyCoordinates(</span>
|
273
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
274
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
275
|
+
<span class="go"> 'c_0101_0': 1,</span>
|
276
|
+
<span class="go"> 'c_0101_1': Mod(x, x^2 + x + 1),</span>
|
277
|
+
<span class="go"> ...,</span>
|
278
|
+
<span class="go"> 's_3_1': -1},</span>
|
279
|
+
<span class="go"> is_numerical = False, ...)</span>
|
280
|
+
<span class="gp">>>> </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">'a'</span><span class="p">)</span>
|
281
|
+
<span class="go">[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],</span>
|
282
|
+
<span class="go"> [Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]</span>
|
283
|
+
</pre></div>
|
284
|
+
</div>
|
285
|
+
<p>… as they do on a numerical solution:</p>
|
286
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">numerical_sol</span> <span class="o">=</span> <span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
|
287
|
+
<span class="gp">>>> </span><span class="n">numerical_sol</span>
|
288
|
+
<span class="go">PtolemyCoordinates(</span>
|
289
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
290
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
291
|
+
<span class="go"> 'c_0101_0': 1,</span>
|
292
|
+
<span class="go"> 'c_0101_1': -0.500000000000000 - 0.866025403784439*I,</span>
|
293
|
+
<span class="go"> ...,</span>
|
294
|
+
<span class="go"> 's_3_1': -1},</span>
|
295
|
+
<span class="go"> is_numerical = False, ...)</span>
|
296
|
+
<span class="gp">>>> </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">'a'</span><span class="p">)</span>
|
297
|
+
<span class="go">[[1.00000000000000 + 1.73205080756888*I,</span>
|
298
|
+
<span class="go"> -0.500000000000000 + 0.866025403784439*I],</span>
|
299
|
+
<span class="go"> [-0.500000000000000 - 0.866025403784439*I,</span>
|
300
|
+
<span class="go"> 0.500000000000000 - 0.866025403784439*I]]</span>
|
301
|
+
</pre></div>
|
302
|
+
</div>
|
303
|
+
<p>Methods with postfix <code class="docutils literal notranslate"><span class="pre">_numerical</span></code> are special: when applied to an exact solution, they implicitly convert it to a list
|
304
|
+
of Galois conjugate numerical solutions first. <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> is an example (because volume is a transcendental function):</p>
|
305
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
306
|
+
<span class="go">[-2.02988321281931, 2.02988321281931]</span>
|
307
|
+
<span class="gp">>>> </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
308
|
+
<span class="go">-2.02988321281931</span>
|
309
|
+
</pre></div>
|
310
|
+
</div>
|
311
|
+
</section>
|
312
|
+
<section id="computing-numerical-solutions-directly">
|
313
|
+
<span id="ptolemy-example-retrieve-numerical-solutions"></span><h2>Computing numerical solutions directly<a class="headerlink" href="#computing-numerical-solutions-directly" title="Link to this heading"></a></h2>
|
314
|
+
<p>We can also directly compute numerical solutions:</p>
|
315
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span>
|
316
|
+
<span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">numerical</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
317
|
+
<span class="go">[[],</span>
|
318
|
+
<span class="go"> [[PtolemyCoordinates(</span>
|
319
|
+
<span class="go"> {'c_0011_0': 1.00000000000000 + 0.E-19*I,</span>
|
320
|
+
<span class="go"> 'c_0011_1': -1.00000000000000 + 0.E-19*I,</span>
|
321
|
+
<span class="go"> 'c_0101_0': 1.00000000000000 + 0.E-19*I,</span>
|
322
|
+
<span class="go"> 'c_0101_1': -0.500000000000000 - 0.866025403784439*I,</span>
|
323
|
+
<span class="go"> ...,</span>
|
324
|
+
<span class="go"> 's_3_1': -1},</span>
|
325
|
+
<span class="go"> is_numerical = True, ...),</span>
|
326
|
+
<span class="go"> PtolemyCoordinates(</span>
|
327
|
+
<span class="go"> {'c_0011_0': 1.00000000000000 + 0.E-19*I,</span>
|
328
|
+
<span class="go"> 'c_0011_1': -1.00000000000000 + 0.E-19*I,</span>
|
329
|
+
<span class="go"> 'c_0101_0': 1.00000000000000 + 0.E-19*I,</span>
|
330
|
+
<span class="go"> 'c_0101_1': -0.500000000000000 + 0.866025403784439*I,</span>
|
331
|
+
<span class="go"> ...,</span>
|
332
|
+
<span class="go"> 's_3_1': -1},</span>
|
333
|
+
<span class="go"> is_numerical = True, ...)]]]</span>
|
334
|
+
</pre></div>
|
335
|
+
</div>
|
336
|
+
<p>The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.</p>
|
337
|
+
<p>The advantage over going through the exact solutions is that it might be much faster
|
338
|
+
(because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, <strong>C</strong>) examples only work when using <code class="docutils literal notranslate"><span class="pre">numerical</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p>
|
339
|
+
</section>
|
340
|
+
<section id="computing-cross-ratios-from-ptolemy-coordinates">
|
341
|
+
<span id="ptolemy-example-cross-ratios"></span><h2>Computing cross ratios from Ptolemy coordinates<a class="headerlink" href="#computing-cross-ratios-from-ptolemy-coordinates" title="Link to this heading"></a></h2>
|
342
|
+
<p>Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters:</p>
|
343
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
344
|
+
<span class="gp">>>> </span><span class="n">zs</span><span class="o">=</span><span class="n">sols</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
|
345
|
+
<span class="gp">>>> </span><span class="n">zs</span>
|
346
|
+
<span class="go">[[],</span>
|
347
|
+
<span class="go"> [CrossRatios({'z_0000_0': Mod(x + 1, x^2 + x + 1),</span>
|
348
|
+
<span class="go"> 'z_0000_1': Mod(x + 1, x^2 + x + 1),</span>
|
349
|
+
<span class="go"> 'zp_0000_0': Mod(x + 1, x^2 + x + 1),</span>
|
350
|
+
<span class="go"> 'zp_0000_1': Mod(x + 1, x^2 + x + 1),</span>
|
351
|
+
<span class="go"> 'zpp_0000_0': Mod(x + 1, x^2 + x + 1),</span>
|
352
|
+
<span class="go"> 'zpp_0000_1': Mod(x + 1, x^2 + x + 1)},</span>
|
353
|
+
<span class="go"> is_numerical = False, ...)]]</span>
|
354
|
+
</pre></div>
|
355
|
+
</div>
|
356
|
+
<p><strong>Remark</strong>: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to <code class="docutils literal notranslate"><span class="pre">Mod(...,</span> <span class="pre">...)</span></code>, here, x<sup>2</sup>+x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For <em>N</em> =2, the Ptolemy field is the trace field <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id2"><span>[GGZ2014]</span></a> and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.</p>
|
357
|
+
<p>And numerically, so that we can compare to SnapPy’s shapes:</p>
|
358
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">zs</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
|
359
|
+
<span class="go">[[],</span>
|
360
|
+
<span class="go"> [[CrossRatios(</span>
|
361
|
+
<span class="go"> {'z_0000_0': 0.500000000000000 - 0.866025403784439*I,</span>
|
362
|
+
<span class="go"> 'z_0000_1': 0.500000000000000 - 0.866025403784439*I,</span>
|
363
|
+
<span class="go"> 'zp_0000_0': 0.500000000000000 - 0.866025403784439*I,</span>
|
364
|
+
<span class="go"> 'zp_0000_1': 0.500000000000000 - 0.866025403784439*I,</span>
|
365
|
+
<span class="go"> 'zpp_0000_0': 0.500000000000000 - 0.866025403784439*I,</span>
|
366
|
+
<span class="go"> 'zpp_0000_1': 0.500000000000000 - 0.866025403784439*I},</span>
|
367
|
+
<span class="go"> is_numerical = True, ...),</span>
|
368
|
+
<span class="go"> CrossRatios(</span>
|
369
|
+
<span class="go"> {'z_0000_0': 0.500000000000000 + 0.866025403784439*I,</span>
|
370
|
+
<span class="go"> 'z_0000_1': 0.500000000000000 + 0.866025403784439*I,</span>
|
371
|
+
<span class="go"> 'zp_0000_0': 0.500000000000000 + 0.866025403784439*I,</span>
|
372
|
+
<span class="go"> 'zp_0000_1': 0.500000000000000 + 0.866025403784439*I,</span>
|
373
|
+
<span class="go"> 'zpp_0000_0': 0.500000000000000 + 0.866025403784439*I,</span>
|
374
|
+
<span class="go"> 'zpp_0000_1': 0.500000000000000 + 0.866025403784439*I},</span>
|
375
|
+
<span class="go"> is_numerical = True, ...)]]]</span>
|
376
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">)</span>
|
377
|
+
<span class="go">[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]</span>
|
378
|
+
</pre></div>
|
379
|
+
</div>
|
380
|
+
<p>The result is of type <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> and assigns z as well as z’=1/(1-z) and z’’=1-1/z a value.</p>
|
381
|
+
</section>
|
382
|
+
<section id="the-dimension-of-a-component">
|
383
|
+
<span id="ptolemy-non-zero-dim-comp"></span><h2>The dimension of a component<a class="headerlink" href="#the-dimension-of-a-component" title="Link to this heading"></a></h2>
|
384
|
+
<p>A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">here</span></a>). For example, the Ptolemy variety for <code class="docutils literal notranslate"><span class="pre">m371</span></code> and the trivial obstruction class has a 1-dimensional component. This is indicated by:</p>
|
385
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
|
386
|
+
<span class="go">[NonZeroDimensionalComponent(dimension = 1)]</span>
|
387
|
+
</pre></div>
|
388
|
+
</div>
|
389
|
+
<p>Or:</p>
|
390
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m371"</span><span class="p">)</span>
|
391
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
|
392
|
+
<span class="go">[[ PtolemyCoordinates(</span>
|
393
|
+
<span class="go"> {'c_0011_0': 1,</span>
|
394
|
+
<span class="go"> 'c_0011_1': -1,</span>
|
395
|
+
<span class="go"> 'c_0011_2': -1,</span>
|
396
|
+
<span class="go"> 'c_0011_3': Mod(-x - 1, x^2 + x + 2),</span>
|
397
|
+
<span class="go"> ...,</span>
|
398
|
+
<span class="go"> 's_3_4': 1},</span>
|
399
|
+
<span class="go"> is_numerical = False, ...)</span>
|
400
|
+
<span class="go"> (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]]</span>
|
401
|
+
</pre></div>
|
402
|
+
</div>
|
403
|
+
<p>The latter actually also provides a sample point (<a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-find-witness"><span class="std std-ref">witness</span></a> which we will use <a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-non-zero-dim-rep"><span class="std std-ref">later</span></a> to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> as well as <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code> (that correspond to 0-dimensional components of the Ptolemy variety)) has a <code class="docutils literal notranslate"><span class="pre">dimension</span></code> attribute, so we can do:</p>
|
404
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m371"</span><span class="p">)</span>
|
405
|
+
<span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">'all'</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
|
406
|
+
<span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span><span class="n">dimension</span>
|
407
|
+
<span class="go">[[1], [], [0], []]</span>
|
408
|
+
</pre></div>
|
409
|
+
</div>
|
410
|
+
<p>This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.</p>
|
411
|
+
<p>A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.</p>
|
412
|
+
<p><strong>Warning:</strong> This implies that if we <code class="docutils literal notranslate"><span class="pre">flatten</span></code> too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1:</p>
|
413
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
|
414
|
+
<span class="go">[1, 0]</span>
|
415
|
+
</pre></div>
|
416
|
+
</div>
|
417
|
+
<p>Too much <code class="docutils literal notranslate"><span class="pre">flatten</span></code>:</p>
|
418
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
|
419
|
+
<span class="go">[0, 0]</span>
|
420
|
+
</pre></div>
|
421
|
+
</div>
|
422
|
+
<p>The advantage is that we can still call methods such as <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component):</p>
|
423
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
424
|
+
<span class="go">[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]],</span>
|
425
|
+
<span class="go"> [],</span>
|
426
|
+
<span class="go"> [[4.75170196551790,</span>
|
427
|
+
<span class="go"> -4.75170196551790,</span>
|
428
|
+
<span class="go"> 4.75170196551790,</span>
|
429
|
+
<span class="go"> -4.75170196551790,</span>
|
430
|
+
<span class="go"> 1.17563301006556,</span>
|
431
|
+
<span class="go"> -1.17563301006556,</span>
|
432
|
+
<span class="go"> 1.17563301006556,</span>
|
433
|
+
<span class="go"> -1.17563301006556]],</span>
|
434
|
+
<span class="go"> []]</span>
|
435
|
+
</pre></div>
|
436
|
+
</div>
|
437
|
+
</section>
|
438
|
+
</section>
|
439
|
+
|
440
|
+
|
441
|
+
</div>
|
442
|
+
</div>
|
443
|
+
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
444
|
+
<a href="ptolemy_examples1.html" class="btn btn-neutral float-left" title="Step-by-step examples: Part 1" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
445
|
+
<a href="ptolemy_examples3.html" class="btn btn-neutral float-right" title="Step-by-step examples: Part 3" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
446
|
+
</div>
|
447
|
+
|
448
|
+
<hr/>
|
449
|
+
|
450
|
+
<div role="contentinfo">
|
451
|
+
<p>© Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
|
452
|
+
</div>
|
453
|
+
|
454
|
+
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
|
455
|
+
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
|
456
|
+
provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
457
|
+
|
458
|
+
|
459
|
+
</footer>
|
460
|
+
</div>
|
461
|
+
</div>
|
462
|
+
</section>
|
463
|
+
</div>
|
464
|
+
<script>
|
465
|
+
jQuery(function () {
|
466
|
+
SphinxRtdTheme.Navigation.enable(true);
|
467
|
+
});
|
468
|
+
</script>
|
469
|
+
|
470
|
+
</body>
|
474
471
|
</html>
|