snappy 3.1.1__cp312-cp312-win_amd64.whl → 3.2__cp312-cp312-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cp312-win_amd64.pyd +0 -0
- snappy/SnapPy.cp312-win_amd64.pyd +0 -0
- snappy/SnapPyHP.cp312-win_amd64.pyd +0 -0
- snappy/__init__.py +271 -401
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -40
- snappy/doc/_sources/bugs.rst.txt +14 -14
- snappy/doc/_sources/censuses.rst.txt +51 -51
- snappy/doc/_sources/credits.rst.txt +75 -75
- snappy/doc/_sources/development.rst.txt +259 -239
- snappy/doc/_sources/index.rst.txt +182 -115
- snappy/doc/_sources/installing.rst.txt +247 -264
- snappy/doc/_sources/manifold.rst.txt +6 -6
- snappy/doc/_sources/manifoldhp.rst.txt +46 -46
- snappy/doc/_sources/news.rst.txt +355 -283
- snappy/doc/_sources/other.rst.txt +25 -25
- snappy/doc/_sources/platonic_census.rst.txt +20 -20
- snappy/doc/_sources/plink.rst.txt +102 -102
- snappy/doc/_sources/ptolemy.rst.txt +66 -66
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
- snappy/doc/_sources/screenshots.rst.txt +21 -21
- snappy/doc/_sources/snap.rst.txt +87 -87
- snappy/doc/_sources/snappy.rst.txt +28 -28
- snappy/doc/_sources/spherogram.rst.txt +103 -103
- snappy/doc/_sources/todo.rst.txt +47 -47
- snappy/doc/_sources/triangulation.rst.txt +11 -11
- snappy/doc/_sources/tutorial.rst.txt +49 -49
- snappy/doc/_sources/verify.rst.txt +210 -150
- snappy/doc/_sources/verify_internals.rst.txt +79 -90
- snappy/doc/_static/basic.css +924 -924
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +12 -12
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -199
- snappy/doc/_static/pygments.css +74 -74
- snappy/doc/_static/searchtools.js +108 -62
- snappy/doc/_static/snappy_furo.css +33 -33
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
- snappy/doc/additional_classes.html +1499 -1330
- snappy/doc/bugs.html +131 -134
- snappy/doc/censuses.html +426 -445
- snappy/doc/credits.html +180 -183
- snappy/doc/development.html +383 -363
- snappy/doc/genindex.html +1330 -1409
- snappy/doc/index.html +261 -206
- snappy/doc/installing.html +345 -363
- snappy/doc/manifold.html +3451 -2839
- snappy/doc/manifoldhp.html +179 -182
- snappy/doc/news.html +387 -329
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +160 -162
- snappy/doc/platonic_census.html +374 -377
- snappy/doc/plink.html +209 -212
- snappy/doc/ptolemy.html +253 -255
- snappy/doc/ptolemy_classes.html +1143 -1146
- snappy/doc/ptolemy_examples1.html +408 -410
- snappy/doc/ptolemy_examples2.html +470 -473
- snappy/doc/ptolemy_examples3.html +413 -416
- snappy/doc/ptolemy_examples4.html +194 -197
- snappy/doc/ptolemy_prelim.html +247 -250
- snappy/doc/py-modindex.html +164 -167
- snappy/doc/screenshots.html +140 -142
- snappy/doc/search.html +134 -137
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +201 -204
- snappy/doc/snappy.html +180 -182
- snappy/doc/spherogram.html +1210 -1213
- snappy/doc/todo.html +165 -168
- snappy/doc/triangulation.html +1583 -1474
- snappy/doc/tutorial.html +158 -161
- snappy/doc/verify.html +329 -275
- snappy/doc/verify_internals.html +1234 -1691
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +6 -3
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +113 -84
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cp312-win_amd64.pyd +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +25 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/__pycache__/browser.cpython-312.pyc +0 -0
- snappy/__pycache__/cache.cpython-312.pyc +0 -0
- snappy/__pycache__/database.cpython-312.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-312.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-312.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-312.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-312.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-312.pyc +0 -0
- snappy/__pycache__/gui.cpython-312.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-312.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-312.pyc +0 -0
- snappy/__pycache__/matrix.cpython-312.pyc +0 -0
- snappy/__pycache__/number.cpython-312.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-312.pyc +0 -0
- snappy/__pycache__/pari.cpython-312.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-312.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-312.pyc +0 -0
- snappy/__pycache__/version.cpython-312.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-312.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-312.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-312.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-312.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-312.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-312.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-312.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-312.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-312.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-312.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-312.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-312.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-312.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-312.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-312.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-312.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-312.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-312.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-312.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-312.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-312.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-312.pyc +0 -0
- snappy-3.1.1.dist-info/RECORD +0 -572
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
snappy/doc/triangulation.html
CHANGED
@@ -1,1475 +1,1584 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
<meta name="viewport" content="width=device-width, initial-scale=1
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
<link rel="stylesheet"
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
<
|
23
|
-
<link rel="
|
24
|
-
<link rel="
|
25
|
-
<link rel="
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
<
|
44
|
-
|
45
|
-
<input type="
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
53
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
54
|
-
<li class="toctree-
|
55
|
-
<li class="toctree-
|
56
|
-
<li class="toctree-l2"><a class="reference internal" href="
|
57
|
-
<li class="toctree-
|
58
|
-
<li class="toctree-
|
59
|
-
<li class="toctree-
|
60
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
61
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
62
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
63
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
64
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
65
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
66
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
67
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
68
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
69
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
70
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
71
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
72
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
73
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
74
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
75
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
76
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
77
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
78
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
79
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
80
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
81
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
82
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
83
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
84
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
85
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
86
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
87
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
88
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
89
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
90
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
91
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
92
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
93
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
94
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
95
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
96
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
97
|
-
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.
|
98
|
-
|
99
|
-
|
100
|
-
</ul>
|
101
|
-
</li>
|
102
|
-
</
|
103
|
-
</li>
|
104
|
-
|
105
|
-
|
106
|
-
</
|
107
|
-
</li>
|
108
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
109
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
110
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
111
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
112
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
113
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
114
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
115
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
116
|
-
|
117
|
-
|
118
|
-
</
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
<li
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
<
|
147
|
-
|
148
|
-
<
|
149
|
-
<
|
150
|
-
|
151
|
-
|
152
|
-
boundary
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
<
|
162
|
-
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">
|
163
|
-
<span class="go">
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
<p>
|
169
|
-
<
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
<
|
178
|
-
|
179
|
-
<
|
180
|
-
<
|
181
|
-
<
|
182
|
-
<
|
183
|
-
<li><p>
|
184
|
-
|
185
|
-
|
186
|
-
<li><p>
|
187
|
-
|
188
|
-
</
|
189
|
-
</
|
190
|
-
|
191
|
-
|
192
|
-
<
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
<
|
200
|
-
|
201
|
-
<p>
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
<
|
212
|
-
<
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
<
|
219
|
-
<
|
220
|
-
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">()</span>
|
221
|
-
<span class="go"
|
222
|
-
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
223
|
-
<span class="go">'ebbccdaeb'</span>
|
224
|
-
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">
|
225
|
-
<span class="go"
|
226
|
-
|
227
|
-
|
228
|
-
</
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
<
|
233
|
-
<
|
234
|
-
<
|
235
|
-
<
|
236
|
-
<
|
237
|
-
|
238
|
-
<span class="
|
239
|
-
|
240
|
-
<span class="n">
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
</
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
<
|
250
|
-
<
|
251
|
-
<
|
252
|
-
<
|
253
|
-
<
|
254
|
-
|
255
|
-
</
|
256
|
-
</
|
257
|
-
|
258
|
-
|
259
|
-
<
|
260
|
-
<
|
261
|
-
<
|
262
|
-
|
263
|
-
specified by a
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
cover
|
269
|
-
<
|
270
|
-
<span class="
|
271
|
-
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">
|
272
|
-
<span class="go"
|
273
|
-
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'
|
274
|
-
<span class="go">'
|
275
|
-
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'
|
276
|
-
<span class="go"
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
</
|
281
|
-
<
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
<
|
289
|
-
<
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
<
|
297
|
-
<
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
<
|
306
|
-
|
307
|
-
<
|
308
|
-
|
309
|
-
|
310
|
-
<
|
311
|
-
|
312
|
-
</
|
313
|
-
<
|
314
|
-
|
315
|
-
|
316
|
-
<
|
317
|
-
|
318
|
-
</
|
319
|
-
<
|
320
|
-
|
321
|
-
<
|
322
|
-
<span class="
|
323
|
-
|
324
|
-
|
325
|
-
<
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
<
|
335
|
-
|
336
|
-
<
|
337
|
-
<
|
338
|
-
cusp.
|
339
|
-
<
|
340
|
-
<span class="gp">>>> </span><span class="n">
|
341
|
-
<span class="go">
|
342
|
-
<span class="gp">>>> </span><span class="
|
343
|
-
<span class="
|
344
|
-
|
345
|
-
|
346
|
-
<
|
347
|
-
|
348
|
-
|
349
|
-
<
|
350
|
-
<
|
351
|
-
<span class="
|
352
|
-
<span class="go">
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
<
|
361
|
-
|
362
|
-
|
363
|
-
<
|
364
|
-
|
365
|
-
|
366
|
-
<
|
367
|
-
<
|
368
|
-
<
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
</
|
374
|
-
</
|
375
|
-
<
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
</
|
381
|
-
</
|
382
|
-
<
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
</
|
387
|
-
</
|
388
|
-
</
|
389
|
-
<
|
390
|
-
<
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
</
|
395
|
-
</
|
396
|
-
</
|
397
|
-
|
398
|
-
<
|
399
|
-
|
400
|
-
|
401
|
-
<
|
402
|
-
|
403
|
-
|
404
|
-
<
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
<
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
<
|
422
|
-
|
423
|
-
|
424
|
-
<
|
425
|
-
|
426
|
-
</
|
427
|
-
<
|
428
|
-
|
429
|
-
<
|
430
|
-
|
431
|
-
|
432
|
-
<
|
433
|
-
|
434
|
-
|
435
|
-
<p
|
436
|
-
|
437
|
-
<
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
the
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
<code class="docutils literal notranslate"><span class="pre">
|
457
|
-
|
458
|
-
|
459
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
<
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
<
|
479
|
-
|
480
|
-
<
|
481
|
-
<
|
482
|
-
|
483
|
-
<
|
484
|
-
<
|
485
|
-
|
486
|
-
|
487
|
-
<
|
488
|
-
|
489
|
-
</
|
490
|
-
<
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
<
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
<
|
506
|
-
<span class="
|
507
|
-
<span class="
|
508
|
-
<span class="go">
|
509
|
-
<span class="
|
510
|
-
<span class="go">
|
511
|
-
|
512
|
-
|
513
|
-
<
|
514
|
-
|
515
|
-
</
|
516
|
-
<p>
|
517
|
-
<
|
518
|
-
<li><p>
|
519
|
-
|
520
|
-
<
|
521
|
-
<
|
522
|
-
</
|
523
|
-
<
|
524
|
-
<span class="go">
|
525
|
-
<span class="go">
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
533
|
-
<
|
534
|
-
|
535
|
-
<
|
536
|
-
<
|
537
|
-
|
538
|
-
<
|
539
|
-
<
|
540
|
-
|
541
|
-
|
542
|
-
<
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
<p>
|
554
|
-
|
555
|
-
<
|
556
|
-
<
|
557
|
-
|
558
|
-
|
559
|
-
<
|
560
|
-
<div
|
561
|
-
</
|
562
|
-
<
|
563
|
-
<
|
564
|
-
<span class="
|
565
|
-
<span class="
|
566
|
-
<span class="go">[
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
<
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
<p>
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
<
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
<
|
588
|
-
|
589
|
-
<
|
590
|
-
<span class="
|
591
|
-
|
592
|
-
|
593
|
-
<
|
594
|
-
|
595
|
-
|
596
|
-
</
|
597
|
-
<
|
598
|
-
|
599
|
-
<
|
600
|
-
<span class="
|
601
|
-
<span class="go">
|
602
|
-
<span class="go"> [
|
603
|
-
<span class="go"> [
|
604
|
-
|
605
|
-
|
606
|
-
<
|
607
|
-
|
608
|
-
|
609
|
-
</div>
|
610
|
-
<p>
|
611
|
-
|
612
|
-
<
|
613
|
-
<
|
614
|
-
</
|
615
|
-
<
|
616
|
-
|
617
|
-
<
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
|
627
|
-
<
|
628
|
-
|
629
|
-
|
630
|
-
<
|
631
|
-
<span class="
|
632
|
-
|
633
|
-
</
|
634
|
-
<p>
|
635
|
-
|
636
|
-
<
|
637
|
-
<li><p>
|
638
|
-
<li><p>
|
639
|
-
|
640
|
-
|
641
|
-
<li><p>
|
642
|
-
<
|
643
|
-
</
|
644
|
-
</li>
|
645
|
-
|
646
|
-
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
</
|
653
|
-
|
654
|
-
|
655
|
-
<
|
656
|
-
<span class="
|
657
|
-
<
|
658
|
-
|
659
|
-
<
|
660
|
-
<span class="gp">>>> </span><span class="n">
|
661
|
-
<span class="go">
|
662
|
-
|
663
|
-
|
664
|
-
<
|
665
|
-
|
666
|
-
|
667
|
-
</
|
668
|
-
<
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
675
|
-
</
|
676
|
-
|
677
|
-
|
678
|
-
<
|
679
|
-
<span class="
|
680
|
-
<
|
681
|
-
|
682
|
-
|
683
|
-
<
|
684
|
-
|
685
|
-
|
686
|
-
</
|
687
|
-
<p>
|
688
|
-
|
689
|
-
|
690
|
-
<
|
691
|
-
|
692
|
-
|
693
|
-
</
|
694
|
-
<
|
695
|
-
|
696
|
-
|
697
|
-
<
|
698
|
-
|
699
|
-
|
700
|
-
</
|
701
|
-
<
|
702
|
-
|
703
|
-
<
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
</
|
711
|
-
|
712
|
-
|
713
|
-
<
|
714
|
-
<span class="
|
715
|
-
<
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
</
|
723
|
-
|
724
|
-
<
|
725
|
-
<
|
726
|
-
<span class="
|
727
|
-
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
</
|
734
|
-
|
735
|
-
|
736
|
-
<
|
737
|
-
<span class="
|
738
|
-
<
|
739
|
-
|
740
|
-
<
|
741
|
-
<span class="
|
742
|
-
<span class="
|
743
|
-
<span class="
|
744
|
-
<span class="
|
745
|
-
|
746
|
-
|
747
|
-
<
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
</
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
<
|
761
|
-
<
|
762
|
-
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
</
|
767
|
-
|
768
|
-
<
|
769
|
-
<
|
770
|
-
<span class="
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
</
|
778
|
-
|
779
|
-
|
780
|
-
<
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
(
|
786
|
-
|
787
|
-
|
788
|
-
<
|
789
|
-
|
790
|
-
|
791
|
-
</
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
<
|
797
|
-
<span class="
|
798
|
-
|
799
|
-
|
800
|
-
<span class="
|
801
|
-
|
802
|
-
|
803
|
-
<
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
<
|
813
|
-
<
|
814
|
-
<span class="
|
815
|
-
<
|
816
|
-
<
|
817
|
-
<span class="
|
818
|
-
<span class="go">
|
819
|
-
|
820
|
-
|
821
|
-
|
822
|
-
|
823
|
-
|
824
|
-
|
825
|
-
|
826
|
-
<
|
827
|
-
|
828
|
-
<
|
829
|
-
<
|
830
|
-
|
831
|
-
|
832
|
-
|
833
|
-
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
838
|
-
<
|
839
|
-
<
|
840
|
-
<span class="
|
841
|
-
<
|
842
|
-
|
843
|
-
|
844
|
-
|
845
|
-
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
<
|
850
|
-
|
851
|
-
<
|
852
|
-
<
|
853
|
-
|
854
|
-
<
|
855
|
-
<span class="gp">>>> </span><span class="n">Y</span>
|
856
|
-
<span class="
|
857
|
-
<span class="
|
858
|
-
<span class="
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
<
|
867
|
-
|
868
|
-
<
|
869
|
-
<
|
870
|
-
|
871
|
-
<
|
872
|
-
<
|
873
|
-
<span class="
|
874
|
-
<
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
<
|
881
|
-
<
|
882
|
-
<span class="
|
883
|
-
<
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
|
903
|
-
|
904
|
-
|
905
|
-
|
906
|
-
<
|
907
|
-
|
908
|
-
|
909
|
-
|
910
|
-
|
911
|
-
<
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
|
919
|
-
<p>
|
920
|
-
|
921
|
-
|
922
|
-
<
|
923
|
-
|
924
|
-
</
|
925
|
-
</
|
926
|
-
|
927
|
-
|
928
|
-
<
|
929
|
-
|
930
|
-
</
|
931
|
-
<
|
932
|
-
|
933
|
-
|
934
|
-
<
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
939
|
-
<
|
940
|
-
<
|
941
|
-
</
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
<
|
949
|
-
<
|
950
|
-
<span class="
|
951
|
-
<
|
952
|
-
|
953
|
-
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
<
|
959
|
-
<
|
960
|
-
|
961
|
-
|
962
|
-
</
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
<
|
972
|
-
|
973
|
-
</
|
974
|
-
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
<
|
979
|
-
<
|
980
|
-
|
981
|
-
|
982
|
-
<
|
983
|
-
|
984
|
-
</
|
985
|
-
<
|
986
|
-
|
987
|
-
|
988
|
-
<
|
989
|
-
|
990
|
-
|
991
|
-
<p>
|
992
|
-
|
993
|
-
|
994
|
-
|
995
|
-
|
996
|
-
|
997
|
-
<
|
998
|
-
|
999
|
-
|
1000
|
-
<p>
|
1001
|
-
|
1002
|
-
</
|
1003
|
-
|
1004
|
-
|
1005
|
-
<
|
1006
|
-
|
1007
|
-
<
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
</
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1021
|
-
<
|
1022
|
-
|
1023
|
-
</
|
1024
|
-
</
|
1025
|
-
<
|
1026
|
-
|
1027
|
-
</
|
1028
|
-
</
|
1029
|
-
<
|
1030
|
-
|
1031
|
-
|
1032
|
-
</
|
1033
|
-
</
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1037
|
-
</
|
1038
|
-
<
|
1039
|
-
<
|
1040
|
-
|
1041
|
-
|
1042
|
-
<
|
1043
|
-
<
|
1044
|
-
|
1045
|
-
|
1046
|
-
<
|
1047
|
-
|
1048
|
-
|
1049
|
-
<
|
1050
|
-
<span class="
|
1051
|
-
<span class="go">
|
1052
|
-
<span class="go">
|
1053
|
-
<span class="go">
|
1054
|
-
<span class="go">
|
1055
|
-
<span class="go">
|
1056
|
-
<span class="go">
|
1057
|
-
</
|
1058
|
-
</div>
|
1059
|
-
|
1060
|
-
<
|
1061
|
-
<
|
1062
|
-
<
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
<
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
<p
|
1072
|
-
|
1073
|
-
|
1074
|
-
|
1075
|
-
|
1076
|
-
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
<p>
|
1082
|
-
|
1083
|
-
|
1084
|
-
|
1085
|
-
<
|
1086
|
-
<
|
1087
|
-
</pre></div>
|
1088
|
-
</div>
|
1089
|
-
<p>
|
1090
|
-
|
1091
|
-
<
|
1092
|
-
</
|
1093
|
-
</
|
1094
|
-
<
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1098
|
-
</
|
1099
|
-
<
|
1100
|
-
<
|
1101
|
-
<span class="
|
1102
|
-
<span class="go">
|
1103
|
-
<span class="go">
|
1104
|
-
<span class="go">
|
1105
|
-
</pre></div>
|
1106
|
-
</div>
|
1107
|
-
<p
|
1108
|
-
<
|
1109
|
-
|
1110
|
-
<
|
1111
|
-
<span class="
|
1112
|
-
<span class="
|
1113
|
-
<span class="
|
1114
|
-
<span class="
|
1115
|
-
</pre></div>
|
1116
|
-
</div>
|
1117
|
-
<p
|
1118
|
-
|
1119
|
-
|
1120
|
-
<
|
1121
|
-
<
|
1122
|
-
<span class="gp"
|
1123
|
-
<span class="gp"
|
1124
|
-
|
1125
|
-
|
1126
|
-
</
|
1127
|
-
<
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
<p>
|
1132
|
-
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="
|
1133
|
-
|
1134
|
-
|
1135
|
-
<span class="
|
1136
|
-
|
1137
|
-
|
1138
|
-
<
|
1139
|
-
|
1140
|
-
|
1141
|
-
<
|
1142
|
-
<
|
1143
|
-
</
|
1144
|
-
</div>
|
1145
|
-
|
1146
|
-
|
1147
|
-
|
1148
|
-
<
|
1149
|
-
<
|
1150
|
-
|
1151
|
-
|
1152
|
-
<
|
1153
|
-
<span class="gp">>>> </span><span class="n">
|
1154
|
-
</
|
1155
|
-
</
|
1156
|
-
<
|
1157
|
-
|
1158
|
-
<
|
1159
|
-
|
1160
|
-
</
|
1161
|
-
</
|
1162
|
-
|
1163
|
-
<
|
1164
|
-
<
|
1165
|
-
<span class="
|
1166
|
-
<
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1170
|
-
</
|
1171
|
-
</
|
1172
|
-
|
1173
|
-
|
1174
|
-
|
1175
|
-
<
|
1176
|
-
<
|
1177
|
-
|
1178
|
-
|
1179
|
-
|
1180
|
-
<span class="gp">>>> </span><span class="n">M</span
|
1181
|
-
</
|
1182
|
-
</
|
1183
|
-
</
|
1184
|
-
|
1185
|
-
|
1186
|
-
|
1187
|
-
|
1188
|
-
|
1189
|
-
|
1190
|
-
<
|
1191
|
-
<span class="
|
1192
|
-
<
|
1193
|
-
<
|
1194
|
-
<span class="
|
1195
|
-
</pre></div>
|
1196
|
-
</div>
|
1197
|
-
|
1198
|
-
|
1199
|
-
|
1200
|
-
|
1201
|
-
<
|
1202
|
-
<
|
1203
|
-
|
1204
|
-
|
1205
|
-
</
|
1206
|
-
|
1207
|
-
<
|
1208
|
-
|
1209
|
-
|
1210
|
-
|
1211
|
-
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">
|
1212
|
-
<span class="gp">>>> </span><span class="n">
|
1213
|
-
</
|
1214
|
-
</
|
1215
|
-
</
|
1216
|
-
|
1217
|
-
|
1218
|
-
|
1219
|
-
<
|
1220
|
-
<
|
1221
|
-
<
|
1222
|
-
<
|
1223
|
-
|
1224
|
-
|
1225
|
-
|
1226
|
-
|
1227
|
-
|
1228
|
-
|
1229
|
-
|
1230
|
-
|
1231
|
-
|
1232
|
-
|
1233
|
-
|
1234
|
-
|
1235
|
-
|
1236
|
-
|
1237
|
-
<p>
|
1238
|
-
|
1239
|
-
|
1240
|
-
|
1241
|
-
|
1242
|
-
|
1243
|
-
|
1244
|
-
<
|
1245
|
-
<
|
1246
|
-
|
1247
|
-
<
|
1248
|
-
|
1249
|
-
<
|
1250
|
-
|
1251
|
-
|
1252
|
-
|
1253
|
-
|
1254
|
-
|
1255
|
-
|
1256
|
-
|
1257
|
-
|
1258
|
-
|
1259
|
-
<
|
1260
|
-
|
1261
|
-
|
1262
|
-
|
1263
|
-
|
1264
|
-
|
1265
|
-
|
1266
|
-
|
1267
|
-
|
1268
|
-
|
1269
|
-
|
1270
|
-
|
1271
|
-
|
1272
|
-
|
1273
|
-
|
1274
|
-
<p>
|
1275
|
-
<
|
1276
|
-
<
|
1277
|
-
<
|
1278
|
-
|
1279
|
-
|
1280
|
-
|
1281
|
-
the
|
1282
|
-
|
1283
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">
|
1284
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">
|
1285
|
-
<span class="n">
|
1286
|
-
|
1287
|
-
|
1288
|
-
|
1289
|
-
<
|
1290
|
-
|
1291
|
-
|
1292
|
-
<p>
|
1293
|
-
|
1294
|
-
|
1295
|
-
|
1296
|
-
|
1297
|
-
|
1298
|
-
|
1299
|
-
|
1300
|
-
|
1301
|
-
|
1302
|
-
|
1303
|
-
<
|
1304
|
-
<
|
1305
|
-
<span class="
|
1306
|
-
|
1307
|
-
|
1308
|
-
<
|
1309
|
-
|
1310
|
-
|
1311
|
-
|
1312
|
-
|
1313
|
-
</
|
1314
|
-
|
1315
|
-
<
|
1316
|
-
|
1317
|
-
|
1318
|
-
<
|
1319
|
-
|
1320
|
-
<
|
1321
|
-
|
1322
|
-
|
1323
|
-
</
|
1324
|
-
|
1325
|
-
<
|
1326
|
-
<
|
1327
|
-
<span class="
|
1328
|
-
<
|
1329
|
-
|
1330
|
-
<span class="gp">>>> </span><span class="n">
|
1331
|
-
<span class="
|
1332
|
-
|
1333
|
-
</div>
|
1334
|
-
|
1335
|
-
|
1336
|
-
|
1337
|
-
<
|
1338
|
-
<
|
1339
|
-
|
1340
|
-
|
1341
|
-
<
|
1342
|
-
<
|
1343
|
-
<span class="
|
1344
|
-
<
|
1345
|
-
<
|
1346
|
-
|
1347
|
-
<span class="gp">>>> </span><span class="n">
|
1348
|
-
<span class="
|
1349
|
-
<span class="
|
1350
|
-
|
1351
|
-
|
1352
|
-
<
|
1353
|
-
<
|
1354
|
-
|
1355
|
-
<
|
1356
|
-
|
1357
|
-
</
|
1358
|
-
</
|
1359
|
-
<p>
|
1360
|
-
|
1361
|
-
|
1362
|
-
<
|
1363
|
-
<span class="gp">>>> </span><span class="n">
|
1364
|
-
<span class="go">'
|
1365
|
-
<span class="gp">>>> </span><span class="n">
|
1366
|
-
<span class="gp">>>> </span><span class="n">
|
1367
|
-
<span class="go"
|
1368
|
-
</pre></div>
|
1369
|
-
</div>
|
1370
|
-
<p>
|
1371
|
-
|
1372
|
-
|
1373
|
-
<span class="gp">>>> </span><span class="n">
|
1374
|
-
<span class="
|
1375
|
-
<span class="
|
1376
|
-
<span class="gp">>>> </span><span class="n">
|
1377
|
-
<span class="
|
1378
|
-
<span class="
|
1379
|
-
|
1380
|
-
|
1381
|
-
<
|
1382
|
-
<
|
1383
|
-
|
1384
|
-
|
1385
|
-
<
|
1386
|
-
<
|
1387
|
-
|
1388
|
-
|
1389
|
-
<
|
1390
|
-
|
1391
|
-
|
1392
|
-
|
1393
|
-
|
1394
|
-
<
|
1395
|
-
|
1396
|
-
<
|
1397
|
-
<
|
1398
|
-
|
1399
|
-
|
1400
|
-
</
|
1401
|
-
|
1402
|
-
<
|
1403
|
-
<
|
1404
|
-
|
1405
|
-
|
1406
|
-
|
1407
|
-
<
|
1408
|
-
|
1409
|
-
|
1410
|
-
<span class="
|
1411
|
-
|
1412
|
-
</
|
1413
|
-
</
|
1414
|
-
<p>
|
1415
|
-
|
1416
|
-
<p>
|
1417
|
-
|
1418
|
-
|
1419
|
-
|
1420
|
-
|
1421
|
-
|
1422
|
-
|
1423
|
-
<
|
1424
|
-
|
1425
|
-
</
|
1426
|
-
|
1427
|
-
|
1428
|
-
<
|
1429
|
-
<span class="
|
1430
|
-
<
|
1431
|
-
|
1432
|
-
<
|
1433
|
-
<span class="
|
1434
|
-
<span class="
|
1435
|
-
<span class="go">
|
1436
|
-
</pre></div>
|
1437
|
-
</div>
|
1438
|
-
|
1439
|
-
|
1440
|
-
|
1441
|
-
|
1442
|
-
|
1443
|
-
|
1444
|
-
|
1445
|
-
|
1446
|
-
|
1447
|
-
|
1448
|
-
|
1449
|
-
|
1450
|
-
|
1451
|
-
|
1452
|
-
|
1453
|
-
|
1454
|
-
|
1455
|
-
|
1456
|
-
|
1457
|
-
|
1458
|
-
|
1459
|
-
|
1460
|
-
|
1461
|
-
|
1462
|
-
|
1463
|
-
</
|
1464
|
-
|
1465
|
-
|
1466
|
-
|
1467
|
-
|
1468
|
-
|
1469
|
-
|
1470
|
-
|
1471
|
-
|
1472
|
-
|
1473
|
-
|
1474
|
-
|
1
|
+
|
2
|
+
|
3
|
+
<!DOCTYPE html>
|
4
|
+
<html class="writer-html5" lang="en" data-content_root="./">
|
5
|
+
<head>
|
6
|
+
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
7
|
+
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Triangulation — SnapPy 3.2 documentation</title>
|
10
|
+
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
|
11
|
+
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
|
12
|
+
<link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
|
13
|
+
|
14
|
+
|
15
|
+
<link rel="shortcut icon" href="_static/SnapPy.ico"/>
|
16
|
+
<script src="_static/jquery.js?v=5d32c60e"></script>
|
17
|
+
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
18
|
+
<script src="_static/documentation_options.js?v=828ea960"></script>
|
19
|
+
<script src="_static/doctools.js?v=9a2dae69"></script>
|
20
|
+
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
|
21
|
+
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
22
|
+
<script src="_static/js/theme.js"></script>
|
23
|
+
<link rel="index" title="Index" href="genindex.html" />
|
24
|
+
<link rel="search" title="Search" href="search.html" />
|
25
|
+
<link rel="next" title="Additional Classes" href="additional_classes.html" />
|
26
|
+
<link rel="prev" title="ManifoldHP: High-precision variant" href="manifoldhp.html" />
|
27
|
+
</head>
|
28
|
+
|
29
|
+
<body class="wy-body-for-nav">
|
30
|
+
<div class="wy-grid-for-nav">
|
31
|
+
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
32
|
+
<div class="wy-side-scroll">
|
33
|
+
<div class="wy-side-nav-search" >
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
<a href="index.html" class="icon icon-home">
|
38
|
+
SnapPy
|
39
|
+
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
40
|
+
</a>
|
41
|
+
<div role="search">
|
42
|
+
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
43
|
+
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
44
|
+
<input type="hidden" name="check_keywords" value="yes" />
|
45
|
+
<input type="hidden" name="area" value="default" />
|
46
|
+
</form>
|
47
|
+
</div>
|
48
|
+
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
49
|
+
<ul class="current">
|
50
|
+
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
|
51
|
+
<li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
|
52
|
+
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
|
53
|
+
<li class="toctree-l1 current"><a class="reference internal" href="snappy.html">The snappy module and its classes</a><ul class="current">
|
54
|
+
<li class="toctree-l2"><a class="reference internal" href="manifold.html">Manifold: the main class</a></li>
|
55
|
+
<li class="toctree-l2"><a class="reference internal" href="manifoldhp.html">ManifoldHP: High-precision variant</a></li>
|
56
|
+
<li class="toctree-l2 current"><a class="current reference internal" href="#">Triangulation</a><ul>
|
57
|
+
<li class="toctree-l3"><a class="reference internal" href="#snappy.Triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation</span></code></a><ul>
|
58
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.DT_code"><code class="docutils literal notranslate"><span class="pre">Triangulation.DT_code()</span></code></a></li>
|
59
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.alexander_polynomial"><code class="docutils literal notranslate"><span class="pre">Triangulation.alexander_polynomial()</span></code></a></li>
|
60
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.copy"><code class="docutils literal notranslate"><span class="pre">Triangulation.copy()</span></code></a></li>
|
61
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover()</span></code></a></li>
|
62
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover_info()</span></code></a></li>
|
63
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.covers"><code class="docutils literal notranslate"><span class="pre">Triangulation.covers()</span></code></a></li>
|
64
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cusp_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cusp_info()</span></code></a></li>
|
65
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.dehn_fill"><code class="docutils literal notranslate"><span class="pre">Triangulation.dehn_fill()</span></code></a></li>
|
66
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.edge_valences"><code class="docutils literal notranslate"><span class="pre">Triangulation.edge_valences()</span></code></a></li>
|
67
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.exterior_to_link"><code class="docutils literal notranslate"><span class="pre">Triangulation.exterior_to_link()</span></code></a></li>
|
68
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.filled_triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation.filled_triangulation()</span></code></a></li>
|
69
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.fundamental_group"><code class="docutils literal notranslate"><span class="pre">Triangulation.fundamental_group()</span></code></a></li>
|
70
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations()</span></code></a></li>
|
71
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations_pgl"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations_pgl()</span></code></a></li>
|
72
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.has_finite_vertices"><code class="docutils literal notranslate"><span class="pre">Triangulation.has_finite_vertices()</span></code></a></li>
|
73
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homological_longitude"><code class="docutils literal notranslate"><span class="pre">Triangulation.homological_longitude()</span></code></a></li>
|
74
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homology"><code class="docutils literal notranslate"><span class="pre">Triangulation.homology()</span></code></a></li>
|
75
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.is_orientable"><code class="docutils literal notranslate"><span class="pre">Triangulation.is_orientable()</span></code></a></li>
|
76
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.isomorphisms_to"><code class="docutils literal notranslate"><span class="pre">Triangulation.isomorphisms_to()</span></code></a></li>
|
77
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.link"><code class="docutils literal notranslate"><span class="pre">Triangulation.link()</span></code></a></li>
|
78
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.name"><code class="docutils literal notranslate"><span class="pre">Triangulation.name()</span></code></a></li>
|
79
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_boundary_slopes"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_boundary_slopes()</span></code></a></li>
|
80
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_surfaces"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_surfaces()</span></code></a></li>
|
81
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_cusps"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_cusps()</span></code></a></li>
|
82
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_tetrahedra"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_tetrahedra()</span></code></a></li>
|
83
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.orientation_cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.orientation_cover()</span></code></a></li>
|
84
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.plink"><code class="docutils literal notranslate"><span class="pre">Triangulation.plink()</span></code></a></li>
|
85
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_generalized_obstruction_classes()</span></code></a></li>
|
86
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_obstruction_classes()</span></code></a></li>
|
87
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_variety"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_variety()</span></code></a></li>
|
88
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.randomize"><code class="docutils literal notranslate"><span class="pre">Triangulation.randomize()</span></code></a></li>
|
89
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.reverse_orientation"><code class="docutils literal notranslate"><span class="pre">Triangulation.reverse_orientation()</span></code></a></li>
|
90
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.save"><code class="docutils literal notranslate"><span class="pre">Triangulation.save()</span></code></a></li>
|
91
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_name"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_name()</span></code></a></li>
|
92
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_peripheral_curves"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_peripheral_curves()</span></code></a></li>
|
93
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.simplify"><code class="docutils literal notranslate"><span class="pre">Triangulation.simplify()</span></code></a></li>
|
94
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.slice_obstruction_HKL"><code class="docutils literal notranslate"><span class="pre">Triangulation.slice_obstruction_HKL()</span></code></a></li>
|
95
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.symplectic_basis"><code class="docutils literal notranslate"><span class="pre">Triangulation.symplectic_basis()</span></code></a></li>
|
96
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.triangulation_isosig"><code class="docutils literal notranslate"><span class="pre">Triangulation.triangulation_isosig()</span></code></a></li>
|
97
|
+
<li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.with_hyperbolic_structure"><code class="docutils literal notranslate"><span class="pre">Triangulation.with_hyperbolic_structure()</span></code></a></li>
|
98
|
+
</ul>
|
99
|
+
</li>
|
100
|
+
</ul>
|
101
|
+
</li>
|
102
|
+
<li class="toctree-l2"><a class="reference internal" href="additional_classes.html">Additional Classes</a></li>
|
103
|
+
<li class="toctree-l2"><a class="reference internal" href="censuses.html">Census manifolds</a></li>
|
104
|
+
</ul>
|
105
|
+
</li>
|
106
|
+
<li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
|
107
|
+
<li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
|
108
|
+
<li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
|
109
|
+
<li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
|
110
|
+
<li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
|
111
|
+
<li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
|
112
|
+
<li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
|
113
|
+
<li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
|
114
|
+
<li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
|
115
|
+
<li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
|
116
|
+
</ul>
|
117
|
+
|
118
|
+
</div>
|
119
|
+
</div>
|
120
|
+
</nav>
|
121
|
+
|
122
|
+
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
123
|
+
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
124
|
+
<a href="index.html">SnapPy</a>
|
125
|
+
</nav>
|
126
|
+
|
127
|
+
<div class="wy-nav-content">
|
128
|
+
<div class="rst-content">
|
129
|
+
<div role="navigation" aria-label="Page navigation">
|
130
|
+
<ul class="wy-breadcrumbs">
|
131
|
+
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
|
132
|
+
<li class="breadcrumb-item"><a href="snappy.html">The snappy module and its classes</a></li>
|
133
|
+
<li class="breadcrumb-item active">Triangulation</li>
|
134
|
+
<li class="wy-breadcrumbs-aside">
|
135
|
+
</li>
|
136
|
+
</ul>
|
137
|
+
<hr/>
|
138
|
+
</div>
|
139
|
+
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
140
|
+
<div itemprop="articleBody">
|
141
|
+
|
142
|
+
<section id="triangulation">
|
143
|
+
<h1>Triangulation<a class="headerlink" href="#triangulation" title="Link to this heading"></a></h1>
|
144
|
+
<p>The main snappy class, namely Manifold, is derived from the more
|
145
|
+
basic class below.</p>
|
146
|
+
<dl class="py class">
|
147
|
+
<dt class="sig sig-object py" id="snappy.Triangulation">
|
148
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.</span></span><span class="sig-name descname"><span class="pre">Triangulation</span></span><a class="headerlink" href="#snappy.Triangulation" title="Link to this definition"></a></dt>
|
149
|
+
<dd><p>A Triangulation object represents a compact 3-manifold with torus
|
150
|
+
boundary components, given as an ideal triangulation of the
|
151
|
+
manifold’s interior. A Dehn-filling can be specified for each
|
152
|
+
boundary component, allowing the description of closed 3-manifolds
|
153
|
+
and some orbifolds. For non-orientable 3-manifolds, the boundary
|
154
|
+
components can also be Klein bottles. Two Triangulations are equal
|
155
|
+
(‘==’) if they represent combinatorially isomorphic
|
156
|
+
triangulations. A Triangulation does <em>not</em> have any geometric
|
157
|
+
structure, and usually one works with the subclass Manifold which
|
158
|
+
adds this. Here’s a quick example:</p>
|
159
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'9_42'</span><span class="p">)</span>
|
160
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
161
|
+
<span class="go">5</span>
|
162
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
|
163
|
+
<span class="go">True</span>
|
164
|
+
</pre></div>
|
165
|
+
</div>
|
166
|
+
<p>A Triangulation can be specified in a number of ways, e.g.</p>
|
167
|
+
<ul class="simple">
|
168
|
+
<li><p>Triangulation(‘9_42’) : The complement of the knot 9_42 in S^3.</p></li>
|
169
|
+
<li><p>Triangulation(‘m125(1,2)(4,5)’) : The SnapPea census manifold m125
|
170
|
+
where the first cusp has Dehn filling (1,2) and the second cusp has
|
171
|
+
filling (4,5).</p></li>
|
172
|
+
<li><p>Triangulation() : Opens a link editor window where can you
|
173
|
+
specify a link complement.</p></li>
|
174
|
+
</ul>
|
175
|
+
<p>In general, the specification can be from among the below, with
|
176
|
+
information on Dehn fillings added.</p>
|
177
|
+
<ul>
|
178
|
+
<li><p>SnapPea cusped census manifolds: e.g. ‘m123’, ‘s123’, ‘v123’.</p></li>
|
179
|
+
<li><p>Link complements:</p>
|
180
|
+
<blockquote>
|
181
|
+
<div><ul class="simple">
|
182
|
+
<li><p>Rolfsen’s table: e.g. ‘4_1’, ‘04_1’, ‘5^2_6’, ‘6_4^7’, ‘L20935’, ‘l104001’.</p></li>
|
183
|
+
<li><p>Knots and links up to 14 crossings from tabulations by Hoste
|
184
|
+
and Thistlethwaite: e.g. ‘K12a456’ or ‘L13n579’.</p></li>
|
185
|
+
<li><p>Hoste-Thistlethwaite Knotscape table: e.g. ‘11a17’ or ‘12n345’</p></li>
|
186
|
+
<li><p>Dowker-Thistlethwaite code: e.g. ‘DT:[(6,8,2,4)]’, ‘DT:dadbcda’</p></li>
|
187
|
+
</ul>
|
188
|
+
</div></blockquote>
|
189
|
+
</li>
|
190
|
+
<li><p>Once-punctured torus bundles: e.g. ‘b++LLR’, ‘b+-llR’, ‘bo-RRL’, ‘bn+LRLR’</p></li>
|
191
|
+
<li><p>Fibered manifold associated to a braid: ‘Braid:[1,2,-3,4]’</p>
|
192
|
+
<p>Here, the braid is thought of as a mapping class of the
|
193
|
+
punctured disc, and this manifold is the corresponding
|
194
|
+
mapping torus. If you want the braid closure, do (1,0) filling
|
195
|
+
of the last cusp.</p>
|
196
|
+
</li>
|
197
|
+
<li><p>From mapping class group data using Twister:</p>
|
198
|
+
<p>‘Bundle(S_{1,1}, [a0, B1])’ or ‘Splitting(S_{1,0}, [b1, A0], [a0,B1])’</p>
|
199
|
+
<p>See the help for the ‘twister’ module for more.</p>
|
200
|
+
</li>
|
201
|
+
<li><p>A SnapPea triangulation or link projection file: ‘filename’</p>
|
202
|
+
<p>The file will be loaded if found in the current directory or the
|
203
|
+
path given by the shell variable SNAPPEA_MANIFOLD_DIRECTORY.</p>
|
204
|
+
</li>
|
205
|
+
<li><p>A Regina-style isomorphism signature, such as ‘dLQbcccdxwb’.</p></li>
|
206
|
+
<li><p>A string containing the contents of a SnapPea triangulation or link
|
207
|
+
projection file.</p></li>
|
208
|
+
</ul>
|
209
|
+
<dl class="py method">
|
210
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.DT_code">
|
211
|
+
<span class="sig-name descname"><span class="pre">DT_code</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">alpha</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">flips</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.DT_code" title="Link to this definition"></a></dt>
|
212
|
+
<dd><p>Return the Dowker-Thistlethwaite code of this link complement,
|
213
|
+
if it is a link complement. The DT code is intended to be an
|
214
|
+
immutable attribute, for use with knot and link exteriors
|
215
|
+
only, which is set only when the manifold was created.</p>
|
216
|
+
<p>Here is the Whitehead link:</p>
|
217
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'L5a1'</span><span class="p">)</span>
|
218
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">()</span>
|
219
|
+
<span class="go">[(6, 8), (2, 10, 4)]</span>
|
220
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
221
|
+
<span class="go">'ebbccdaeb'</span>
|
222
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
223
|
+
<span class="go">'ebbccdaeb.01110'</span>
|
224
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
225
|
+
<span class="go">([(6, 8), (2, 10, 4)], [0, 1, 1, 1, 0])</span>
|
226
|
+
</pre></div>
|
227
|
+
</div>
|
228
|
+
</dd></dl>
|
229
|
+
|
230
|
+
<dl class="py method">
|
231
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.alexander_polynomial">
|
232
|
+
<span class="sig-name descname"><span class="pre">alexander_polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.alexander_polynomial" title="Link to this definition"></a></dt>
|
233
|
+
<dd><p>Computes the multivariable Alexander polynomial of the manifold:</p>
|
234
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'K12n123'</span><span class="p">)</span>
|
235
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
|
236
|
+
<span class="mi">2</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">6</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">5</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">4</span> <span class="o">-</span> <span class="mi">45</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">3</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span>
|
237
|
+
|
238
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'v1539(5,1)'</span><span class="p">)</span>
|
239
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">N</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
|
240
|
+
<span class="n">a</span><span class="o">^</span><span class="mi">2</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span><span class="o">^</span><span class="mi">2</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
|
241
|
+
</pre></div>
|
242
|
+
</div>
|
243
|
+
<p>Any provided keyword arguments are passed to
|
244
|
+
<a class="reference internal" href="#snappy.Triangulation.fundamental_group" title="snappy.Triangulation.fundamental_group"><code class="xref py py-meth docutils literal notranslate"><span class="pre">fundamental_group</span></code></a> and
|
245
|
+
so affect the group presentation used in the computation.</p>
|
246
|
+
</dd></dl>
|
247
|
+
|
248
|
+
<dl class="py method">
|
249
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.copy">
|
250
|
+
<span class="sig-name descname"><span class="pre">copy</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.copy" title="Link to this definition"></a></dt>
|
251
|
+
<dd><p>Returns a copy of the triangulation.</p>
|
252
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m125'</span><span class="p">)</span>
|
253
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
|
254
|
+
</pre></div>
|
255
|
+
</div>
|
256
|
+
</dd></dl>
|
257
|
+
|
258
|
+
<dl class="py method">
|
259
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.cover">
|
260
|
+
<span class="sig-name descname"><span class="pre">cover</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">permutation_rep</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.cover" title="Link to this definition"></a></dt>
|
261
|
+
<dd><p>Returns a <a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a> representing the finite cover specified
|
262
|
+
by a transitive permutation representation. The representation is
|
263
|
+
specified by a list of permutations, one for each generator of the
|
264
|
+
simplified presentation of the fundamental group. Each permutation is
|
265
|
+
specified as a list <code class="docutils literal notranslate"><span class="pre">P</span></code> such that <code class="docutils literal notranslate"><span class="pre">set(P)</span> <span class="pre">==</span> <span class="pre">set(range(d))</span></code> where
|
266
|
+
<code class="docutils literal notranslate"><span class="pre">d</span></code> is the degree of the cover.</p>
|
267
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
268
|
+
<span class="gp">>>> </span><span class="n">N0</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cover</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">]])</span>
|
269
|
+
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
|
270
|
+
<span class="go">Z + Z + Z</span>
|
271
|
+
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'type'</span><span class="p">]</span>
|
272
|
+
<span class="go">'irregular'</span>
|
273
|
+
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'base'</span><span class="p">]</span>
|
274
|
+
<span class="go">'m004'</span>
|
275
|
+
<span class="gp">>>> </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'degree'</span><span class="p">]</span>
|
276
|
+
<span class="go">5</span>
|
277
|
+
</pre></div>
|
278
|
+
</div>
|
279
|
+
<p>Within Sage the permutations can also be of type
|
280
|
+
<code class="docutils literal notranslate"><span class="pre">PermutationGroupElement</span></code>, in which case they act on the set
|
281
|
+
<code class="docutils literal notranslate"><span class="pre">range(1,</span> <span class="pre">d</span> <span class="pre">+</span> <span class="pre">1)</span></code>. Or, you can specify a GAP or Magma subgroup
|
282
|
+
of the fundamental group. For more examples, see the docstring for
|
283
|
+
<a class="reference internal" href="manifold.html#snappy.Manifold.cover" title="snappy.Manifold.cover"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Manifold.cover()</span></code></a>.</p>
|
284
|
+
</dd></dl>
|
285
|
+
|
286
|
+
<dl class="py method">
|
287
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.cover_info">
|
288
|
+
<span class="sig-name descname"><span class="pre">cover_info</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cover_info" title="Link to this definition"></a></dt>
|
289
|
+
<dd><p>If this is a manifold or triangulation which was constructed as
|
290
|
+
a covering space, return a dictionary describing the cover. Otherwise
|
291
|
+
return 0. The dictionary keys are ‘base’, ‘type’ and ‘degree’.</p>
|
292
|
+
</dd></dl>
|
293
|
+
|
294
|
+
<dl class="py method">
|
295
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.covers">
|
296
|
+
<span class="sig-name descname"><span class="pre">covers</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">degree</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cover_type</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">list</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#snappy.Triangulation.covers" title="Link to this definition"></a></dt>
|
297
|
+
<dd><p>Returns a list of Triangulations corresponding to all of the
|
298
|
+
finite covers of the given degree. The default method is
|
299
|
+
‘low_index’ for general covers and ‘snappea’ for cyclic
|
300
|
+
covers. The former uses Sim’s algorithm while the latter
|
301
|
+
uses the original Snappea algorithm.</p>
|
302
|
+
<p>WARNING: If the degree is large this might take a very, very,
|
303
|
+
very long time.</p>
|
304
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m003'</span><span class="p">)</span>
|
305
|
+
<span class="gp">>>> </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
|
306
|
+
<span class="gp">>>> </span><span class="nb">sorted</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">)</span>
|
307
|
+
<span class="go">[Z/3 + Z/15 + Z, Z/5 + Z + Z]</span>
|
308
|
+
</pre></div>
|
309
|
+
</div>
|
310
|
+
<p>It is faster to look just at cyclic covers.</p>
|
311
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">cover_type</span><span class="o">=</span><span class="s1">'cyclic'</span><span class="p">)</span>
|
312
|
+
<span class="gp">>>> </span><span class="p">[(</span><span class="n">N</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">())</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">]</span>
|
313
|
+
<span class="go">[(m003~cyc~0(0,0), Z/3 + Z/15 + Z)]</span>
|
314
|
+
</pre></div>
|
315
|
+
</div>
|
316
|
+
<p>Here we check that we get the same number of covers with the
|
317
|
+
‘snappea’ and ‘low_index’ methods.</p>
|
318
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m125'</span><span class="p">)</span>
|
319
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">))</span>
|
320
|
+
<span class="go">19</span>
|
321
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'snappea'</span><span class="p">))</span>
|
322
|
+
<span class="go">19</span>
|
323
|
+
</pre></div>
|
324
|
+
</div>
|
325
|
+
<p>If you are using Sage, you can use GAP to find the subgroups,
|
326
|
+
which is often much faster, by specifying the optional
|
327
|
+
argument method = ‘gap’ If you have Magma installed, you can
|
328
|
+
used it to do the heavy lifting by specifying method=’magma’.</p>
|
329
|
+
</dd></dl>
|
330
|
+
|
331
|
+
<dl class="py method">
|
332
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.cusp_info">
|
333
|
+
<span class="sig-name descname"><span class="pre">cusp_info</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_spec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cusp_info" title="Link to this definition"></a></dt>
|
334
|
+
<dd><p>Returns an info object containing information about the given
|
335
|
+
cusp. Usage:</p>
|
336
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'v3227(0,0)(1,2)(3,2)'</span><span class="p">)</span>
|
337
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
|
338
|
+
<span class="go">Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0)</span>
|
339
|
+
<span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
|
340
|
+
<span class="gp">>>> </span><span class="n">c</span><span class="o">.</span><span class="n">is_complete</span>
|
341
|
+
<span class="go">False</span>
|
342
|
+
<span class="gp">>>> </span><span class="nb">sorted</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
|
343
|
+
<span class="go">['filling', 'index', 'is_complete', 'topology']</span>
|
344
|
+
</pre></div>
|
345
|
+
</div>
|
346
|
+
<p>You can get information about multiple cusps at once:</p>
|
347
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">()</span>
|
348
|
+
<span class="go">[Cusp 0 : torus cusp, not filled,</span>
|
349
|
+
<span class="go"> Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0),</span>
|
350
|
+
<span class="go"> Cusp 2 : torus cusp with Dehn filling coefficients (M, L) = (3.0, 2.0)]</span>
|
351
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="s1">'is_complete'</span><span class="p">)</span>
|
352
|
+
<span class="go">[True, False, False]</span>
|
353
|
+
</pre></div>
|
354
|
+
</div>
|
355
|
+
</dd></dl>
|
356
|
+
|
357
|
+
<dl class="py method">
|
358
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.dehn_fill">
|
359
|
+
<span class="sig-name descname"><span class="pre">dehn_fill</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filling_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.dehn_fill" title="Link to this definition"></a></dt>
|
360
|
+
<dd><p>Set the Dehn filling coefficients of the cusps. This can be
|
361
|
+
specified in the following ways, where the cusps are numbered
|
362
|
+
by 0,1,…,(num_cusps - 1).</p>
|
363
|
+
<ul>
|
364
|
+
<li><p>Fill cusp 2:</p>
|
365
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'8^4_1'</span><span class="p">)</span>
|
366
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
|
367
|
+
<span class="gp">>>> </span><span class="n">M</span>
|
368
|
+
<span class="go">8^4_1(0,0)(0,0)(2,3)(0,0)</span>
|
369
|
+
</pre></div>
|
370
|
+
</div>
|
371
|
+
</li>
|
372
|
+
<li><p>Fill the last cusp:</p>
|
373
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
|
374
|
+
<span class="gp">>>> </span><span class="n">M</span>
|
375
|
+
<span class="go">8^4_1(0,0)(0,0)(2,3)(1,5)</span>
|
376
|
+
</pre></div>
|
377
|
+
</div>
|
378
|
+
</li>
|
379
|
+
<li><p>Fill the first two cusps:</p>
|
380
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">[</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">4</span><span class="p">)</span> <span class="p">])</span>
|
381
|
+
<span class="gp">>>> </span><span class="n">M</span>
|
382
|
+
<span class="go">8^4_1(3,0)(1,-4)(2,3)(1,5)</span>
|
383
|
+
</pre></div>
|
384
|
+
</div>
|
385
|
+
</li>
|
386
|
+
<li><p>When there is only one cusp, there’s a shortcut</p>
|
387
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
388
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="p">)</span>
|
389
|
+
<span class="gp">>>> </span><span class="n">N</span>
|
390
|
+
<span class="go">m004(-3,4)</span>
|
391
|
+
</pre></div>
|
392
|
+
</div>
|
393
|
+
</li>
|
394
|
+
</ul>
|
395
|
+
<p>Does not return a new <a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a>.</p>
|
396
|
+
</dd></dl>
|
397
|
+
|
398
|
+
<dl class="py method">
|
399
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.edge_valences">
|
400
|
+
<span class="sig-name descname"><span class="pre">edge_valences</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.edge_valences" title="Link to this definition"></a></dt>
|
401
|
+
<dd><p>Returns a dictionary whose keys are the valences of the edges
|
402
|
+
in the triangulation, and the value associated to a key is the
|
403
|
+
number of edges of that valence.</p>
|
404
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'v3227'</span><span class="p">)</span>
|
405
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">edge_valences</span><span class="p">()</span>
|
406
|
+
<span class="go">{10: 1, 4: 1, 5: 2, 6: 3}</span>
|
407
|
+
</pre></div>
|
408
|
+
</div>
|
409
|
+
</dd></dl>
|
410
|
+
|
411
|
+
<dl class="py method">
|
412
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.exterior_to_link">
|
413
|
+
<span class="sig-name descname"><span class="pre">exterior_to_link</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_input</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_answer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">careful_perturbation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify_link</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pachner_search_tries</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">None</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="spherogram.html#spherogram.Link" title="spherogram.Link"><span class="pre">Link</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.exterior_to_link" title="Link to this definition"></a></dt>
|
414
|
+
<dd><p>For a triangulation of the exterior of a link in the 3-sphere,
|
415
|
+
return a planar diagram for the link. The peripheral curves whose
|
416
|
+
Dehn filling is the 3-sphere are <strong>part of the input</strong>, specified
|
417
|
+
by either:</p>
|
418
|
+
<ol class="loweralpha simple">
|
419
|
+
<li><p>If no cusp is filled, then they are the meridians of the
|
420
|
+
current peripheral curves.</p></li>
|
421
|
+
<li><p>If every cusp is filled, then they are the current Dehn filling
|
422
|
+
curves.</p></li>
|
423
|
+
</ol>
|
424
|
+
<p>In particular, it does <strong>not</strong> try to determine whether there exist
|
425
|
+
fillings on the input which give the 3-sphere. Example usage:</p>
|
426
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m016'</span><span class="p">)</span>
|
427
|
+
<span class="gp">>>> </span><span class="n">L</span> <span class="o">=</span> <span class="n">exterior_to_link</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
428
|
+
<span class="gp">>>> </span><span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
429
|
+
<span class="go">True</span>
|
430
|
+
</pre></div>
|
431
|
+
</div>
|
432
|
+
<p>The algorithm used is that of <a class="reference external" href="https://arxiv.org/abs/2112.03251">Dunfield, Obeidin, and Rudd</a>. The optional arguments are
|
433
|
+
as follows.</p>
|
434
|
+
<ul class="simple">
|
435
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code>, prints progress updates as the algorithm
|
436
|
+
goes along.</p></li>
|
437
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">check_input</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), first checks that the
|
438
|
+
fundamental group of the specified Dehn filling is trivial. As
|
439
|
+
it doesn’t try too hard to simplify the group presentation, it
|
440
|
+
can happen that this check fails but the algorithm still finds a
|
441
|
+
diagram if you pass <code class="docutils literal notranslate"><span class="pre">check_input=False</span></code>.</p></li>
|
442
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">check_answer</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), take the exterior of
|
443
|
+
the final link diagram and use <code class="docutils literal notranslate"><span class="pre">Manifold.is_isometric_to</span></code> to
|
444
|
+
confirm that it is homeomorphic to the input. If the input is
|
445
|
+
not hyperbolic or is very large, this check may fail even though
|
446
|
+
the diagram is correct.</p></li>
|
447
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code>: The rational coordinates of the
|
448
|
+
intermediate PL links are periodically rounded to control the
|
449
|
+
size of their denominators. When <code class="docutils literal notranslate"><span class="pre">careful_perturbation=True</span></code>
|
450
|
+
(the default), computations are performed to ensure this
|
451
|
+
rounding does not change the isotopy class of the link.</p></li>
|
452
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">simplify_link</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), uses
|
453
|
+
<code class="docutils literal notranslate"><span class="pre">Link.simplify('global')</span></code> to minimize the size of the final
|
454
|
+
diagram; otherwise, it just does <code class="docutils literal notranslate"><span class="pre">basic</span></code> simplifications, which
|
455
|
+
can be much faster if the initial link is complicated.</p></li>
|
456
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">pachner_search_tries</span></code>: Controls how hard to search for a
|
457
|
+
suitable sequence of Pachner moves from the filled input
|
458
|
+
triangulation to a standard triangulation of the 3-sphere.</p></li>
|
459
|
+
<li><p><code class="docutils literal notranslate"><span class="pre">seed</span></code>: The algorithm involves many random choices, and hence
|
460
|
+
each run typically produces a different diagram of the
|
461
|
+
underlying link. If you need the same output each time, you can
|
462
|
+
specify a fixed seed for the various pseudo-random number
|
463
|
+
generators.</p></li>
|
464
|
+
</ul>
|
465
|
+
<p>Note on rigor: Provided at least one of <code class="docutils literal notranslate"><span class="pre">check_answer</span></code> and
|
466
|
+
<code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, the exterior of the output
|
467
|
+
link is guaranteed to match the input (including the choice of
|
468
|
+
meridians).</p>
|
469
|
+
<p><strong>Warning:</strong> The order of the link components and the cusps of the
|
470
|
+
input manifold is only guaranteed to match when
|
471
|
+
<code class="docutils literal notranslate"><span class="pre">check_answer=True</span></code>. Even then, the implicit orientation along
|
472
|
+
each component of the link may not be preserved.</p>
|
473
|
+
</dd></dl>
|
474
|
+
|
475
|
+
<dl class="py method">
|
476
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.filled_triangulation">
|
477
|
+
<span class="sig-name descname"><span class="pre">filled_triangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusps_to_fill</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.filled_triangulation" title="Link to this definition"></a></dt>
|
478
|
+
<dd><p>Return a new manifold where the specified cusps have been
|
479
|
+
permanently filled in. Examples:</p>
|
480
|
+
<p>Filling all the cusps:</p>
|
481
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m125(1,2)(3,4)'</span><span class="p">)</span>
|
482
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
|
483
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
|
484
|
+
<span class="go">0</span>
|
485
|
+
</pre></div>
|
486
|
+
</div>
|
487
|
+
<p>Filling cusps 0 and 2 :</p>
|
488
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'v3227(1,2)(3,4)(5,6)'</span><span class="p">)</span>
|
489
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
|
490
|
+
<span class="go">v3227_filled(3,4)</span>
|
491
|
+
</pre></div>
|
492
|
+
</div>
|
493
|
+
</dd></dl>
|
494
|
+
|
495
|
+
<dl class="py method">
|
496
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.fundamental_group">
|
497
|
+
<span class="sig-name descname"><span class="pre">fundamental_group</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">simplify_presentation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fillings_may_affect_generators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">minimize_number_of_generators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">try_hard_to_shorten_relators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">FundamentalGroup</span></span></span><a class="headerlink" href="#snappy.Triangulation.fundamental_group" title="Link to this definition"></a></dt>
|
498
|
+
<dd><p>Returns a <code class="xref py py-class docutils literal notranslate"><span class="pre">FundamentalGroup</span></code> object representing the fundamental
|
499
|
+
group of the manifold. If integer Dehn surgery parameters
|
500
|
+
have been set, then the corresponding peripheral elements are
|
501
|
+
killed.</p>
|
502
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
503
|
+
<span class="gp">>>> </span><span class="n">G</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">()</span>
|
504
|
+
<span class="gp">>>> </span><span class="n">G</span>
|
505
|
+
<span class="go">Generators:</span>
|
506
|
+
<span class="go"> a,b</span>
|
507
|
+
<span class="go">Relators:</span>
|
508
|
+
<span class="go"> aaabABBAb</span>
|
509
|
+
<span class="gp">>>> </span><span class="n">G</span><span class="o">.</span><span class="n">peripheral_curves</span><span class="p">()</span>
|
510
|
+
<span class="go">[('ab', 'aBAbABab')]</span>
|
511
|
+
</pre></div>
|
512
|
+
</div>
|
513
|
+
<p>There are four optional arguments all of which default to True:</p>
|
514
|
+
<ul class="simple">
|
515
|
+
<li><p>simplify_presentation</p></li>
|
516
|
+
<li><p>fillings_may_affect_generators</p></li>
|
517
|
+
<li><p>minimize_number_of_generators</p></li>
|
518
|
+
<li><p>try_hard_to_shorten_relators</p></li>
|
519
|
+
</ul>
|
520
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
521
|
+
<span class="go">Generators:</span>
|
522
|
+
<span class="go"> a,b,c</span>
|
523
|
+
<span class="go">Relators:</span>
|
524
|
+
<span class="go"> CbAcB</span>
|
525
|
+
<span class="go"> BacA</span>
|
526
|
+
</pre></div>
|
527
|
+
</div>
|
528
|
+
</dd></dl>
|
529
|
+
|
530
|
+
<dl class="py method">
|
531
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations">
|
532
|
+
<span class="sig-name descname"><span class="pre">gluing_equations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">form</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'log'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations" title="Link to this definition"></a></dt>
|
533
|
+
<dd><p>In the default mode, this function returns a matrix with rows
|
534
|
+
of the form</p>
|
535
|
+
<blockquote>
|
536
|
+
<div><p>a b c d e f …</p>
|
537
|
+
</div></blockquote>
|
538
|
+
<p>which means</p>
|
539
|
+
<blockquote>
|
540
|
+
<div><p>a*log(z0) + b*log(1/(1-z0)) + c*log((z0-1)/z0) + d*log(z1) +… = 2 pi i</p>
|
541
|
+
</div></blockquote>
|
542
|
+
<p>for an edge equation, and (same) = 0 for a cusp equation.
|
543
|
+
Here, the cusp equations come at the bottom of the matrix, and
|
544
|
+
are listed in the form: meridian of cusp 0, longitude of cusp
|
545
|
+
0, meridian of cusp 1, longitude of cusp 1,…</p>
|
546
|
+
<p>In terms of the tetrahedra, a is the invariant of the edge
|
547
|
+
(2,3), b the invariant of the edge (0,2) and c is the
|
548
|
+
invariant of the edge (1,2). See kernel_code/edge_classes.c
|
549
|
+
for a detailed account of the convention used.</p>
|
550
|
+
<p>If the optional argument form=’rect’ is given, then this
|
551
|
+
function returns a list of tuples of the form:</p>
|
552
|
+
<blockquote>
|
553
|
+
<div><p>( [a0, a1,..,a_n], [b_0, b_1,…,b_n], c)</p>
|
554
|
+
</div></blockquote>
|
555
|
+
<p>where this corresponds to the equation</p>
|
556
|
+
<blockquote>
|
557
|
+
<div><p>z0^a0 (1 - z0)^b0 z1^a1(1 - z1)^b1 … = c</p>
|
558
|
+
</div></blockquote>
|
559
|
+
<p>where c = 1 or -1.</p>
|
560
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004(2,3)'</span><span class="p">)</span>
|
561
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">()</span>
|
562
|
+
<span class="go">[ 2 1 0 1 0 2]</span>
|
563
|
+
<span class="go">[ 0 1 2 1 2 0]</span>
|
564
|
+
<span class="go">[ 2 0 0 0 -8 6]</span>
|
565
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">(</span><span class="n">form</span><span class="o">=</span><span class="s1">'rect'</span><span class="p">)</span>
|
566
|
+
<span class="go">[([2, -1], [-1, 2], 1), ([-2, 1], [1, -2], 1), ([2, -6], [0, 14], 1)]</span>
|
567
|
+
</pre></div>
|
568
|
+
</div>
|
569
|
+
</dd></dl>
|
570
|
+
|
571
|
+
<dl class="py method">
|
572
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations_pgl">
|
573
|
+
<span class="sig-name descname"><span class="pre">gluing_equations_pgl</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">equation_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations_pgl" title="Link to this definition"></a></dt>
|
574
|
+
<dd><p>Returns a NeumannZagierTypeEquations object that contains a matrix
|
575
|
+
encoding the gluing equations for boundary-parabolic PGL(N,C)
|
576
|
+
representations together with explanations of the meaning
|
577
|
+
of the rows and the columns of the matrix.</p>
|
578
|
+
<p>This method generalizes gluing_equations() to PGL(N,C)-representations
|
579
|
+
as described in
|
580
|
+
Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
|
581
|
+
“Gluing Equations for PGL(n,C)-Representations of 3-Manifolds”
|
582
|
+
(<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>).</p>
|
583
|
+
<p>The result of the <a class="reference internal" href="#snappy.Triangulation.gluing_equations" title="snappy.Triangulation.gluing_equations"><code class="xref py py-meth docutils literal notranslate"><span class="pre">gluing_equations()</span></code></a> can be obtained from
|
584
|
+
the general method by:</p>
|
585
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
586
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span><span class="o">.</span><span class="n">matrix</span>
|
587
|
+
<span class="go">[ 2 1 0 1 0 2]</span>
|
588
|
+
<span class="go">[ 0 1 2 1 2 0]</span>
|
589
|
+
<span class="go">[ 1 0 0 0 -1 0]</span>
|
590
|
+
<span class="go">[ 0 0 0 0 -2 2]</span>
|
591
|
+
</pre></div>
|
592
|
+
</div>
|
593
|
+
<p>But besides the matrix, the method also returns explanations of
|
594
|
+
the columns and rows:</p>
|
595
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span>
|
596
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span>
|
597
|
+
<span class="go">NeumannZagierTypeEquations(</span>
|
598
|
+
<span class="go"> [ 2 1 0 1 0 2]</span>
|
599
|
+
<span class="go"> [ 0 1 2 1 2 0]</span>
|
600
|
+
<span class="go"> [ 1 0 0 0 -1 0]</span>
|
601
|
+
<span class="go"> [ 0 0 0 0 -2 2],</span>
|
602
|
+
<span class="go"> explain_columns = ['z_0000_0', 'zp_0000_0', 'zpp_0000_0', 'z_0000_1', 'zp_0000_1', 'zpp_0000_1'],</span>
|
603
|
+
<span class="go"> explain_rows = ['edge_0_0', 'edge_0_1', 'meridian_0_0', 'longitude_0_0'])</span>
|
604
|
+
</pre></div>
|
605
|
+
</div>
|
606
|
+
<p>The first row of the matrix means that the edge equation for
|
607
|
+
edge 0 is</p>
|
608
|
+
<div class="math notranslate nohighlight">
|
609
|
+
\[{z_{0000,0}}^2 * z'_{0000,0} * z_{0000,1} * {z''_{0000,1}}^2 = 1.\]</div>
|
610
|
+
<p>Similarly, the next row encodes the edge equation for the other edge
|
611
|
+
and the next two rows encode peripheral equations.</p>
|
612
|
+
<p>Following the SnapPy convention, a <code class="docutils literal notranslate"><span class="pre">z</span></code> denotes the cross ratio
|
613
|
+
<span class="math notranslate nohighlight">\(z\)</span> at the edge (0,1), a <code class="docutils literal notranslate"><span class="pre">zp</span></code> the cross ratio <span class="math notranslate nohighlight">\(z'\)</span> at
|
614
|
+
the edge (0,2) and a <code class="docutils literal notranslate"><span class="pre">zpp</span></code> the cross
|
615
|
+
ratio <span class="math notranslate nohighlight">\(z''\)</span> at the edge (1,2). The entire symbol <code class="docutils literal notranslate"><span class="pre">z_xxxx_y</span></code> then
|
616
|
+
denotes the cross ratio belonging to the subsimplex at integral
|
617
|
+
point <code class="docutils literal notranslate"><span class="pre">xxxx</span></code> (always <code class="docutils literal notranslate"><span class="pre">0000</span></code> for <code class="docutils literal notranslate"><span class="pre">N</span> <span class="pre">=</span> <span class="pre">2</span></code>) of the simplex <code class="docutils literal notranslate"><span class="pre">y</span></code>.</p>
|
618
|
+
<p>Note: the SnapPy convention is different from the paper
|
619
|
+
mentioned above, e.g., compare
|
620
|
+
kernel_code/edge_classes.c with Figure 3. We follow the SnapPy
|
621
|
+
convention here so that all computations done in SnapPy are
|
622
|
+
consistent.</p>
|
623
|
+
<p>The explanations of the rows and columns can be obtained explicitly by:</p>
|
624
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">equation_type</span> <span class="o">=</span> <span class="s1">'peripheral'</span><span class="p">)</span><span class="o">.</span><span class="n">explain_rows</span>
|
625
|
+
<span class="go">['meridian_0_0', 'meridian_1_0', 'longitude_0_0', 'longitude_1_0']</span>
|
626
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">explain_columns</span>
|
627
|
+
<span class="go">['z_0000_0', 'zp_0000_0', 'zpp_0000_0', 'z_0000_1', 'zp_0000_1', 'zpp_0000_1']</span>
|
628
|
+
</pre></div>
|
629
|
+
</div>
|
630
|
+
<p>A subset of all gluing equations can be obtained by setting the
|
631
|
+
<code class="docutils literal notranslate"><span class="pre">equation_type</span></code>:</p>
|
632
|
+
<ul class="simple">
|
633
|
+
<li><p>all gluing equations: <code class="docutils literal notranslate"><span class="pre">all</span></code></p></li>
|
634
|
+
<li><p>non-peripheral equations: <code class="docutils literal notranslate"><span class="pre">non_peripheral</span></code></p>
|
635
|
+
<ul>
|
636
|
+
<li><p>edge gluing equations: <code class="docutils literal notranslate"><span class="pre">edge</span></code></p></li>
|
637
|
+
<li><p>face gluing equations: <code class="docutils literal notranslate"><span class="pre">face</span></code></p></li>
|
638
|
+
<li><p>internal gluing equations: <code class="docutils literal notranslate"><span class="pre">internal</span></code></p></li>
|
639
|
+
</ul>
|
640
|
+
</li>
|
641
|
+
<li><p>cusp gluing equations: <code class="docutils literal notranslate"><span class="pre">peripheral</span></code></p>
|
642
|
+
<ul>
|
643
|
+
<li><p>cusp gluing equations for meridians: <code class="docutils literal notranslate"><span class="pre">meridian</span></code></p></li>
|
644
|
+
<li><p>cusp gluing equations for longitudes: <code class="docutils literal notranslate"><span class="pre">longitude</span></code></p></li>
|
645
|
+
</ul>
|
646
|
+
</li>
|
647
|
+
</ul>
|
648
|
+
</dd></dl>
|
649
|
+
|
650
|
+
<dl class="py method">
|
651
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.has_finite_vertices">
|
652
|
+
<span class="sig-name descname"><span class="pre">has_finite_vertices</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">bool</span></span></span><a class="headerlink" href="#snappy.Triangulation.has_finite_vertices" title="Link to this definition"></a></dt>
|
653
|
+
<dd><p>Returns <code class="docutils literal notranslate"><span class="pre">True</span></code> if and only if the triangulation has finite (non-ideal)
|
654
|
+
vertices.</p>
|
655
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span>
|
656
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
657
|
+
<span class="go">False</span>
|
658
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">))</span>
|
659
|
+
<span class="gp">>>> </span><span class="n">S</span> <span class="o">=</span> <span class="n">T</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
|
660
|
+
<span class="gp">>>> </span><span class="n">S</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
661
|
+
<span class="go">True</span>
|
662
|
+
</pre></div>
|
663
|
+
</div>
|
664
|
+
<p>When trying to find a hyperbolic structure, SnapPea will eliminate
|
665
|
+
finite vertices:</p>
|
666
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">S</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
|
667
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
668
|
+
<span class="go">False</span>
|
669
|
+
</pre></div>
|
670
|
+
</div>
|
671
|
+
</dd></dl>
|
672
|
+
|
673
|
+
<dl class="py method">
|
674
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.homological_longitude">
|
675
|
+
<span class="sig-name descname"><span class="pre">homological_longitude</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.homological_longitude" title="Link to this definition"></a></dt>
|
676
|
+
<dd><p>Returns the peripheral curve in the given cusp, if any, which is
|
677
|
+
homologically trivial (with rational coefficients) in the manifold:</p>
|
678
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m015'</span><span class="p">)</span>
|
679
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
|
680
|
+
<span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
|
681
|
+
</pre></div>
|
682
|
+
</div>
|
683
|
+
<p>If no cusp is specified, the default is the first unfilled cusp;
|
684
|
+
if all cusps are filled, the default is the first cusp:</p>
|
685
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'L5a1(3,4)(0,0)'</span><span class="p">)</span>
|
686
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
|
687
|
+
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
688
|
+
</pre></div>
|
689
|
+
</div>
|
690
|
+
<p>The components of the next link have nontrivial linking number
|
691
|
+
so there is no such curve:</p>
|
692
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">W</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'L7a2'</span><span class="p">)</span>
|
693
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">W</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">(</span><span class="n">cusp</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span>
|
694
|
+
<span class="kc">True</span>
|
695
|
+
</pre></div>
|
696
|
+
</div>
|
697
|
+
<p>If every curve in the given cusp is trivial in the rational homology of
|
698
|
+
the manifold, an exception is raised:</p>
|
699
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'4_1(1,0)'</span><span class="p">)</span>
|
700
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
|
701
|
+
<span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
|
702
|
+
<span class="o">...</span>
|
703
|
+
<span class="ne">ValueError</span><span class="p">:</span> <span class="n">Every</span> <span class="n">curve</span> <span class="n">on</span> <span class="n">cusp</span> <span class="ow">is</span> <span class="n">homologically</span> <span class="n">trivial</span>
|
704
|
+
</pre></div>
|
705
|
+
</div>
|
706
|
+
</dd></dl>
|
707
|
+
|
708
|
+
<dl class="py method">
|
709
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.homology">
|
710
|
+
<span class="sig-name descname"><span class="pre">homology</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="additional_classes.html#snappy.AbelianGroup" title="SnapPy.AbelianGroup"><span class="pre">AbelianGroup</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.homology" title="Link to this definition"></a></dt>
|
711
|
+
<dd><p>Returns an <a class="reference internal" href="additional_classes.html#snappy.AbelianGroup" title="snappy.AbelianGroup"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbelianGroup</span></code></a> representing the first integral
|
712
|
+
homology group of the underlying (Dehn filled) manifold.</p>
|
713
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m003'</span><span class="p">)</span>
|
714
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
|
715
|
+
<span class="go">Z/5 + Z</span>
|
716
|
+
</pre></div>
|
717
|
+
</div>
|
718
|
+
</dd></dl>
|
719
|
+
|
720
|
+
<dl class="py method">
|
721
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.is_orientable">
|
722
|
+
<span class="sig-name descname"><span class="pre">is_orientable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">bool</span></span></span><a class="headerlink" href="#snappy.Triangulation.is_orientable" title="Link to this definition"></a></dt>
|
723
|
+
<dd><p>Return whether the underlying 3-manifold is orientable.</p>
|
724
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'x124'</span><span class="p">)</span>
|
725
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
|
726
|
+
<span class="go">False</span>
|
727
|
+
</pre></div>
|
728
|
+
</div>
|
729
|
+
</dd></dl>
|
730
|
+
|
731
|
+
<dl class="py method">
|
732
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.isomorphisms_to">
|
733
|
+
<span class="sig-name descname"><span class="pre">isomorphisms_to</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">other</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">Triangulation</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">TriangulationHP</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Isometry</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#snappy.Triangulation.isomorphisms_to" title="Link to this definition"></a></dt>
|
734
|
+
<dd><p>Returns a complete list of combinatorial isomorphisms between
|
735
|
+
the two triangulations:</p>
|
736
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'5^2_1'</span><span class="p">)</span>
|
737
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'5^2_1'</span><span class="p">)</span>
|
738
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">set_peripheral_curves</span><span class="p">([[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">]],[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]]])</span>
|
739
|
+
<span class="gp">>>> </span><span class="n">isoms</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
|
740
|
+
<span class="gp">>>> </span><span class="n">isoms</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span>
|
741
|
+
<span class="go">0 -> 1 1 -> 0</span>
|
742
|
+
<span class="go">[ 1 0] [-1 1]</span>
|
743
|
+
<span class="go">[-1 1] [-3 2]</span>
|
744
|
+
<span class="go">Does not extend to link</span>
|
745
|
+
</pre></div>
|
746
|
+
</div>
|
747
|
+
<p>Each transformation between cusps is given by a matrix which
|
748
|
+
acts on the left. That is, the two <em>columns</em> of the matrix
|
749
|
+
give the image of the meridian and longitude respectively. In
|
750
|
+
the above example, the meridian of cusp 0 is sent to the
|
751
|
+
meridian of cusp 1.</p>
|
752
|
+
</dd></dl>
|
753
|
+
|
754
|
+
<dl class="py method">
|
755
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.link">
|
756
|
+
<span class="sig-name descname"><span class="pre">link</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.link" title="Link to this definition"></a></dt>
|
757
|
+
<dd><p>If the manifold is stored as a link complement in your
|
758
|
+
current session then it returns the number of components
|
759
|
+
and crossing of the link. To view and interact with the
|
760
|
+
link see <a class="reference internal" href="spherogram.html#spherogram.Link.view" title="spherogram.Link.view"><code class="xref py py-meth docutils literal notranslate"><span class="pre">spherogram.Link.view()</span></code></a>
|
761
|
+
and <a class="reference internal" href="#snappy.Triangulation.plink" title="snappy.Triangulation.plink"><code class="xref py py-meth docutils literal notranslate"><span class="pre">plink</span></code></a>.</p>
|
762
|
+
</dd></dl>
|
763
|
+
|
764
|
+
<dl class="py method">
|
765
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.name">
|
766
|
+
<span class="sig-name descname"><span class="pre">name</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="headerlink" href="#snappy.Triangulation.name" title="Link to this definition"></a></dt>
|
767
|
+
<dd><p>Return the name of the triangulation.</p>
|
768
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'4_1'</span><span class="p">)</span>
|
769
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">name</span><span class="p">()</span>
|
770
|
+
<span class="go">'4_1'</span>
|
771
|
+
</pre></div>
|
772
|
+
</div>
|
773
|
+
</dd></dl>
|
774
|
+
|
775
|
+
<dl class="py method">
|
776
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.normal_boundary_slopes">
|
777
|
+
<span class="sig-name descname"><span class="pre">normal_boundary_slopes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">subset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_boundary_slopes" title="Link to this definition"></a></dt>
|
778
|
+
<dd><p>For a one-cusped manifold, returns all the nonempty boundary slopes of
|
779
|
+
spun normal surfaces. Provided the triangulation supports a
|
780
|
+
genuine hyperbolic structure, then by <a class="reference external" href="http://arxiv.org/abs/math/0503027">Thurston and Walsh</a> any strict boundary slope
|
781
|
+
(the boundary of an essential surface which is not a fiber or
|
782
|
+
semifiber) must be listed here.</p>
|
783
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'K3_1'</span><span class="p">)</span>
|
784
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
|
785
|
+
<span class="go">[(16, -1), (20, -1), (37, -2)]</span>
|
786
|
+
</pre></div>
|
787
|
+
</div>
|
788
|
+
<p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'kabaya'</span></code>, then it only
|
789
|
+
returns boundary slopes associated to vertex surfaces with a quad
|
790
|
+
in every tetrahedron; by Theorem 1.1. of
|
791
|
+
<a class="reference external" href="http://arxiv.org/abs/1102.4588">Dunfield and Garoufalidis ‘12</a>
|
792
|
+
these are all strict boundary slopes.</p>
|
793
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m113'</span><span class="p">)</span>
|
794
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
|
795
|
+
<span class="go">[(1, 1), (1, 2), (2, -1), (2, 3), (8, 11)]</span>
|
796
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">'kabaya'</span><span class="p">)</span>
|
797
|
+
<span class="go">[(8, 11)]</span>
|
798
|
+
</pre></div>
|
799
|
+
</div>
|
800
|
+
<p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'brasile'</span></code> then it returns
|
801
|
+
only the boundary slopes that are associated to vertex surfaces
|
802
|
+
giving isolated rays in the space of embedded normal surfaces.</p>
|
803
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">'brasile'</span><span class="p">)</span>
|
804
|
+
<span class="go">[(1, 2), (8, 11)]</span>
|
805
|
+
</pre></div>
|
806
|
+
</div>
|
807
|
+
</dd></dl>
|
808
|
+
|
809
|
+
<dl class="py method">
|
810
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.normal_surfaces">
|
811
|
+
<span class="sig-name descname"><span class="pre">normal_surfaces</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_surfaces" title="Link to this definition"></a></dt>
|
812
|
+
<dd><p>All the vertex spun-normal surfaces in the current triangulation.</p>
|
813
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
814
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">normal_surfaces</span><span class="p">()</span>
|
815
|
+
<span class="go">[<Surface 0: [0, 0] [1, 2] (4, 1)>,</span>
|
816
|
+
<span class="go"> <Surface 1: [0, 1] [1, 2] (4, -1)>,</span>
|
817
|
+
<span class="go"> <Surface 2: [1, 2] [2, 1] (-4, -1)>,</span>
|
818
|
+
<span class="go"> <Surface 3: [2, 2] [2, 1] (-4, 1)>]</span>
|
819
|
+
</pre></div>
|
820
|
+
</div>
|
821
|
+
</dd></dl>
|
822
|
+
|
823
|
+
<dl class="py method">
|
824
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.num_cusps">
|
825
|
+
<span class="sig-name descname"><span class="pre">num_cusps</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="headerlink" href="#snappy.Triangulation.num_cusps" title="Link to this definition"></a></dt>
|
826
|
+
<dd><p>Return the total number of cusps. By giving the optional argument
|
827
|
+
‘orientable’ or ‘nonorientable’ it will only count cusps of that type.</p>
|
828
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m125'</span><span class="p">)</span>
|
829
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
|
830
|
+
<span class="go">2</span>
|
831
|
+
</pre></div>
|
832
|
+
</div>
|
833
|
+
</dd></dl>
|
834
|
+
|
835
|
+
<dl class="py method">
|
836
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.num_tetrahedra">
|
837
|
+
<span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="headerlink" href="#snappy.Triangulation.num_tetrahedra" title="Link to this definition"></a></dt>
|
838
|
+
<dd><p>Return the number of tetrahedra in the triangulation.</p>
|
839
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
840
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
841
|
+
<span class="go">2</span>
|
842
|
+
</pre></div>
|
843
|
+
</div>
|
844
|
+
</dd></dl>
|
845
|
+
|
846
|
+
<dl class="py method">
|
847
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.orientation_cover">
|
848
|
+
<span class="sig-name descname"><span class="pre">orientation_cover</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.orientation_cover" title="Link to this definition"></a></dt>
|
849
|
+
<dd><p>For a non-orientable Triangulation, returns the 2-fold cover which
|
850
|
+
is orientable.</p>
|
851
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'x123'</span><span class="p">)</span>
|
852
|
+
<span class="gp">>>> </span><span class="n">Y</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">orientation_cover</span><span class="p">()</span>
|
853
|
+
<span class="gp">>>> </span><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">(),</span> <span class="n">Y</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">())</span>
|
854
|
+
<span class="go">(False, True)</span>
|
855
|
+
<span class="gp">>>> </span><span class="n">Y</span>
|
856
|
+
<span class="go">x123~(0,0)(0,0)</span>
|
857
|
+
<span class="gp">>>> </span><span class="n">Y</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">'type'</span><span class="p">]</span>
|
858
|
+
<span class="go">'cyclic'</span>
|
859
|
+
</pre></div>
|
860
|
+
</div>
|
861
|
+
</dd></dl>
|
862
|
+
|
863
|
+
<dl class="py method">
|
864
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.plink">
|
865
|
+
<span class="sig-name descname"><span class="pre">plink</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.plink" title="Link to this definition"></a></dt>
|
866
|
+
<dd><p>Brings up a link editor window if the manifold is stored
|
867
|
+
as a link complement in your current session.</p>
|
868
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'4_1'</span><span class="p">)</span> <span class="c1"># stored as a triangulation with a link</span>
|
869
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
|
870
|
+
<span class="go"><Link: 1 comp; 4 cross></span>
|
871
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span> <span class="c1"># stored as a triangulation without a link</span>
|
872
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
|
873
|
+
<span class="gt">Traceback (most recent call last):</span>
|
874
|
+
<span class="c">...</span>
|
875
|
+
<span class="gr">ValueError</span>: <span class="n">No associated link known.</span>
|
876
|
+
</pre></div>
|
877
|
+
</div>
|
878
|
+
</dd></dl>
|
879
|
+
|
880
|
+
<dl class="py method">
|
881
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_generalized_obstruction_classes">
|
882
|
+
<span class="sig-name descname"><span class="pre">ptolemy_generalized_obstruction_classes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes" title="Link to this definition"></a></dt>
|
883
|
+
<dd><p>Returns the obstruction classes needed to compute
|
884
|
+
PGL(N,C)-representations for any N, i.e., it returns a list with
|
885
|
+
a representative cocycle for each element in
|
886
|
+
H^2(M, boundary M; Z/N) / (Z/N)^* where (Z/N)^* are the units in Z/N.
|
887
|
+
The first element in the list always corresponds to the trivial
|
888
|
+
obstruction class.
|
889
|
+
The generalized ptolemy obstruction classes are thus a generalization
|
890
|
+
of the ptolemy obstruction classes that allow to find all
|
891
|
+
boundary-unipotent
|
892
|
+
PGL(N,C)-representations including those that do not lift to
|
893
|
+
boundary-unipotent SL(N,C)-representations for N odd or
|
894
|
+
SL(N,C)/{+1,-1}-representations for N even.</p>
|
895
|
+
<p>For example, 4_1 has three obstruction classes up to equivalence:</p>
|
896
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
897
|
+
<span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
|
898
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
|
899
|
+
<span class="go">3</span>
|
900
|
+
</pre></div>
|
901
|
+
</div>
|
902
|
+
<p>For 4_1, we only get three obstruction classes even though we have
|
903
|
+
H^2(M, boundary M; Z/4) = Z/4 because the two obstruction classes
|
904
|
+
1 in Z/4 and -1 in Z/4 are related by a unit and thus give
|
905
|
+
isomorphic Ptolemy varieties.</p>
|
906
|
+
<p>The primary use of an obstruction class sigma is to construct the
|
907
|
+
Ptolemy variety of sigma. This variety computes boundary-unipotent
|
908
|
+
PGL(N,C)-representations whose obstruction class to a
|
909
|
+
boundary-unipotent lift to SL(N,C) is sigma.</p>
|
910
|
+
<p>For example for 4_1, there are 2 obstruction classes for N = 3:</p>
|
911
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
912
|
+
<span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
|
913
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
|
914
|
+
<span class="go">2</span>
|
915
|
+
</pre></div>
|
916
|
+
</div>
|
917
|
+
<p>The Ptolemy variety parametrizing boundary-unipotent
|
918
|
+
SL(3,C)-representations of 4_1 is obtained by</p>
|
919
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
920
|
+
</pre></div>
|
921
|
+
</div>
|
922
|
+
<p>and the Ptolemy variety parametrizing boundary-unipotent
|
923
|
+
PSL(3,C)-representations of 4_1 that do not lift to
|
924
|
+
boundary-unipotent SL(3,C)-representations is obtained by</p>
|
925
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
926
|
+
</pre></div>
|
927
|
+
</div>
|
928
|
+
<p>The cocycle representing the non-trivial obstruction class looks as
|
929
|
+
follows:</p>
|
930
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
|
931
|
+
<span class="go">PtolemyGeneralizedObstructionClass([2, 0, 0, 1])</span>
|
932
|
+
</pre></div>
|
933
|
+
</div>
|
934
|
+
<p>This means that the cocycle takes the value -1 in Z/3 on the first face
|
935
|
+
class and 1 on the fourth face class but zero on every other of the
|
936
|
+
four face classes.</p>
|
937
|
+
</dd></dl>
|
938
|
+
|
939
|
+
<dl class="py method">
|
940
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_obstruction_classes">
|
941
|
+
<span class="sig-name descname"><span class="pre">ptolemy_obstruction_classes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_obstruction_classes" title="Link to this definition"></a></dt>
|
942
|
+
<dd><p>Returns the obstruction classes needed to compute
|
943
|
+
pSL(N,C) = SL(N,C)/{+1,-1} representations for even N, i.e., it
|
944
|
+
returns a list with a representative cocycle for each class in
|
945
|
+
H^2(M, boundary M; Z/2). The first element in the list is always
|
946
|
+
representing the trivial obstruction class.</p>
|
947
|
+
<p>For example, 4_1 has two obstruction classes:</p>
|
948
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
949
|
+
<span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
|
950
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
|
951
|
+
<span class="go">2</span>
|
952
|
+
</pre></div>
|
953
|
+
</div>
|
954
|
+
<p>The primary use of these obstruction classes is to construct
|
955
|
+
the Ptolemy variety as described in Definition 1.7 of
|
956
|
+
Stavros Garoufalidis, Dylan Thurston, Christian K. Zickert:
|
957
|
+
“The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
|
958
|
+
(<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>).</p>
|
959
|
+
<p>For example, to construct the Ptolemy variety for
|
960
|
+
PSL(2,C)-representations of 4_1 that do not lift to boundary-parabolic
|
961
|
+
SL(2,C)-representations, use:</p>
|
962
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
963
|
+
</pre></div>
|
964
|
+
</div>
|
965
|
+
<p>Or the following short-cut:</p>
|
966
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
967
|
+
</pre></div>
|
968
|
+
</div>
|
969
|
+
<p>Note that this obstruction class only makes sense for even N:</p>
|
970
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
971
|
+
<span class="gt">Traceback (most recent call last):</span>
|
972
|
+
<span class="c">...</span>
|
973
|
+
<span class="gr">AssertionError</span>: <span class="n">PtolemyObstructionClass only makes sense for even N, try PtolemyGeneralizedObstructionClass</span>
|
974
|
+
</pre></div>
|
975
|
+
</div>
|
976
|
+
<p>To obtain PGL(N,C)-representations for N > 2, use the generalized
|
977
|
+
obstruction class:</p>
|
978
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
|
979
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
|
980
|
+
</pre></div>
|
981
|
+
</div>
|
982
|
+
<p>The original obstruction class encodes a representing cocycle in Z/2 as follows:</p>
|
983
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
|
984
|
+
<span class="gp">>>> </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
|
985
|
+
<span class="go">PtolemyObstructionClass(s_0_0 + 1, s_1_0 - 1, s_2_0 - 1, s_3_0 + 1, s_0_0 - s_0_1, s_1_0 - s_3_1, s_2_0 - s_2_1, s_3_0 - s_1_1)</span>
|
986
|
+
</pre></div>
|
987
|
+
</div>
|
988
|
+
<p>This means that the cocycle to represent this obstruction class in Z/2
|
989
|
+
takes value 1 in Z/2 on face 0 of tetrahedra 0 (because s_0_0 = -1)
|
990
|
+
and value 0 in Z/2 on face 1 of tetrahedra 0 (because s_1_0 = +1).</p>
|
991
|
+
<p>Face 3 of tetrahedra 0 and face 1 of tetrahedra 1 are identified,
|
992
|
+
hence the cocycle takes the same value on those two faces (s_3_0 = s_1_1).</p>
|
993
|
+
</dd></dl>
|
994
|
+
|
995
|
+
<dl class="py method">
|
996
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_variety">
|
997
|
+
<span class="sig-name descname"><span class="pre">ptolemy_variety</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obstruction_class</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eliminate_fixed_ptolemys</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_variety" title="Link to this definition"></a></dt>
|
998
|
+
<dd><p>Returns a Ptolemy variety as described in</p>
|
999
|
+
<ul class="simple">
|
1000
|
+
<li><p>Stavros Garoufalidis, Dyland Thurston, Christian K. Zickert:
|
1001
|
+
“The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
|
1002
|
+
(<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>)</p></li>
|
1003
|
+
<li><p>Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
|
1004
|
+
“Gluing Equations for PGL(n,C)-Representations of 3-Manifolds ”
|
1005
|
+
(<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>)</p></li>
|
1006
|
+
</ul>
|
1007
|
+
<p>The variety can be exported to magma or sage and solved there. The
|
1008
|
+
solutions can be processed to compute invariants. The method can also
|
1009
|
+
be used to automatically look up precomputed solutions from the
|
1010
|
+
database at <a class="reference external" href="http://ptolemy.unhyperbolic.org/data">http://ptolemy.unhyperbolic.org/data</a> .</p>
|
1011
|
+
<p>Example for m011 and PSL(2,C)-representations:</p>
|
1012
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m011"</span><span class="p">)</span>
|
1013
|
+
</pre></div>
|
1014
|
+
</div>
|
1015
|
+
<p>Obtain all Ptolemy varieties for PSL(2,C)-representations:</p>
|
1016
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">'all'</span><span class="p">)</span>
|
1017
|
+
</pre></div>
|
1018
|
+
</div>
|
1019
|
+
<p>There are two Ptolemy varieties for the two obstruction classes:</p>
|
1020
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
|
1021
|
+
<span class="go">2</span>
|
1022
|
+
</pre></div>
|
1023
|
+
</div>
|
1024
|
+
<p>Retrieve the solutions from the database</p>
|
1025
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
|
1026
|
+
</pre></div>
|
1027
|
+
</div>
|
1028
|
+
<p>Compute the solutions using magma (default in SnapPy)</p>
|
1029
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">'magma'</span><span class="p">)</span>
|
1030
|
+
</pre></div>
|
1031
|
+
</div>
|
1032
|
+
<p>Compute the solutions using singular (default in sage)</p>
|
1033
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">'sage'</span><span class="p">)</span>
|
1034
|
+
</pre></div>
|
1035
|
+
</div>
|
1036
|
+
<p>Note that magma is significantly faster.</p>
|
1037
|
+
<p>Compute all resulting complex volumes</p>
|
1038
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cvols</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">complex_volume_numerical</span><span class="p">()</span>
|
1039
|
+
<span class="gp">>>> </span><span class="n">cvols</span>
|
1040
|
+
<span class="go">[[[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
|
1041
|
+
<span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
|
1042
|
+
<span class="go"> 0.942707362776931 + 0.459731436553693*I]],</span>
|
1043
|
+
<span class="go"> [[3.94159248086745 E-15 + 0.312682687518267*I,</span>
|
1044
|
+
<span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
|
1045
|
+
<span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
|
1046
|
+
<span class="go"> 2.78183391239608 - 0.496837853805869*I]]]</span>
|
1047
|
+
</pre></div>
|
1048
|
+
</div>
|
1049
|
+
<p>Show complex volumes as a non-nested list:</p>
|
1050
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cvols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="n">depth</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
|
1051
|
+
<span class="go">[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
|
1052
|
+
<span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
|
1053
|
+
<span class="go"> 0.942707362776931 + 0.459731436553693*I,</span>
|
1054
|
+
<span class="go"> 3.94159248086745 E-15 + 0.312682687518267*I,</span>
|
1055
|
+
<span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
|
1056
|
+
<span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
|
1057
|
+
<span class="go"> 2.78183391239608 - 0.496837853805869*I]</span>
|
1058
|
+
</pre></div>
|
1059
|
+
</div>
|
1060
|
+
<p>For more examples, go to <a class="reference external" href="http://ptolemy.unhyperbolic.org/">http://ptolemy.unhyperbolic.org/</a></p>
|
1061
|
+
<p>=== Optional Arguments ===</p>
|
1062
|
+
<p>obstruction_class — class from Definition 1.7 of (1).
|
1063
|
+
None for trivial class or a value returned from ptolemy_obstruction_classes.
|
1064
|
+
Short cuts: obstruction_class = ‘all’ returns a list of Ptolemy varieties
|
1065
|
+
for each obstruction. For easier iteration, can set obstruction_class to
|
1066
|
+
an integer.</p>
|
1067
|
+
<p>simplify — boolean to indicate whether to simplify the equations which
|
1068
|
+
significantly reduces the number of variables.
|
1069
|
+
Simplifying means that several identified Ptolemy coordinates x = y = z = …
|
1070
|
+
are eliminated instead of adding relations x - y = 0, y - z = 0, …</p>
|
1071
|
+
<p>eliminate_fixed_ptolemys — boolean to indicate whether to eliminate
|
1072
|
+
the Ptolemy coordinates that are set to 1 for fixing the decoration.
|
1073
|
+
Even though this simplifies the resulting representation, setting it to
|
1074
|
+
True can cause magma to run longer when finding a Groebner basis.</p>
|
1075
|
+
<p>=== Examples for 4_1 ===</p>
|
1076
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
1077
|
+
</pre></div>
|
1078
|
+
</div>
|
1079
|
+
<p>Get the varieties for all obstruction classes at once (use
|
1080
|
+
help(varieties[0]) for more information):</p>
|
1081
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">varieties</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s2">"all"</span><span class="p">)</span>
|
1082
|
+
</pre></div>
|
1083
|
+
</div>
|
1084
|
+
<p>Print the variety as an ideal (sage object) for the non-trivial class:</p>
|
1085
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">ideal</span>
|
1086
|
+
<span class="go">Ideal (-c_0011_0^2 + c_0011_0*c_0101_0 + c_0101_0^2, -c_0011_0^2 - c_0011_0*c_0101_0 + c_0101_0^2, c_0011_0 - 1) of Multivariate Polynomial Ring in c_0011_0, c_0101_0 over Rational Field</span>
|
1087
|
+
</pre></div>
|
1088
|
+
</div>
|
1089
|
+
<p>Print the equations of the variety for the non-trivial class:</p>
|
1090
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">for</span> <span class="n">eqn</span> <span class="ow">in</span> <span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">equations</span><span class="p">:</span>
|
1091
|
+
<span class="gp">... </span> <span class="nb">print</span><span class="p">(</span><span class="n">eqn</span><span class="p">)</span>
|
1092
|
+
<span class="go"> - c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2</span>
|
1093
|
+
<span class="go"> c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
|
1094
|
+
<span class="go"> - 1 + c_0011_0</span>
|
1095
|
+
</pre></div>
|
1096
|
+
</div>
|
1097
|
+
<p>Generate a magma file to compute Primary Decomposition for N = 3:</p>
|
1098
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
|
1099
|
+
<span class="gp">>>> </span><span class="n">s</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">to_magma</span><span class="p">()</span>
|
1100
|
+
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">"ring and ideal"</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">strip</span><span class="p">())</span>
|
1101
|
+
<span class="go">R<c_0012_0, c_0012_1, c_0102_0, c_0111_0, c_0201_0, c_1011_0, c_1011_1, c_1101_0> := PolynomialRing(RationalField(), 8, "grevlex");</span>
|
1102
|
+
<span class="go">MyIdeal := ideal<R |</span>
|
1103
|
+
<span class="go"> c_0012_0 * c_1101_0 + c_0102_0 * c_0111_0 - c_0102_0 * c_1011_0,</span>
|
1104
|
+
<span class="go"> ...</span>
|
1105
|
+
</pre></div>
|
1106
|
+
</div>
|
1107
|
+
<p>=== If you have a magma installation ===</p>
|
1108
|
+
<p>Call p.compute_solutions() to automatically call magma on the above output
|
1109
|
+
and produce exact solutions!!!</p>
|
1110
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">try</span><span class="p">:</span>
|
1111
|
+
<span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">()</span>
|
1112
|
+
<span class="gp">... </span><span class="k">except</span><span class="p">:</span>
|
1113
|
+
<span class="gp">... </span> <span class="c1"># magma failed, use precomputed_solutions</span>
|
1114
|
+
<span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="kc">None</span>
|
1115
|
+
</pre></div>
|
1116
|
+
</div>
|
1117
|
+
<p>Check solutions against manifold
|
1118
|
+
>>> if sols:
|
1119
|
+
… dummy = sols.check_against_manifold()</p>
|
1120
|
+
<p>=== If you do not have a magma installation ===</p>
|
1121
|
+
<p>Load a precomputed example from magma which is provided with the package:</p>
|
1122
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
|
1123
|
+
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
1124
|
+
|
1125
|
+
<span class="go">==TRIANGULATION=BEGINS==</span>
|
1126
|
+
<span class="go">% Triangulation</span>
|
1127
|
+
<span class="go">4_1</span>
|
1128
|
+
<span class="go">...</span>
|
1129
|
+
</pre></div>
|
1130
|
+
</div>
|
1131
|
+
<p>Parse the file and produce solutions:</p>
|
1132
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">sols</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
1133
|
+
</pre></div>
|
1134
|
+
</div>
|
1135
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">dummy</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">()</span>
|
1136
|
+
</pre></div>
|
1137
|
+
</div>
|
1138
|
+
<p>=== Continue here whether you have or do not have magma ===</p>
|
1139
|
+
<p>Pick the first solution of the three different solutions (up to Galois
|
1140
|
+
conjugates):</p>
|
1141
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">sols</span><span class="p">)</span>
|
1142
|
+
<span class="go">3</span>
|
1143
|
+
<span class="gp">>>> </span><span class="n">solution</span> <span class="o">=</span> <span class="n">sols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
1144
|
+
</pre></div>
|
1145
|
+
</div>
|
1146
|
+
<p>Read the exact value for c_1020_0 (help(solution) for more information
|
1147
|
+
on how to compute cross ratios, volumes and other invariants):</p>
|
1148
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">solution</span><span class="p">[</span><span class="s1">'c_1020_0'</span><span class="p">]</span>
|
1149
|
+
<span class="go">Mod(-1/2*x - 3/2, x^2 + 3*x + 4)</span>
|
1150
|
+
</pre></div>
|
1151
|
+
</div>
|
1152
|
+
<p>Example of simplified vs non-simplified variety for N = 4:</p>
|
1153
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">simplified</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
1154
|
+
<span class="gp">>>> </span><span class="n">full</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">simplify</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
|
1155
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">variables</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">variables</span><span class="p">)</span>
|
1156
|
+
<span class="go">(21, 63)</span>
|
1157
|
+
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">equations</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">equations</span><span class="p">)</span>
|
1158
|
+
<span class="go">(24, 72)</span>
|
1159
|
+
</pre></div>
|
1160
|
+
</div>
|
1161
|
+
</dd></dl>
|
1162
|
+
|
1163
|
+
<dl class="py method">
|
1164
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.randomize">
|
1165
|
+
<span class="sig-name descname"><span class="pre">randomize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">blowup_multiple</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.randomize" title="Link to this definition"></a></dt>
|
1166
|
+
<dd><p>Perform random Pachner moves on the underlying triangulation,
|
1167
|
+
including some initial 3 -> 2 moves that increase the number of
|
1168
|
+
tetrahedra by blowup_multiple.</p>
|
1169
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'Braid:[1,2,-3,-3,1,2]'</span><span class="p">)</span>
|
1170
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">randomize</span><span class="p">()</span>
|
1171
|
+
</pre></div>
|
1172
|
+
</div>
|
1173
|
+
</dd></dl>
|
1174
|
+
|
1175
|
+
<dl class="py method">
|
1176
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.reverse_orientation">
|
1177
|
+
<span class="sig-name descname"><span class="pre">reverse_orientation</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.reverse_orientation" title="Link to this definition"></a></dt>
|
1178
|
+
<dd><p>Reverses the orientation of the Triangulation, presuming that
|
1179
|
+
it is orientable.</p>
|
1180
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'m015'</span><span class="p">)</span>
|
1181
|
+
<span class="gp">>>> </span><span class="n">cs</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">()</span>
|
1182
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
|
1183
|
+
<span class="gp">>>> </span><span class="nb">abs</span><span class="p">(</span><span class="n">cs</span> <span class="o">+</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">())</span>
|
1184
|
+
<span class="go">0.0</span>
|
1185
|
+
</pre></div>
|
1186
|
+
</div>
|
1187
|
+
</dd></dl>
|
1188
|
+
|
1189
|
+
<dl class="py method">
|
1190
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.save">
|
1191
|
+
<span class="sig-name descname"><span class="pre">save</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">file_name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.save" title="Link to this definition"></a></dt>
|
1192
|
+
<dd><p>Save the triangulation as a SnapPea triangulation file.</p>
|
1193
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
1194
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">'fig-eight.tri'</span><span class="p">)</span>
|
1195
|
+
</pre></div>
|
1196
|
+
</div>
|
1197
|
+
<p>To retrieve a SnapPea triangulation from the saved file
|
1198
|
+
you can do the following. The first command creates a cusped
|
1199
|
+
manifold M. The second one creates the filled manifold M1
|
1200
|
+
with Dehn coefficients (2,3).</p>
|
1201
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'fig-eight.tri'</span><span class="p">)</span>
|
1202
|
+
<span class="gp">>>> </span><span class="n">M1</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'fig-eight.tri(2,3)'</span><span class="p">)</span>
|
1203
|
+
</pre></div>
|
1204
|
+
</div>
|
1205
|
+
</dd></dl>
|
1206
|
+
|
1207
|
+
<dl class="py method">
|
1208
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.set_name">
|
1209
|
+
<span class="sig-name descname"><span class="pre">set_name</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">new_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.set_name" title="Link to this definition"></a></dt>
|
1210
|
+
<dd><p>Give the triangulation a new name.</p>
|
1211
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'4_1'</span><span class="p">)</span>
|
1212
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">set_name</span><span class="p">(</span><span class="s1">'figure-eight-comp'</span><span class="p">)</span>
|
1213
|
+
<span class="gp">>>> </span><span class="n">M</span>
|
1214
|
+
<span class="go">figure-eight-comp(0,0)</span>
|
1215
|
+
</pre></div>
|
1216
|
+
</div>
|
1217
|
+
</dd></dl>
|
1218
|
+
|
1219
|
+
<dl class="py method">
|
1220
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.set_peripheral_curves">
|
1221
|
+
<span class="sig-name descname"><span class="pre">set_peripheral_curves</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">peripheral_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_matrices</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.set_peripheral_curves" title="Link to this definition"></a></dt>
|
1222
|
+
<dd><p>Each cusp has a preferred marking. In the case of a torus
|
1223
|
+
cusp, this is pair of essential simple curves meeting in one
|
1224
|
+
point; equivalently, a basis of the first homology of the
|
1225
|
+
boundary torus. These curves are called the meridian and the
|
1226
|
+
longitude.</p>
|
1227
|
+
<p>This method changes these markings in various ways. In many
|
1228
|
+
cases, if the flag return_matrices is True then it returns
|
1229
|
+
a list of change-of-basis matrices is returned, one per
|
1230
|
+
cusp, which will restore the original markings if passed
|
1231
|
+
as peripheral_data.</p>
|
1232
|
+
</dd></dl>
|
1233
|
+
|
1234
|
+
<dl class="py method">
|
1235
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.simplify">
|
1236
|
+
<span class="sig-name descname"><span class="pre">simplify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.simplify" title="Link to this definition"></a></dt>
|
1237
|
+
<dd><p>Try to simplify the triangulation by doing Pachner moves.</p>
|
1238
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'12n123'</span><span class="p">)</span>
|
1239
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">simplify</span><span class="p">()</span>
|
1240
|
+
</pre></div>
|
1241
|
+
</div>
|
1242
|
+
<p>It does four kinds of moves that reduce the number of
|
1243
|
+
tetrahedra:</p>
|
1244
|
+
<ul class="simple">
|
1245
|
+
<li><p>3 -> 2 and 2 -> 0 Pacher moves, which eliminate one or two
|
1246
|
+
tetrahedra respectively.</p></li>
|
1247
|
+
<li><p>On suitable valence-1 edges, does a 2 -> 3 and then 2 -> 0 move,
|
1248
|
+
which removes a tetrahedron and creates a new valence-1 edge.</p></li>
|
1249
|
+
<li><p>When a 2-simplex has two edges of valence-4 giving rise to the
|
1250
|
+
suspension of a pentagon, replace these 6 tetrahedra with a
|
1251
|
+
single edge of valence 5.</p></li>
|
1252
|
+
</ul>
|
1253
|
+
<p>It also does random 4 -> 4 moves in hopes of setting up a
|
1254
|
+
simplfication. The argument passes_at_fours is the number of
|
1255
|
+
times it goes through the valence-4 edges without progress
|
1256
|
+
before giving up.</p>
|
1257
|
+
</dd></dl>
|
1258
|
+
|
1259
|
+
<dl class="py method">
|
1260
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.slice_obstruction_HKL">
|
1261
|
+
<span class="sig-name descname"><span class="pre">slice_obstruction_HKL</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">primes_spec</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_in_S3</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.slice_obstruction_HKL" title="Link to this definition"></a></dt>
|
1262
|
+
<dd><p>For the exterior of a knot in S^3, searches for a topological
|
1263
|
+
slicing obstruction from:</p>
|
1264
|
+
<p>Herald, Kirk, Livingston, Math Zeit., 2010
|
1265
|
+
<a class="reference external" href="https://dx.doi.org/10.1007/s00209-009-0548-1">https://dx.doi.org/10.1007/s00209-009-0548-1</a>
|
1266
|
+
<a class="reference external" href="https://arxiv.org/abs/0804.1355">https://arxiv.org/abs/0804.1355</a></p>
|
1267
|
+
<p>The test looks at the cyclic branched covers of the knot of prime
|
1268
|
+
order p and the F_q homology thereof where q is an odd prime. The
|
1269
|
+
range of such (p, q) pairs searched is given by primes_spec as a
|
1270
|
+
list of (p_max, [q_min, q_max]). It returns the pair (p, q) of
|
1271
|
+
the first nonzero obstruction found (in which case K is not
|
1272
|
+
slice), and otherwise returns None:</p>
|
1273
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'K12n813'</span><span class="p">)</span>
|
1274
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">10</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">]),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])]</span>
|
1275
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1276
|
+
<span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">...</span>
|
1277
|
+
<span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
|
1278
|
+
<span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
|
1279
|
+
</pre></div>
|
1280
|
+
</div>
|
1281
|
+
<p>You can also specify the p to examine by a range [p_min, p_max] or
|
1282
|
+
the q by just q_max:</p>
|
1283
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[([</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="mi">10</span><span class="p">)]</span>
|
1284
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1285
|
+
<span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
|
1286
|
+
<span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
|
1287
|
+
</pre></div>
|
1288
|
+
</div>
|
1289
|
+
<p>If primes_spec is just a pair (p, q) then only that obstruction is
|
1290
|
+
checked:</p>
|
1291
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
|
1292
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">))</span>
|
1293
|
+
<span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
|
1294
|
+
</pre></div>
|
1295
|
+
</div>
|
1296
|
+
<p>Technical note: As implemented, can only get an obstruction when
|
1297
|
+
the decomposition of H_1(cover; F_q) into irreducible Z/pZ-modules
|
1298
|
+
has no repeat factors. The method of [HKL] can be used more
|
1299
|
+
broadly, but other cases requires computing many more twisted
|
1300
|
+
Alexander polynomials.</p>
|
1301
|
+
</dd></dl>
|
1302
|
+
|
1303
|
+
<dl class="py method">
|
1304
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.symplectic_basis">
|
1305
|
+
<span class="sig-name descname"><span class="pre">symplectic_basis</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verify</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.symplectic_basis" title="Link to this definition"></a></dt>
|
1306
|
+
<dd><p>Extend the Neumann-Zagier matrix to one which is symplectic
|
1307
|
+
(up to factors of 2) using oscillating curves, see
|
1308
|
+
<a class="reference external" href="https://arxiv.org/abs/2208.06969">Mathews and Purcell ‘22</a>.
|
1309
|
+
Only accepts triangulations with 1 cusp.</p>
|
1310
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
1311
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">symplectic_basis</span><span class="p">()</span>
|
1312
|
+
<span class="go">[-1 0 -1 -1]</span>
|
1313
|
+
<span class="go">[ 2 0 -2 0]</span>
|
1314
|
+
<span class="go">[-2 -1 -2 -1]</span>
|
1315
|
+
<span class="go">[ 0 -1 -2 -1]</span>
|
1316
|
+
</pre></div>
|
1317
|
+
</div>
|
1318
|
+
<dl class="field-list simple">
|
1319
|
+
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
1320
|
+
<dd class="field-odd"><p><strong>verify</strong> – Explicitly test if the resulting matrix is symplectic.</p>
|
1321
|
+
</dd>
|
1322
|
+
</dl>
|
1323
|
+
</dd></dl>
|
1324
|
+
|
1325
|
+
<dl class="py method">
|
1326
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.triangulation_isosig">
|
1327
|
+
<span class="sig-name descname"><span class="pre">triangulation_isosig</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">decorated</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_cusp_ordering</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_curves</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_curve_orientations</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_filling_orientations</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_orientation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="headerlink" href="#snappy.Triangulation.triangulation_isosig" title="Link to this definition"></a></dt>
|
1328
|
+
<dd><p>Returns the “(decorated) isomorphism signature”, a compact text
|
1329
|
+
representation of the triangulation:</p>
|
1330
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
1331
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
|
1332
|
+
<span class="go">'cPcbbbiht_BaCB'</span>
|
1333
|
+
</pre></div>
|
1334
|
+
</div>
|
1335
|
+
<p>This string can be used later to recreate an isomorphic triangulation:</p>
|
1336
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">U</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'cPcbbbiht_BaCB'</span><span class="p">)</span>
|
1337
|
+
<span class="gp">>>> </span><span class="n">T</span> <span class="o">==</span> <span class="n">U</span>
|
1338
|
+
<span class="go">True</span>
|
1339
|
+
</pre></div>
|
1340
|
+
</div>
|
1341
|
+
<p>The isomorphism signature is also used to compute the
|
1342
|
+
<a class="reference internal" href="manifold.html#snappy.Manifold.isometry_signature" title="snappy.Manifold.isometry_signature"><code class="xref py py-meth docutils literal notranslate"><span class="pre">isometry_signature</span></code></a>.
|
1343
|
+
It comes in two flavors controlled by the <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span></code> flag.</p>
|
1344
|
+
<p><strong>Undecorated isomorphism signature</strong></p>
|
1345
|
+
<p>The undecorated isomorphism signature is a complete invariant of the
|
1346
|
+
(oriented) triangulation up to combinatorial isomorphism:</p>
|
1347
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m015'</span><span class="p">)</span>
|
1348
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1349
|
+
<span class="go">'dLQbcccdero'</span>
|
1350
|
+
</pre></div>
|
1351
|
+
</div>
|
1352
|
+
<p>It was introduced in
|
1353
|
+
<a class="reference external" href="http://arxiv.org/abs/1110.6080">Burton ‘11</a>. It canonizes and
|
1354
|
+
generalizes the ealier dehydration string by
|
1355
|
+
<a class="reference external" href="https://doi.org/10.1090/S0025-5718-99-01036-4">Callahan, Hildebrand and Weeks ‘99</a>.
|
1356
|
+
The undecorated isomorphism signature can also be given to
|
1357
|
+
<a class="reference external" href="https://regina-normal.github.io/">Regina</a>’s
|
1358
|
+
<code class="docutils literal notranslate"><span class="pre">Triangulation3.fromIsoSig</span></code>.</p>
|
1359
|
+
<p>By default, the orientation (if orientable) is ignored. More
|
1360
|
+
precisely, it computes the string for both orientations (if orientable)
|
1361
|
+
and uses the lexicographically smaller string:</p>
|
1362
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m015'</span><span class="p">)</span>
|
1363
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1364
|
+
<span class="go">'dLQbcccdero'</span>
|
1365
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
|
1366
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1367
|
+
<span class="go">'dLQbcccdero'</span>
|
1368
|
+
</pre></div>
|
1369
|
+
</div>
|
1370
|
+
<p>When specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation</span> <span class="pre">=</span> <span class="pre">False</span></code>, the result
|
1371
|
+
encodes the orientation (if orientable). Now the result is
|
1372
|
+
different if we change the orientation of a chiral triangulation:</p>
|
1373
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m015'</span><span class="p">)</span>
|
1374
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1375
|
+
<span class="go">'dLQbcccdero'</span>
|
1376
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
|
1377
|
+
<span class="gp">>>> </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1378
|
+
<span class="go">'dLQbccceekg'</span>
|
1379
|
+
</pre></div>
|
1380
|
+
</div>
|
1381
|
+
<p><strong>Decorated isomorphism signature (default)</strong></p>
|
1382
|
+
<p>SnapPy can decorate the isomorphism signature to include the following
|
1383
|
+
peripheral information in a canonical way (that is invariant under
|
1384
|
+
the action by combinatorial isomorphisms of the triangulation):</p>
|
1385
|
+
<ol class="arabic simple">
|
1386
|
+
<li><p>Indexing of the cusps (that is, ideal vertices).</p>
|
1387
|
+
<ul class="simple">
|
1388
|
+
<li><p>Included by default.
|
1389
|
+
Can be suppressed with <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_cusp_ordering</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
|
1390
|
+
</ul>
|
1391
|
+
</li>
|
1392
|
+
<li><p>Peripheral curves (aka meridian and longitude, up to homotopy).</p>
|
1393
|
+
<ul class="simple">
|
1394
|
+
<li><p>Included by default.
|
1395
|
+
Can be suppressed with <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
|
1396
|
+
<li><p>By default, the decoration encodes the oriented peripheral curves.
|
1397
|
+
By specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curve_orientations</span> <span class="pre">=</span> <span class="pre">True</span></code>, it encodes
|
1398
|
+
the unoriented peripheral curves instead.</p></li>
|
1399
|
+
</ul>
|
1400
|
+
</li>
|
1401
|
+
<li><p>Dehn-fillings (if present).</p>
|
1402
|
+
<ul class="simple">
|
1403
|
+
<li><p>By default, the decoration encodes the oriented Dehn-fillings.
|
1404
|
+
That is, we also encodes the orientation of the peripheral curve
|
1405
|
+
that is used for the Dehn-filling (this explanation only
|
1406
|
+
works if the coefficients are integral).
|
1407
|
+
By specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_filling_orientations</span> <span class="pre">=</span> <span class="pre">True</span></code>, the
|
1408
|
+
decoration encodes the unoriented Dehn-fillings.
|
1409
|
+
That is, it normalizes the Dehn-filling coefficients by picking
|
1410
|
+
a canonical pair among <span class="math notranslate nohighlight">\((m,l)\)</span> and <span class="math notranslate nohighlight">\((-m,-l)\)</span>.</p></li>
|
1411
|
+
</ul>
|
1412
|
+
</li>
|
1413
|
+
</ol>
|
1414
|
+
<p>Details of the encoding are explained in the
|
1415
|
+
<a class="reference external" href="https://github.com/3-manifolds/SnapPy/blob/master/python/decorated_isosig.py">SnapPy source code</a>.</p>
|
1416
|
+
<p><strong>Example</strong></p>
|
1417
|
+
<p>Let us consider the links <span class="math notranslate nohighlight">\(9^2_{34}\)</span> and <code class="docutils literal notranslate"><span class="pre">L9a21</span></code>. Note that we use
|
1418
|
+
<a class="reference internal" href="manifold.html#snappy.Manifold.canonical_retriangulation" title="snappy.Manifold.canonical_retriangulation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code></a>
|
1419
|
+
to make the following examples say something intrinsic about the
|
1420
|
+
hyperbolic manifold:</p>
|
1421
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
1422
|
+
<span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'9^2_34'</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">()</span>
|
1423
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'L9a21'</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">()</span>
|
1424
|
+
</pre></div>
|
1425
|
+
</div>
|
1426
|
+
<p>The decorated isosig recovers the entire peripheral information faithfully
|
1427
|
+
(including orientation, see below):</p>
|
1428
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
|
1429
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_baBabbbBbC'</span>
|
1430
|
+
<span class="gp">>>> </span><span class="n">K</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_baBabbbBbC'</span><span class="p">)</span>
|
1431
|
+
<span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
|
1432
|
+
<span class="go">[0 -> 0 1 -> 1</span>
|
1433
|
+
<span class="go">[1 0] [1 0]</span>
|
1434
|
+
<span class="go">[0 1] [0 1]</span>
|
1435
|
+
<span class="go">Extends to link]</span>
|
1436
|
+
</pre></div>
|
1437
|
+
</div>
|
1438
|
+
<p>The two links have isometric complements:</p>
|
1439
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1440
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo'</span>
|
1441
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1442
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo'</span>
|
1443
|
+
</pre></div>
|
1444
|
+
</div>
|
1445
|
+
<p>However, the complements have different handedness:</p>
|
1446
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1447
|
+
<span class="go">'oLLzLPwzQQccdeghjiiklmnmnnuvuvvavovvffffo'</span>
|
1448
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
|
1449
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo'</span>
|
1450
|
+
</pre></div>
|
1451
|
+
</div>
|
1452
|
+
<p>Also, the cusps/components of the link are indexed differently:</p>
|
1453
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1454
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_ba'</span>
|
1455
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1456
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_ab'</span>
|
1457
|
+
</pre></div>
|
1458
|
+
</div>
|
1459
|
+
<p>Ignoring the indexing, we also see that the oriented merdians and
|
1460
|
+
longitudes do not match:</p>
|
1461
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1462
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBbCBabb'</span>
|
1463
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1464
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_BbbCbabb'</span>
|
1465
|
+
</pre></div>
|
1466
|
+
</div>
|
1467
|
+
<p>However, they are the same links (ignoring indexing and orientation):</p>
|
1468
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_curve_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1469
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBBcbabb'</span>
|
1470
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_curve_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1471
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBBcbabb'</span>
|
1472
|
+
</pre></div>
|
1473
|
+
</div>
|
1474
|
+
<p>Let us create two surgery presentations from the links (note that we
|
1475
|
+
fill after
|
1476
|
+
<a class="reference internal" href="manifold.html#snappy.Manifold.canonical_retriangulation" title="snappy.Manifold.canonical_retriangulation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code></a>
|
1477
|
+
since it rejects Dehn-fillings):</p>
|
1478
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span><span class="mi">0</span><span class="p">)</span>
|
1479
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">4</span><span class="p">,</span><span class="o">-</span><span class="mi">5</span><span class="p">),</span><span class="mi">1</span><span class="p">)</span>
|
1480
|
+
</pre></div>
|
1481
|
+
</div>
|
1482
|
+
<p>They are equivalent surgery presentations (of the same manifold):</p>
|
1483
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span>
|
1484
|
+
<span class="gp">... </span> <span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
1485
|
+
<span class="gp">... </span> <span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
1486
|
+
<span class="gp">... </span> <span class="n">ignore_filling_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1487
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo(0,0)(1,5)'</span>
|
1488
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span>
|
1489
|
+
<span class="gp">... </span> <span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
1490
|
+
<span class="gp">... </span> <span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
1491
|
+
<span class="gp">... </span> <span class="n">ignore_filling_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
1492
|
+
<span class="go">'oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo(0,0)(1,5)'</span>
|
1493
|
+
</pre></div>
|
1494
|
+
</div>
|
1495
|
+
<p><strong>Orientation</strong></p>
|
1496
|
+
<p>Note that <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation=True</span></code> only applies to the undecorated
|
1497
|
+
part of the isomorphism signature. The decoration can still capture the
|
1498
|
+
the orientation.
|
1499
|
+
More, precisely, the result of <a class="reference internal" href="#snappy.Triangulation.triangulation_isosig" title="snappy.Triangulation.triangulation_isosig"><code class="xref py py-meth docutils literal notranslate"><span class="pre">triangulation_isosig()</span></code></a> depends on
|
1500
|
+
the orientation (if the triangulation is orientable and chiral) if any
|
1501
|
+
of the following is true:</p>
|
1502
|
+
<ol class="arabic simple">
|
1503
|
+
<li><p><code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
|
1504
|
+
<li><p><code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code> and
|
1505
|
+
<code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">False</span></code> and
|
1506
|
+
<code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_filling_orientations</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
|
1507
|
+
</ol>
|
1508
|
+
<p>In these cases, re-constructing a triangulation from the isomorphism
|
1509
|
+
signature yields a triangulation with the same handedness.</p>
|
1510
|
+
<dl class="field-list simple">
|
1511
|
+
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
|
1512
|
+
<dd class="field-odd"><ul class="simple">
|
1513
|
+
<li><p><strong>decorated</strong> – Include peripheral information such as indexing of the cusps,
|
1514
|
+
(oriented or unoriented) peripheral curves and
|
1515
|
+
(oriented or unoriented) Dehn-fillings.</p></li>
|
1516
|
+
<li><p><strong>ignore_cusp_ordering</strong> – Do not encode the indexing of the cusps.
|
1517
|
+
Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
|
1518
|
+
<li><p><strong>ignore_curves</strong> – Do not encode the peripheral curves.
|
1519
|
+
Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.
|
1520
|
+
This is new in SnapPy version 3.2.
|
1521
|
+
If <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">True</span></code>, the result of this method cannot
|
1522
|
+
be given to prior versions.</p></li>
|
1523
|
+
<li><p><strong>ignore_curve_orientations</strong> – Do not encode the orientations of the peripheral curves.
|
1524
|
+
Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code> and
|
1525
|
+
<code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
|
1526
|
+
<li><p><strong>ignore_filling_orientations</strong> – Do not encode the orientations of the Dehn-fillings.
|
1527
|
+
Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
|
1528
|
+
<li><p><strong>ignore_orientation</strong> – Do not encode the orientation of the triangulation in the
|
1529
|
+
undecorated part of the triangulation isosig.
|
1530
|
+
See above section about orientation.</p></li>
|
1531
|
+
</ul>
|
1532
|
+
</dd>
|
1533
|
+
</dl>
|
1534
|
+
</dd></dl>
|
1535
|
+
|
1536
|
+
<dl class="py method">
|
1537
|
+
<dt class="sig sig-object py" id="snappy.Triangulation.with_hyperbolic_structure">
|
1538
|
+
<span class="sig-name descname"><span class="pre">with_hyperbolic_structure</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.with_hyperbolic_structure" title="Link to this definition"></a></dt>
|
1539
|
+
<dd><p>Add a (possibly degenerate) hyperbolic structure, turning the
|
1540
|
+
<a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a> into a <a class="reference internal" href="manifold.html#snappy.Manifold" title="snappy.Manifold"><code class="xref py py-class docutils literal notranslate"><span class="pre">Manifold</span></code></a>.</p>
|
1541
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">'m004'</span><span class="p">)</span>
|
1542
|
+
<span class="gp">>>> </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
|
1543
|
+
<span class="gp">>>> </span><span class="n">N</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
|
1544
|
+
<span class="go">2.02988321</span>
|
1545
|
+
</pre></div>
|
1546
|
+
</div>
|
1547
|
+
</dd></dl>
|
1548
|
+
|
1549
|
+
</dd></dl>
|
1550
|
+
|
1551
|
+
</section>
|
1552
|
+
|
1553
|
+
|
1554
|
+
</div>
|
1555
|
+
</div>
|
1556
|
+
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
1557
|
+
<a href="manifoldhp.html" class="btn btn-neutral float-left" title="ManifoldHP: High-precision variant" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
1558
|
+
<a href="additional_classes.html" class="btn btn-neutral float-right" title="Additional Classes" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
1559
|
+
</div>
|
1560
|
+
|
1561
|
+
<hr/>
|
1562
|
+
|
1563
|
+
<div role="contentinfo">
|
1564
|
+
<p>© Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
|
1565
|
+
</div>
|
1566
|
+
|
1567
|
+
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
|
1568
|
+
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
|
1569
|
+
provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
1570
|
+
|
1571
|
+
|
1572
|
+
</footer>
|
1573
|
+
</div>
|
1574
|
+
</div>
|
1575
|
+
</section>
|
1576
|
+
</div>
|
1577
|
+
<script>
|
1578
|
+
jQuery(function () {
|
1579
|
+
SphinxRtdTheme.Navigation.enable(true);
|
1580
|
+
});
|
1581
|
+
</script>
|
1582
|
+
|
1583
|
+
</body>
|
1475
1584
|
</html>
|