snappy 3.1.1__cp312-cp312-win_amd64.whl → 3.2__cp312-cp312-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (471) hide show
  1. snappy/CyOpenGL.cp312-win_amd64.pyd +0 -0
  2. snappy/SnapPy.cp312-win_amd64.pyd +0 -0
  3. snappy/SnapPyHP.cp312-win_amd64.pyd +0 -0
  4. snappy/__init__.py +271 -401
  5. snappy/app.py +70 -20
  6. snappy/browser.py +18 -17
  7. snappy/canonical.py +249 -0
  8. snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
  9. snappy/cusps/cusp_area_matrix.py +101 -0
  10. snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
  11. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  12. snappy/cusps/test.py +21 -0
  13. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  14. snappy/database.py +10 -9
  15. snappy/decorated_isosig.py +337 -114
  16. snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
  17. snappy/dev/extended_ptolemy/extended.py +3 -3
  18. snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
  19. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
  20. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  21. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  22. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  23. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  24. snappy/doc/_sources/additional_classes.rst.txt +40 -40
  25. snappy/doc/_sources/bugs.rst.txt +14 -14
  26. snappy/doc/_sources/censuses.rst.txt +51 -51
  27. snappy/doc/_sources/credits.rst.txt +75 -75
  28. snappy/doc/_sources/development.rst.txt +259 -239
  29. snappy/doc/_sources/index.rst.txt +182 -115
  30. snappy/doc/_sources/installing.rst.txt +247 -264
  31. snappy/doc/_sources/manifold.rst.txt +6 -6
  32. snappy/doc/_sources/manifoldhp.rst.txt +46 -46
  33. snappy/doc/_sources/news.rst.txt +355 -283
  34. snappy/doc/_sources/other.rst.txt +25 -25
  35. snappy/doc/_sources/platonic_census.rst.txt +20 -20
  36. snappy/doc/_sources/plink.rst.txt +102 -102
  37. snappy/doc/_sources/ptolemy.rst.txt +66 -66
  38. snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
  39. snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
  40. snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
  41. snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
  42. snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
  43. snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
  44. snappy/doc/_sources/screenshots.rst.txt +21 -21
  45. snappy/doc/_sources/snap.rst.txt +87 -87
  46. snappy/doc/_sources/snappy.rst.txt +28 -28
  47. snappy/doc/_sources/spherogram.rst.txt +103 -103
  48. snappy/doc/_sources/todo.rst.txt +47 -47
  49. snappy/doc/_sources/triangulation.rst.txt +11 -11
  50. snappy/doc/_sources/tutorial.rst.txt +49 -49
  51. snappy/doc/_sources/verify.rst.txt +210 -150
  52. snappy/doc/_sources/verify_internals.rst.txt +79 -90
  53. snappy/doc/_static/basic.css +924 -924
  54. snappy/doc/_static/css/badge_only.css +1 -1
  55. snappy/doc/_static/css/theme.css +1 -1
  56. snappy/doc/_static/doctools.js +1 -1
  57. snappy/doc/_static/documentation_options.js +12 -12
  58. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  59. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  60. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  61. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  62. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  63. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  64. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  65. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  66. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  67. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  68. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  69. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  70. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  71. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  72. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  73. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  74. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  75. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  76. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  77. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  78. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  79. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  80. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  81. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  82. snappy/doc/_static/js/versions.js +228 -0
  83. snappy/doc/_static/language_data.js +199 -199
  84. snappy/doc/_static/pygments.css +74 -74
  85. snappy/doc/_static/searchtools.js +108 -62
  86. snappy/doc/_static/snappy_furo.css +33 -33
  87. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
  88. snappy/doc/additional_classes.html +1499 -1330
  89. snappy/doc/bugs.html +131 -134
  90. snappy/doc/censuses.html +426 -445
  91. snappy/doc/credits.html +180 -183
  92. snappy/doc/development.html +383 -363
  93. snappy/doc/genindex.html +1330 -1409
  94. snappy/doc/index.html +261 -206
  95. snappy/doc/installing.html +345 -363
  96. snappy/doc/manifold.html +3451 -2839
  97. snappy/doc/manifoldhp.html +179 -182
  98. snappy/doc/news.html +387 -329
  99. snappy/doc/objects.inv +0 -0
  100. snappy/doc/other.html +160 -162
  101. snappy/doc/platonic_census.html +374 -377
  102. snappy/doc/plink.html +209 -212
  103. snappy/doc/ptolemy.html +253 -255
  104. snappy/doc/ptolemy_classes.html +1143 -1146
  105. snappy/doc/ptolemy_examples1.html +408 -410
  106. snappy/doc/ptolemy_examples2.html +470 -473
  107. snappy/doc/ptolemy_examples3.html +413 -416
  108. snappy/doc/ptolemy_examples4.html +194 -197
  109. snappy/doc/ptolemy_prelim.html +247 -250
  110. snappy/doc/py-modindex.html +164 -167
  111. snappy/doc/screenshots.html +140 -142
  112. snappy/doc/search.html +134 -137
  113. snappy/doc/searchindex.js +1 -1
  114. snappy/doc/snap.html +201 -204
  115. snappy/doc/snappy.html +180 -182
  116. snappy/doc/spherogram.html +1210 -1213
  117. snappy/doc/todo.html +165 -168
  118. snappy/doc/triangulation.html +1583 -1474
  119. snappy/doc/tutorial.html +158 -161
  120. snappy/doc/verify.html +329 -275
  121. snappy/doc/verify_internals.html +1234 -1691
  122. snappy/drilling/__init__.py +153 -235
  123. snappy/drilling/barycentric.py +103 -0
  124. snappy/drilling/constants.py +0 -2
  125. snappy/drilling/crush.py +56 -130
  126. snappy/drilling/cusps.py +12 -6
  127. snappy/drilling/debug.py +2 -1
  128. snappy/drilling/exceptions.py +7 -40
  129. snappy/drilling/moves.py +302 -243
  130. snappy/drilling/perturb.py +63 -37
  131. snappy/drilling/shorten.py +36 -0
  132. snappy/drilling/subdivide.py +0 -5
  133. snappy/drilling/test.py +23 -0
  134. snappy/drilling/test_cases.py +126 -0
  135. snappy/drilling/tracing.py +9 -37
  136. snappy/exceptions.py +18 -5
  137. snappy/exterior_to_link/barycentric_geometry.py +2 -4
  138. snappy/exterior_to_link/main.py +8 -7
  139. snappy/exterior_to_link/mcomplex_with_link.py +2 -2
  140. snappy/exterior_to_link/rational_linear_algebra.py +1 -1
  141. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
  142. snappy/exterior_to_link/test.py +21 -33
  143. snappy/geometric_structure/__init__.py +212 -0
  144. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  145. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  146. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  147. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  148. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  149. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  150. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  151. snappy/geometric_structure/geodesic/__init__.py +0 -0
  152. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  153. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  154. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  155. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  156. snappy/geometric_structure/geodesic/constants.py +6 -0
  157. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  158. snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
  159. snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
  160. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  161. snappy/geometric_structure/geodesic/line.py +30 -0
  162. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  163. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  164. snappy/geometric_structure/test.py +22 -0
  165. snappy/gui.py +23 -13
  166. snappy/horoviewer.py +7 -7
  167. snappy/hyperboloid/__init__.py +96 -31
  168. snappy/hyperboloid/distances.py +245 -0
  169. snappy/hyperboloid/horoball.py +19 -0
  170. snappy/hyperboloid/line.py +35 -0
  171. snappy/hyperboloid/point.py +9 -0
  172. snappy/hyperboloid/triangle.py +29 -0
  173. snappy/isometry_signature.py +382 -0
  174. snappy/len_spec/__init__.py +596 -0
  175. snappy/len_spec/geodesic_info.py +110 -0
  176. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  177. snappy/len_spec/geodesic_piece.py +143 -0
  178. snappy/len_spec/geometric_structure.py +182 -0
  179. snappy/len_spec/geometry.py +80 -0
  180. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  181. snappy/len_spec/spine.py +206 -0
  182. snappy/len_spec/test.py +24 -0
  183. snappy/len_spec/test_cases.py +69 -0
  184. snappy/len_spec/tile.py +275 -0
  185. snappy/len_spec/word.py +86 -0
  186. snappy/math_basics.py +39 -13
  187. snappy/matrix.py +52 -9
  188. snappy/number.py +12 -6
  189. snappy/numeric_output_checker.py +2 -3
  190. snappy/pari.py +6 -3
  191. snappy/polyviewer.py +8 -8
  192. snappy/ptolemy/__init__.py +1 -1
  193. snappy/ptolemy/component.py +2 -2
  194. snappy/ptolemy/coordinates.py +25 -25
  195. snappy/ptolemy/findLoops.py +9 -9
  196. snappy/ptolemy/manifoldMethods.py +27 -29
  197. snappy/ptolemy/polynomial.py +50 -57
  198. snappy/ptolemy/processFileBase.py +60 -0
  199. snappy/ptolemy/ptolemyVariety.py +109 -41
  200. snappy/ptolemy/reginaWrapper.py +4 -4
  201. snappy/ptolemy/rur.py +1 -1
  202. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
  203. snappy/ptolemy/test.py +99 -54
  204. snappy/ptolemy/utilities.py +1 -1
  205. snappy/raytracing/__init__.py +64 -0
  206. snappy/raytracing/additional_horospheres.py +64 -0
  207. snappy/raytracing/additional_len_spec_choices.py +63 -0
  208. snappy/raytracing/cohomology_fractal.py +0 -3
  209. snappy/raytracing/eyeball.py +123 -0
  210. snappy/raytracing/finite_raytracing_data.py +17 -17
  211. snappy/raytracing/finite_viewer.py +15 -15
  212. snappy/raytracing/geodesic_tube_info.py +93 -63
  213. snappy/raytracing/geodesics.py +94 -64
  214. snappy/raytracing/geodesics_window.py +56 -34
  215. snappy/raytracing/gui_utilities.py +21 -6
  216. snappy/raytracing/hyperboloid_navigation.py +29 -4
  217. snappy/raytracing/hyperboloid_utilities.py +73 -73
  218. snappy/raytracing/ideal_raytracing_data.py +121 -91
  219. snappy/raytracing/inside_viewer.py +199 -66
  220. snappy/raytracing/pack.py +22 -0
  221. snappy/raytracing/raytracing_data.py +37 -25
  222. snappy/raytracing/raytracing_view.py +70 -65
  223. snappy/raytracing/shaders/Eye.png +0 -0
  224. snappy/raytracing/shaders/NonGeometric.png +0 -0
  225. snappy/raytracing/shaders/__init__.py +39 -3
  226. snappy/raytracing/shaders/fragment.glsl +451 -133
  227. snappy/raytracing/test.py +29 -0
  228. snappy/raytracing/tooltip.py +146 -0
  229. snappy/raytracing/upper_halfspace_utilities.py +42 -9
  230. snappy/sage_helper.py +67 -134
  231. snappy/settings.py +90 -77
  232. snappy/shell.py +2 -0
  233. snappy/snap/character_varieties.py +2 -2
  234. snappy/snap/find_field.py +4 -3
  235. snappy/snap/fundamental_polyhedron.py +2 -2
  236. snappy/snap/kernel_structures.py +5 -1
  237. snappy/snap/nsagetools.py +9 -8
  238. snappy/snap/peripheral/dual_cellulation.py +4 -3
  239. snappy/snap/peripheral/peripheral.py +2 -2
  240. snappy/snap/peripheral/surface.py +5 -5
  241. snappy/snap/peripheral/test.py +1 -1
  242. snappy/snap/polished_reps.py +8 -8
  243. snappy/snap/slice_obs_HKL.py +16 -14
  244. snappy/snap/t3mlite/arrow.py +3 -3
  245. snappy/snap/t3mlite/edge.py +3 -3
  246. snappy/snap/t3mlite/homology.py +2 -2
  247. snappy/snap/t3mlite/mcomplex.py +3 -3
  248. snappy/snap/t3mlite/simplex.py +12 -0
  249. snappy/snap/t3mlite/spun.py +18 -17
  250. snappy/snap/t3mlite/test_vs_regina.py +4 -4
  251. snappy/snap/test.py +37 -53
  252. snappy/snap/utilities.py +4 -5
  253. snappy/test.py +121 -138
  254. snappy/test_cases.py +263 -0
  255. snappy/testing.py +131 -0
  256. snappy/tiling/__init__.py +2 -0
  257. snappy/tiling/canonical_key_dict.py +59 -0
  258. snappy/tiling/dict_based_set.py +79 -0
  259. snappy/tiling/floor.py +49 -0
  260. snappy/tiling/hyperboloid_dict.py +54 -0
  261. snappy/tiling/iter_utils.py +78 -0
  262. snappy/tiling/lifted_tetrahedron.py +22 -0
  263. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  264. snappy/tiling/real_hash_dict.py +164 -0
  265. snappy/tiling/test.py +23 -0
  266. snappy/tiling/tile.py +215 -0
  267. snappy/tiling/triangle.py +33 -0
  268. snappy/tkterminal.py +113 -84
  269. snappy/twister/main.py +1 -7
  270. snappy/twister/twister_core.cp312-win_amd64.pyd +0 -0
  271. snappy/upper_halfspace/__init__.py +78 -17
  272. snappy/verify/__init__.py +3 -7
  273. snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
  274. snappy/verify/complex_volume/adjust_torsion.py +1 -2
  275. snappy/verify/complex_volume/closed.py +13 -13
  276. snappy/verify/complex_volume/cusped.py +6 -6
  277. snappy/verify/complex_volume/extended_bloch.py +5 -8
  278. snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
  279. snappy/verify/edge_equations.py +80 -0
  280. snappy/verify/exceptions.py +0 -55
  281. snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
  282. snappy/verify/interval_newton_shapes_engine.py +7 -5
  283. snappy/verify/interval_tree.py +5 -5
  284. snappy/verify/krawczyk_shapes_engine.py +17 -18
  285. snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
  286. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
  287. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
  288. snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
  289. snappy/verify/shapes.py +5 -3
  290. snappy/verify/short_slopes.py +39 -41
  291. snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
  292. snappy/verify/test.py +57 -60
  293. snappy/verify/upper_halfspace/extended_matrix.py +1 -1
  294. snappy/verify/upper_halfspace/finite_point.py +3 -4
  295. snappy/verify/upper_halfspace/ideal_point.py +9 -9
  296. snappy/verify/volume.py +2 -2
  297. snappy/version.py +2 -2
  298. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +25 -11
  299. snappy-3.2.dist-info/RECORD +503 -0
  300. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
  301. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
  302. snappy/__pycache__/__init__.cpython-312.pyc +0 -0
  303. snappy/__pycache__/browser.cpython-312.pyc +0 -0
  304. snappy/__pycache__/cache.cpython-312.pyc +0 -0
  305. snappy/__pycache__/database.cpython-312.pyc +0 -0
  306. snappy/__pycache__/db_utilities.cpython-312.pyc +0 -0
  307. snappy/__pycache__/decorated_isosig.cpython-312.pyc +0 -0
  308. snappy/__pycache__/exceptions.cpython-312.pyc +0 -0
  309. snappy/__pycache__/export_stl.cpython-312.pyc +0 -0
  310. snappy/__pycache__/filedialog.cpython-312.pyc +0 -0
  311. snappy/__pycache__/gui.cpython-312.pyc +0 -0
  312. snappy/__pycache__/horoviewer.cpython-312.pyc +0 -0
  313. snappy/__pycache__/math_basics.cpython-312.pyc +0 -0
  314. snappy/__pycache__/matrix.cpython-312.pyc +0 -0
  315. snappy/__pycache__/number.cpython-312.pyc +0 -0
  316. snappy/__pycache__/numeric_output_checker.cpython-312.pyc +0 -0
  317. snappy/__pycache__/pari.cpython-312.pyc +0 -0
  318. snappy/__pycache__/polyviewer.cpython-312.pyc +0 -0
  319. snappy/__pycache__/sage_helper.cpython-312.pyc +0 -0
  320. snappy/__pycache__/version.cpython-312.pyc +0 -0
  321. snappy/doc/_sources/verify_canon.rst.txt +0 -90
  322. snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
  323. snappy/doc/_static/js/html5shiv.min.js +0 -4
  324. snappy/doc/verify_canon.html +0 -304
  325. snappy/drilling/__pycache__/__init__.cpython-312.pyc +0 -0
  326. snappy/drilling/__pycache__/constants.cpython-312.pyc +0 -0
  327. snappy/drilling/__pycache__/crush.cpython-312.pyc +0 -0
  328. snappy/drilling/__pycache__/cusps.cpython-312.pyc +0 -0
  329. snappy/drilling/__pycache__/debug.cpython-312.pyc +0 -0
  330. snappy/drilling/__pycache__/epsilons.cpython-312.pyc +0 -0
  331. snappy/drilling/__pycache__/exceptions.cpython-312.pyc +0 -0
  332. snappy/drilling/__pycache__/fixed_points.cpython-312.pyc +0 -0
  333. snappy/drilling/__pycache__/geodesic_info.cpython-312.pyc +0 -0
  334. snappy/drilling/__pycache__/geodesic_tube.cpython-312.pyc +0 -0
  335. snappy/drilling/__pycache__/geometric_structure.cpython-312.pyc +0 -0
  336. snappy/drilling/__pycache__/line.cpython-312.pyc +0 -0
  337. snappy/drilling/__pycache__/moves.cpython-312.pyc +0 -0
  338. snappy/drilling/__pycache__/peripheral_curves.cpython-312.pyc +0 -0
  339. snappy/drilling/__pycache__/perturb.cpython-312.pyc +0 -0
  340. snappy/drilling/__pycache__/quotient_space.cpython-312.pyc +0 -0
  341. snappy/drilling/__pycache__/spatial_dict.cpython-312.pyc +0 -0
  342. snappy/drilling/__pycache__/subdivide.cpython-312.pyc +0 -0
  343. snappy/drilling/__pycache__/tracing.cpython-312.pyc +0 -0
  344. snappy/drilling/geodesic_tube.py +0 -441
  345. snappy/drilling/geometric_structure.py +0 -366
  346. snappy/drilling/line.py +0 -122
  347. snappy/drilling/quotient_space.py +0 -94
  348. snappy/drilling/spatial_dict.py +0 -128
  349. snappy/exterior_to_link/__pycache__/__init__.cpython-312.pyc +0 -0
  350. snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-312.pyc +0 -0
  351. snappy/exterior_to_link/__pycache__/exceptions.cpython-312.pyc +0 -0
  352. snappy/exterior_to_link/__pycache__/hyp_utils.cpython-312.pyc +0 -0
  353. snappy/exterior_to_link/__pycache__/link_projection.cpython-312.pyc +0 -0
  354. snappy/exterior_to_link/__pycache__/main.cpython-312.pyc +0 -0
  355. snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-312.pyc +0 -0
  356. snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-312.pyc +0 -0
  357. snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-312.pyc +0 -0
  358. snappy/exterior_to_link/__pycache__/pl_utils.cpython-312.pyc +0 -0
  359. snappy/exterior_to_link/__pycache__/put_in_S3.cpython-312.pyc +0 -0
  360. snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-312.pyc +0 -0
  361. snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-312.pyc +0 -0
  362. snappy/exterior_to_link/__pycache__/stored_moves.cpython-312.pyc +0 -0
  363. snappy/hyperboloid/__pycache__/__init__.cpython-312.pyc +0 -0
  364. snappy/manifolds/__pycache__/__init__.cpython-312.pyc +0 -0
  365. snappy/ptolemy/__pycache__/__init__.cpython-312.pyc +0 -0
  366. snappy/ptolemy/__pycache__/component.cpython-312.pyc +0 -0
  367. snappy/ptolemy/__pycache__/coordinates.cpython-312.pyc +0 -0
  368. snappy/ptolemy/__pycache__/fieldExtensions.cpython-312.pyc +0 -0
  369. snappy/ptolemy/__pycache__/findLoops.cpython-312.pyc +0 -0
  370. snappy/ptolemy/__pycache__/homology.cpython-312.pyc +0 -0
  371. snappy/ptolemy/__pycache__/manifoldMethods.cpython-312.pyc +0 -0
  372. snappy/ptolemy/__pycache__/matrix.cpython-312.pyc +0 -0
  373. snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-312.pyc +0 -0
  374. snappy/ptolemy/__pycache__/polynomial.cpython-312.pyc +0 -0
  375. snappy/ptolemy/__pycache__/processComponents.cpython-312.pyc +0 -0
  376. snappy/ptolemy/__pycache__/processFileBase.cpython-312.pyc +0 -0
  377. snappy/ptolemy/__pycache__/processFileDispatch.cpython-312.pyc +0 -0
  378. snappy/ptolemy/__pycache__/processMagmaFile.cpython-312.pyc +0 -0
  379. snappy/ptolemy/__pycache__/processRurFile.cpython-312.pyc +0 -0
  380. snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-312.pyc +0 -0
  381. snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-312.pyc +0 -0
  382. snappy/ptolemy/__pycache__/ptolemyVariety.cpython-312.pyc +0 -0
  383. snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-312.pyc +0 -0
  384. snappy/ptolemy/__pycache__/rur.cpython-312.pyc +0 -0
  385. snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-312.pyc +0 -0
  386. snappy/ptolemy/__pycache__/utilities.cpython-312.pyc +0 -0
  387. snappy/snap/__pycache__/__init__.cpython-312.pyc +0 -0
  388. snappy/snap/__pycache__/character_varieties.cpython-312.pyc +0 -0
  389. snappy/snap/__pycache__/fundamental_polyhedron.cpython-312.pyc +0 -0
  390. snappy/snap/__pycache__/interval_reps.cpython-312.pyc +0 -0
  391. snappy/snap/__pycache__/kernel_structures.cpython-312.pyc +0 -0
  392. snappy/snap/__pycache__/mcomplex_base.cpython-312.pyc +0 -0
  393. snappy/snap/__pycache__/nsagetools.cpython-312.pyc +0 -0
  394. snappy/snap/__pycache__/polished_reps.cpython-312.pyc +0 -0
  395. snappy/snap/__pycache__/shapes.cpython-312.pyc +0 -0
  396. snappy/snap/__pycache__/slice_obs_HKL.cpython-312.pyc +0 -0
  397. snappy/snap/__pycache__/utilities.cpython-312.pyc +0 -0
  398. snappy/snap/peripheral/__pycache__/__init__.cpython-312.pyc +0 -0
  399. snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-312.pyc +0 -0
  400. snappy/snap/peripheral/__pycache__/link.cpython-312.pyc +0 -0
  401. snappy/snap/peripheral/__pycache__/peripheral.cpython-312.pyc +0 -0
  402. snappy/snap/peripheral/__pycache__/surface.cpython-312.pyc +0 -0
  403. snappy/snap/t3mlite/__pycache__/__init__.cpython-312.pyc +0 -0
  404. snappy/snap/t3mlite/__pycache__/arrow.cpython-312.pyc +0 -0
  405. snappy/snap/t3mlite/__pycache__/corner.cpython-312.pyc +0 -0
  406. snappy/snap/t3mlite/__pycache__/edge.cpython-312.pyc +0 -0
  407. snappy/snap/t3mlite/__pycache__/face.cpython-312.pyc +0 -0
  408. snappy/snap/t3mlite/__pycache__/files.cpython-312.pyc +0 -0
  409. snappy/snap/t3mlite/__pycache__/homology.cpython-312.pyc +0 -0
  410. snappy/snap/t3mlite/__pycache__/linalg.cpython-312.pyc +0 -0
  411. snappy/snap/t3mlite/__pycache__/mcomplex.cpython-312.pyc +0 -0
  412. snappy/snap/t3mlite/__pycache__/perm4.cpython-312.pyc +0 -0
  413. snappy/snap/t3mlite/__pycache__/simplex.cpython-312.pyc +0 -0
  414. snappy/snap/t3mlite/__pycache__/spun.cpython-312.pyc +0 -0
  415. snappy/snap/t3mlite/__pycache__/surface.cpython-312.pyc +0 -0
  416. snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-312.pyc +0 -0
  417. snappy/snap/t3mlite/__pycache__/vertex.cpython-312.pyc +0 -0
  418. snappy/togl/__init__.py +0 -3
  419. snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
  420. snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
  421. snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  422. snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
  423. snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
  424. snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
  425. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  426. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
  427. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  428. snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
  429. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
  430. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
  431. snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  432. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  433. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
  434. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
  435. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  436. snappy/twister/__pycache__/__init__.cpython-312.pyc +0 -0
  437. snappy/twister/__pycache__/main.cpython-312.pyc +0 -0
  438. snappy/upper_halfspace/__pycache__/__init__.cpython-312.pyc +0 -0
  439. snappy/upper_halfspace/__pycache__/ideal_point.cpython-312.pyc +0 -0
  440. snappy/verify/__pycache__/__init__.cpython-312.pyc +0 -0
  441. snappy/verify/__pycache__/cuspCrossSection.cpython-312.pyc +0 -0
  442. snappy/verify/__pycache__/cuspTranslations.cpython-312.pyc +0 -0
  443. snappy/verify/__pycache__/cusp_areas.cpython-312.pyc +0 -0
  444. snappy/verify/__pycache__/cusp_shapes.cpython-312.pyc +0 -0
  445. snappy/verify/__pycache__/exceptions.cpython-312.pyc +0 -0
  446. snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-312.pyc +0 -0
  447. snappy/verify/__pycache__/interval_tree.cpython-312.pyc +0 -0
  448. snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-312.pyc +0 -0
  449. snappy/verify/__pycache__/realAlgebra.cpython-312.pyc +0 -0
  450. snappy/verify/__pycache__/shapes.cpython-312.pyc +0 -0
  451. snappy/verify/__pycache__/short_slopes.cpython-312.pyc +0 -0
  452. snappy/verify/__pycache__/squareExtensions.cpython-312.pyc +0 -0
  453. snappy/verify/__pycache__/verifyCanonical.cpython-312.pyc +0 -0
  454. snappy/verify/__pycache__/verifyHyperbolicity.cpython-312.pyc +0 -0
  455. snappy/verify/__pycache__/volume.cpython-312.pyc +0 -0
  456. snappy/verify/complex_volume/__pycache__/__init__.cpython-312.pyc +0 -0
  457. snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-312.pyc +0 -0
  458. snappy/verify/complex_volume/__pycache__/closed.cpython-312.pyc +0 -0
  459. snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-312.pyc +0 -0
  460. snappy/verify/complex_volume/__pycache__/cusped.cpython-312.pyc +0 -0
  461. snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-312.pyc +0 -0
  462. snappy/verify/cuspCrossSection.py +0 -1422
  463. snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-312.pyc +0 -0
  464. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-312.pyc +0 -0
  465. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-312.pyc +0 -0
  466. snappy/verify/upper_halfspace/__pycache__/__init__.cpython-312.pyc +0 -0
  467. snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-312.pyc +0 -0
  468. snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-312.pyc +0 -0
  469. snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-312.pyc +0 -0
  470. snappy-3.1.1.dist-info/RECORD +0 -572
  471. {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,1475 +1,1584 @@
1
- <!DOCTYPE html>
2
- <html class="writer-html5" lang="en" >
3
- <head>
4
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
5
-
6
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
7
- <title>Triangulation &mdash; SnapPy 3.1.1 documentation</title>
8
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
9
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
10
- <link rel="stylesheet" href="_static/snappy_sphinx_rtd_theme.css" type="text/css" />
11
- <link rel="shortcut icon" href="_static/SnapPy.ico"/>
12
- <!--[if lt IE 9]>
13
- <script src="_static/js/html5shiv.min.js"></script>
14
- <![endif]-->
15
-
16
- <script src="_static/jquery.js?v=5d32c60e"></script>
17
- <script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
18
- <script src="_static/documentation_options.js?v=796a81b5"></script>
19
- <script src="_static/doctools.js?v=888ff710"></script>
20
- <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
21
- <script src="_static/js/theme.js"></script>
22
- <link rel="index" title="Index" href="genindex.html" />
23
- <link rel="search" title="Search" href="search.html" />
24
- <link rel="next" title="Additional Classes" href="additional_classes.html" />
25
- <link rel="prev" title="ManifoldHP: High-precision variant" href="manifoldhp.html" />
26
- </head>
27
-
28
- <body class="wy-body-for-nav">
29
- <div class="wy-grid-for-nav">
30
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
- <div class="wy-side-scroll">
32
- <div class="wy-side-nav-search" >
33
-
34
-
35
-
36
- <a href="index.html" class="icon icon-home">
37
- SnapPy
38
- <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
- </a>
40
- <div class="version">
41
- 3.1.1
42
- </div>
43
- <div role="search">
44
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
45
- <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
46
- <input type="hidden" name="check_keywords" value="yes" />
47
- <input type="hidden" name="area" value="default" />
48
- </form>
49
- </div>
50
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
51
- <ul class="current">
52
- <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
53
- <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
54
- <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
55
- <li class="toctree-l1 current"><a class="reference internal" href="snappy.html">The snappy module and its classes</a><ul class="current">
56
- <li class="toctree-l2"><a class="reference internal" href="manifold.html">Manifold: the main class</a></li>
57
- <li class="toctree-l2"><a class="reference internal" href="manifoldhp.html">ManifoldHP: High-precision variant</a></li>
58
- <li class="toctree-l2 current"><a class="current reference internal" href="#">Triangulation</a><ul>
59
- <li class="toctree-l3"><a class="reference internal" href="#snappy.Triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation</span></code></a><ul>
60
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.DT_code"><code class="docutils literal notranslate"><span class="pre">Triangulation.DT_code()</span></code></a></li>
61
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.alexander_polynomial"><code class="docutils literal notranslate"><span class="pre">Triangulation.alexander_polynomial()</span></code></a></li>
62
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.copy"><code class="docutils literal notranslate"><span class="pre">Triangulation.copy()</span></code></a></li>
63
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover()</span></code></a></li>
64
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover_info()</span></code></a></li>
65
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.covers"><code class="docutils literal notranslate"><span class="pre">Triangulation.covers()</span></code></a></li>
66
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cusp_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cusp_info()</span></code></a></li>
67
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.dehn_fill"><code class="docutils literal notranslate"><span class="pre">Triangulation.dehn_fill()</span></code></a></li>
68
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.edge_valences"><code class="docutils literal notranslate"><span class="pre">Triangulation.edge_valences()</span></code></a></li>
69
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.exterior_to_link"><code class="docutils literal notranslate"><span class="pre">Triangulation.exterior_to_link()</span></code></a></li>
70
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.filled_triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation.filled_triangulation()</span></code></a></li>
71
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.fundamental_group"><code class="docutils literal notranslate"><span class="pre">Triangulation.fundamental_group()</span></code></a></li>
72
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations()</span></code></a></li>
73
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations_pgl"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations_pgl()</span></code></a></li>
74
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.has_finite_vertices"><code class="docutils literal notranslate"><span class="pre">Triangulation.has_finite_vertices()</span></code></a></li>
75
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homological_longitude"><code class="docutils literal notranslate"><span class="pre">Triangulation.homological_longitude()</span></code></a></li>
76
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homology"><code class="docutils literal notranslate"><span class="pre">Triangulation.homology()</span></code></a></li>
77
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.is_orientable"><code class="docutils literal notranslate"><span class="pre">Triangulation.is_orientable()</span></code></a></li>
78
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.isomorphisms_to"><code class="docutils literal notranslate"><span class="pre">Triangulation.isomorphisms_to()</span></code></a></li>
79
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.link"><code class="docutils literal notranslate"><span class="pre">Triangulation.link()</span></code></a></li>
80
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.name"><code class="docutils literal notranslate"><span class="pre">Triangulation.name()</span></code></a></li>
81
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_boundary_slopes"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_boundary_slopes()</span></code></a></li>
82
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_surfaces"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_surfaces()</span></code></a></li>
83
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_cusps"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_cusps()</span></code></a></li>
84
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_tetrahedra"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_tetrahedra()</span></code></a></li>
85
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.orientation_cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.orientation_cover()</span></code></a></li>
86
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.pickle"><code class="docutils literal notranslate"><span class="pre">Triangulation.pickle()</span></code></a></li>
87
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.plink"><code class="docutils literal notranslate"><span class="pre">Triangulation.plink()</span></code></a></li>
88
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_generalized_obstruction_classes()</span></code></a></li>
89
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_obstruction_classes()</span></code></a></li>
90
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_variety"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_variety()</span></code></a></li>
91
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.randomize"><code class="docutils literal notranslate"><span class="pre">Triangulation.randomize()</span></code></a></li>
92
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.reverse_orientation"><code class="docutils literal notranslate"><span class="pre">Triangulation.reverse_orientation()</span></code></a></li>
93
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.save"><code class="docutils literal notranslate"><span class="pre">Triangulation.save()</span></code></a></li>
94
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_name"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_name()</span></code></a></li>
95
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_peripheral_curves"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_peripheral_curves()</span></code></a></li>
96
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.simplify"><code class="docutils literal notranslate"><span class="pre">Triangulation.simplify()</span></code></a></li>
97
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.slice_obstruction_HKL"><code class="docutils literal notranslate"><span class="pre">Triangulation.slice_obstruction_HKL()</span></code></a></li>
98
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.triangulation_isosig"><code class="docutils literal notranslate"><span class="pre">Triangulation.triangulation_isosig()</span></code></a></li>
99
- <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.with_hyperbolic_structure"><code class="docutils literal notranslate"><span class="pre">Triangulation.with_hyperbolic_structure()</span></code></a></li>
100
- </ul>
101
- </li>
102
- </ul>
103
- </li>
104
- <li class="toctree-l2"><a class="reference internal" href="additional_classes.html">Additional Classes</a></li>
105
- <li class="toctree-l2"><a class="reference internal" href="censuses.html">Census manifolds</a></li>
106
- </ul>
107
- </li>
108
- <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
109
- <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
110
- <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
111
- <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
112
- <li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
113
- <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
114
- <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
115
- <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
116
- <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
117
- <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
118
- </ul>
119
-
120
- </div>
121
- </div>
122
- </nav>
123
-
124
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
125
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
126
- <a href="index.html">SnapPy</a>
127
- </nav>
128
-
129
- <div class="wy-nav-content">
130
- <div class="rst-content">
131
- <div role="navigation" aria-label="Page navigation">
132
- <ul class="wy-breadcrumbs">
133
- <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
134
- <li class="breadcrumb-item"><a href="snappy.html">The snappy module and its classes</a></li>
135
- <li class="breadcrumb-item active">Triangulation</li>
136
- <li class="wy-breadcrumbs-aside">
137
- </li>
138
- </ul>
139
- <hr/>
140
- </div>
141
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
142
- <div itemprop="articleBody">
143
-
144
- <section id="triangulation">
145
- <h1>Triangulation<a class="headerlink" href="#triangulation" title="Link to this heading"></a></h1>
146
- <p>The main snappy class, namely Manifold, is derived from more
147
- basic class below.</p>
148
- <dl class="py class">
149
- <dt class="sig sig-object py" id="snappy.Triangulation">
150
- <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.</span></span><span class="sig-name descname"><span class="pre">Triangulation</span></span><a class="headerlink" href="#snappy.Triangulation" title="Link to this definition"></a></dt>
151
- <dd><p>A Triangulation object represents a compact 3-manifold with torus
152
- boundary components, given as an ideal triangulation of the
153
- manifold’s interior. A Dehn-filling can be specified for each
154
- boundary component, allowing the description of closed 3-manifolds
155
- and some orbifolds. For non-orientable 3-manifolds, the boundary
156
- components can also be Klein bottles. Two Triangulations are equal
157
- (‘==’) if they represent combinatorially isomorphic
158
- triangulations. A Triangulation does <em>not</em> have any geometric
159
- structure, and usually one works with the subclass Manifold which
160
- adds this. Here’s a quick example:</p>
161
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;9_42&#39;</span><span class="p">)</span>
162
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
163
- <span class="go">5</span>
164
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
165
- <span class="go">True</span>
166
- </pre></div>
167
- </div>
168
- <p>A Triangulation can be specified in a number of ways, e.g.</p>
169
- <ul class="simple">
170
- <li><p>Triangulation(‘9_42’) : The complement of the knot 9_42 in S^3.</p></li>
171
- <li><p>Triangulation(‘m125(1,2)(4,5)’) : The SnapPea census manifold m125
172
- where the first cusp has Dehn filling (1,2) and the second cusp has
173
- filling (4,5).</p></li>
174
- <li><p>Triangulation() : Opens a link editor window where can you
175
- specify a link complement.</p></li>
176
- </ul>
177
- <p>In general, the specification can be from among the below, with
178
- information on Dehn fillings added.</p>
179
- <ul>
180
- <li><p>SnapPea cusped census manifolds: e.g. ‘m123’, ‘s123’, ‘v123’.</p></li>
181
- <li><dl class="simple">
182
- <dt>Link complements:</dt><dd><ul class="simple">
183
- <li><p>Rolfsen’s table: e.g. ‘4_1’, ‘04_1’, ‘5^2_6’, ‘6_4^7’, ‘L20935’, ‘l104001’.</p></li>
184
- <li><p>Knots and links up to 14 crossings from tabulations by Hoste
185
- and Thistlethwaite: e.g. ‘K12a456’ or ‘L13n579’.</p></li>
186
- <li><p>Hoste-Thistlethwaite Knotscape table: e.g. ‘11a17’ or 12n345’</p></li>
187
- <li><p>Dowker-Thistlethwaite code: e.g. ‘DT:[(6,8,2,4)]’, ‘DT:dadbcda’</p></li>
188
- </ul>
189
- </dd>
190
- </dl>
191
- </li>
192
- <li><p>Once-punctured torus bundles: e.g. ‘b++LLR’, ‘b+-llR’, ‘bo-RRL’, ‘bn+LRLR’</p></li>
193
- <li><p>Fibered manifold associated to a braid: ‘Braid:[1,2,-3,4]’</p>
194
- <p>Here, the braid is thought of as a mapping class of the
195
- punctured disc, and this manifold is the corresponding
196
- mapping torus. If you want the braid closure, do (1,0) filling
197
- of the last cusp.</p>
198
- </li>
199
- <li><p>From mapping class group data using Twister:</p>
200
- <p>‘Bundle(S_{1,1}, [a0, B1])’ or ‘Splitting(S_{1,0}, [b1, A0], [a0,B1])’</p>
201
- <p>See the help for the ‘twister’ module for more.</p>
202
- </li>
203
- <li><p>A SnapPea triangulation or link projection file: ‘filename’</p>
204
- <p>The file will be loaded if found in the current directory or the
205
- path given by the shell variable SNAPPEA_MANIFOLD_DIRECTORY.</p>
206
- </li>
207
- <li><p>A Regina-style isomorphism signature, such as ‘dLQbcccdxwb’.</p></li>
208
- <li><p>A string containing the contents of a SnapPea triangulation or link
209
- projection file.</p></li>
210
- </ul>
211
- <dl class="py method">
212
- <dt class="sig sig-object py" id="snappy.Triangulation.DT_code">
213
- <span class="sig-name descname"><span class="pre">DT_code</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">alpha</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">flips</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.DT_code" title="Link to this definition"></a></dt>
214
- <dd><p>Return the Dowker-Thistlethwaite code of this link complement,
215
- if it is a link complement. The DT code is intended to be an
216
- immutable attribute, for use with knot and link exteriors
217
- only, which is set only when the manifold was created.</p>
218
- <p>Here is the Whitehead link:</p>
219
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L5a1&#39;</span><span class="p">)</span>
220
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">()</span>
221
- <span class="go">[(6, 8), (2, 10, 4)]</span>
222
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
223
- <span class="go">&#39;ebbccdaeb&#39;</span>
224
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
225
- <span class="go">&#39;ebbccdaeb.01110&#39;</span>
226
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
227
- <span class="go">([(6, 8), (2, 10, 4)], [0, 1, 1, 1, 0])</span>
228
- </pre></div>
229
- </div>
230
- </dd></dl>
231
-
232
- <dl class="py method">
233
- <dt class="sig sig-object py" id="snappy.Triangulation.alexander_polynomial">
234
- <span class="sig-name descname"><span class="pre">alexander_polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.alexander_polynomial" title="Link to this definition"></a></dt>
235
- <dd><p>Computes the multivariable Alexander polynomial of the manifold:</p>
236
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K12n123&#39;</span><span class="p">)</span>
237
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
238
- <span class="mi">2</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">6</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">5</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">4</span> <span class="o">-</span> <span class="mi">45</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">3</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span>
239
-
240
- <span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v1539(5,1)&#39;</span><span class="p">)</span>
241
- <span class="n">sage</span><span class="p">:</span> <span class="n">N</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
242
- <span class="n">a</span><span class="o">^</span><span class="mi">2</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span><span class="o">^</span><span class="mi">2</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
243
- </pre></div>
244
- </div>
245
- <p>Any provided keyword arguments are passed to fundamental_group and
246
- so affect the group presentation used in the computation.</p>
247
- </dd></dl>
248
-
249
- <dl class="py method">
250
- <dt class="sig sig-object py" id="snappy.Triangulation.copy">
251
- <span class="sig-name descname"><span class="pre">copy</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.copy" title="Link to this definition"></a></dt>
252
- <dd><p>Returns a copy of the triangulation.</p>
253
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
254
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
255
- </pre></div>
256
- </div>
257
- </dd></dl>
258
-
259
- <dl class="py method">
260
- <dt class="sig sig-object py" id="snappy.Triangulation.cover">
261
- <span class="sig-name descname"><span class="pre">cover</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">permutation_rep</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cover" title="Link to this definition"></a></dt>
262
- <dd><p>Returns a Triangulation representing the finite cover
263
- specified by a transitive permutation representation. The
264
- representation is specified by a list of permutations, one for
265
- each generator of the simplified presentation of the
266
- fundamental group. Each permutation is specified as a list P
267
- such that set(P) == set(range(d)) where d is the degree of the
268
- cover.</p>
269
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
270
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cover</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">]])</span>
271
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
272
- <span class="go">Z + Z + Z</span>
273
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span>
274
- <span class="go">&#39;irregular&#39;</span>
275
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;base&#39;</span><span class="p">]</span>
276
- <span class="go">&#39;m004&#39;</span>
277
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;degree&#39;</span><span class="p">]</span>
278
- <span class="go">5</span>
279
- </pre></div>
280
- </div>
281
- <p>Within Sage the permutations can also be of type
282
- PermutationGroupElement, in which case they act on the set
283
- range(1, d + 1). Or, you can specify a GAP or Magma subgroup
284
- of the fundamental group. For examples, see the docstring for
285
- Manifold.cover</p>
286
- </dd></dl>
287
-
288
- <dl class="py method">
289
- <dt class="sig sig-object py" id="snappy.Triangulation.cover_info">
290
- <span class="sig-name descname"><span class="pre">cover_info</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cover_info" title="Link to this definition"></a></dt>
291
- <dd><p>If this is a manifold or triangulation which was constructed as
292
- a covering space, return a dictionary describing the cover. Otherwise
293
- return 0. The dictionary keys are ‘base’, ‘type’ and ‘degree’.</p>
294
- </dd></dl>
295
-
296
- <dl class="py method">
297
- <dt class="sig sig-object py" id="snappy.Triangulation.covers">
298
- <span class="sig-name descname"><span class="pre">covers</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">degree</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cover_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.covers" title="Link to this definition"></a></dt>
299
- <dd><p>M.covers(degree, method=None, cover_type=’all)</p>
300
- <p>Returns a list of Triangulations corresponding to all of the
301
- finite covers of the given degree. The default method is
302
- ‘low_index’ for general covers and ‘snappea’ for cyclic
303
- covers. The former uses Sim’s algorithm while the latter
304
- uses the original Snappea algorithm.</p>
305
- <p>WARNING: If the degree is large this might take a very, very,
306
- very long time.</p>
307
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m003&#39;</span><span class="p">)</span>
308
- <span class="gp">&gt;&gt;&gt; </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
309
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">)</span>
310
- <span class="go">[Z/3 + Z/15 + Z, Z/5 + Z + Z]</span>
311
- </pre></div>
312
- </div>
313
- <p>It is faster to look just at cyclic covers.</p>
314
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">cover_type</span><span class="o">=</span><span class="s1">&#39;cyclic&#39;</span><span class="p">)</span>
315
- <span class="gp">&gt;&gt;&gt; </span><span class="p">[(</span><span class="n">N</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">())</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">]</span>
316
- <span class="go">[(m003~cyc~0(0,0), Z/3 + Z/15 + Z)]</span>
317
- </pre></div>
318
- </div>
319
- <p>Here we check that we get the same number of covers with the
320
- ‘snappea’ and ‘low_index’ methods.</p>
321
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
322
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">))</span>
323
- <span class="go">19</span>
324
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;snappea&#39;</span><span class="p">))</span>
325
- <span class="go">19</span>
326
- </pre></div>
327
- </div>
328
- <p>If you are using Sage, you can use GAP to find the subgroups,
329
- which is often much faster, by specifying the optional
330
- argument method = ‘gap’ If you have Magma installed, you can
331
- used it to do the heavy lifting by specifying method=’magma’.</p>
332
- </dd></dl>
333
-
334
- <dl class="py method">
335
- <dt class="sig sig-object py" id="snappy.Triangulation.cusp_info">
336
- <span class="sig-name descname"><span class="pre">cusp_info</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_spec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cusp_info" title="Link to this definition"></a></dt>
337
- <dd><p>Returns an info object containing information about the given
338
- cusp. Usage:</p>
339
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227(0,0)(1,2)(3,2)&#39;</span><span class="p">)</span>
340
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
341
- <span class="go">Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0)</span>
342
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
343
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="o">.</span><span class="n">is_complete</span>
344
- <span class="go">False</span>
345
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
346
- <span class="go">[&#39;filling&#39;, &#39;index&#39;, &#39;is_complete&#39;, &#39;topology&#39;]</span>
347
- </pre></div>
348
- </div>
349
- <p>You can get information about multiple cusps at once:</p>
350
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">()</span>
351
- <span class="go">[Cusp 0 : torus cusp, not filled,</span>
352
- <span class="go"> Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0),</span>
353
- <span class="go"> Cusp 2 : torus cusp with Dehn filling coefficients (M, L) = (3.0, 2.0)]</span>
354
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="s1">&#39;is_complete&#39;</span><span class="p">)</span>
355
- <span class="go">[True, False, False]</span>
356
- </pre></div>
357
- </div>
358
- </dd></dl>
359
-
360
- <dl class="py method">
361
- <dt class="sig sig-object py" id="snappy.Triangulation.dehn_fill">
362
- <span class="sig-name descname"><span class="pre">dehn_fill</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filling_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.dehn_fill" title="Link to this definition"></a></dt>
363
- <dd><p>Set the Dehn filling coefficients of the cusps. This can be
364
- specified in the following ways, where the cusps are numbered
365
- by 0,1,…,(num_cusps - 1).</p>
366
- <ul>
367
- <li><p>Fill cusp 2:</p>
368
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;8^4_1&#39;</span><span class="p">)</span>
369
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
370
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
371
- <span class="go">8^4_1(0,0)(0,0)(2,3)(0,0)</span>
372
- </pre></div>
373
- </div>
374
- </li>
375
- <li><p>Fill the last cusp:</p>
376
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
377
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
378
- <span class="go">8^4_1(0,0)(0,0)(2,3)(1,5)</span>
379
- </pre></div>
380
- </div>
381
- </li>
382
- <li><p>Fill the first two cusps:</p>
383
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">[</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">4</span><span class="p">)</span> <span class="p">])</span>
384
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
385
- <span class="go">8^4_1(3,0)(1,-4)(2,3)(1,5)</span>
386
- </pre></div>
387
- </div>
388
- </li>
389
- <li><p>When there is only one cusp, there’s a shortcut</p>
390
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
391
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="p">)</span>
392
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span>
393
- <span class="go">m004(-3,4)</span>
394
- </pre></div>
395
- </div>
396
- </li>
397
- </ul>
398
- <p>Does not return a new Triangulation.</p>
399
- </dd></dl>
400
-
401
- <dl class="py method">
402
- <dt class="sig sig-object py" id="snappy.Triangulation.edge_valences">
403
- <span class="sig-name descname"><span class="pre">edge_valences</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.edge_valences" title="Link to this definition"></a></dt>
404
- <dd><p>Returns a dictionary whose keys are the valences of the edges
405
- in the triangulation, and the value associated to a key is the
406
- number of edges of that valence.</p>
407
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227&#39;</span><span class="p">)</span>
408
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">edge_valences</span><span class="p">()</span>
409
- <span class="go">{10: 1, 4: 1, 5: 2, 6: 3}</span>
410
- </pre></div>
411
- </div>
412
- </dd></dl>
413
-
414
- <dl class="py method">
415
- <dt class="sig sig-object py" id="snappy.Triangulation.exterior_to_link">
416
- <span class="sig-name descname"><span class="pre">exterior_to_link</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_input</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_answer</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">careful_perturbation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify_link</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pachner_search_tries</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.exterior_to_link" title="Link to this definition"></a></dt>
417
- <dd><p>For a triangulation of the exterior of a link in the 3-sphere,
418
- return a planar diagram for the link. The peripheral curves whose
419
- Dehn filling is the 3-sphere are <strong>part of the input</strong>, specified
420
- by either:</p>
421
- <ol class="loweralpha simple">
422
- <li><p>If no cusp is filled, then they are the meridians of the
423
- current peripheral curves.</p></li>
424
- <li><p>If every cusp is filled, then they are the current Dehn filling
425
- curves.</p></li>
426
- </ol>
427
- <p>In particular, it does <strong>not</strong> try to determine whether there exist
428
- fillings on the input which give the 3-sphere. Example usage:</p>
429
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m016&#39;</span><span class="p">)</span>
430
- <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">exterior_to_link</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
431
- <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
432
- <span class="go">True</span>
433
- </pre></div>
434
- </div>
435
- <p>The algorithm used is that of <a class="reference external" href="https://arxiv.org/abs/2112.03251">Dunfield, Obeidin, and Rudd</a>. The optional arguments are
436
- as follows.</p>
437
- <ul class="simple">
438
- <li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code>, prints progress updates as the algorithm
439
- goes along.</p></li>
440
- <li><p><code class="docutils literal notranslate"><span class="pre">check_input</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), first checks that the
441
- fundamental group of the specified Dehn filling is trivial. As
442
- it doesn’t try too hard to simplify the group presentation, it
443
- can happen that this check fails but the algorithm still finds a
444
- diagram if you pass <code class="docutils literal notranslate"><span class="pre">check_input=False</span></code>.</p></li>
445
- <li><p><code class="docutils literal notranslate"><span class="pre">check_answer</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), take the exterior of
446
- the final link diagram and use <code class="docutils literal notranslate"><span class="pre">Manifold.is_isometric_to</span></code> to
447
- confirm that it is homeomorphic to the input. If the input is
448
- not hyperbolic or is very large, this check may fail even though
449
- the diagram is correct.</p></li>
450
- <li><p><code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code>: The rational coordinates of the
451
- intermediate PL links are periodically rounded to control the
452
- size of their denominators. When <code class="docutils literal notranslate"><span class="pre">careful_perturbation=True</span></code>
453
- (the default), computations are performed to ensure this
454
- rounding does not change the isotopy class of the link.</p></li>
455
- <li><p><code class="docutils literal notranslate"><span class="pre">simplify_link</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), uses
456
- <code class="docutils literal notranslate"><span class="pre">Link.simplify('global')</span></code> to minimize the size of the final
457
- diagram; otherwise, it just does <code class="docutils literal notranslate"><span class="pre">basic</span></code> simplifications, which
458
- can be much faster if the initial link is complicated.</p></li>
459
- <li><p><code class="docutils literal notranslate"><span class="pre">pachner_search_tries</span></code>: Controls how hard to search for a
460
- suitable sequence of Pachner moves from the filled input
461
- triangulation to a standard triangulation of the 3-sphere.</p></li>
462
- <li><p><code class="docutils literal notranslate"><span class="pre">seed</span></code>: The algorithm involves many random choices, and hence
463
- each run typically produces a different diagram of the
464
- underlying link. If you need the same output each time, you can
465
- specify a fixed seed for the various pseudo-random number
466
- generators.</p></li>
467
- </ul>
468
- <p>Note on rigor: Provided at least one of <code class="docutils literal notranslate"><span class="pre">check_answer</span></code> and
469
- <code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, the exterior of the output
470
- link is guaranteed to match the input (including the choice of
471
- meridians).</p>
472
- <p><strong>Warning:</strong> The order of the link components and the cusps of the
473
- input manifold is only guaranteed to match when
474
- <code class="docutils literal notranslate"><span class="pre">check_answer=True</span></code>. Even then, the implicit orientation along
475
- each component of the link may not be preserved.</p>
476
- </dd></dl>
477
-
478
- <dl class="py method">
479
- <dt class="sig sig-object py" id="snappy.Triangulation.filled_triangulation">
480
- <span class="sig-name descname"><span class="pre">filled_triangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusps_to_fill</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.filled_triangulation" title="Link to this definition"></a></dt>
481
- <dd><p>Return a new manifold where the specified cusps have been
482
- permanently filled in. Examples:</p>
483
- <p>Filling all the cusps:</p>
484
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125(1,2)(3,4)&#39;</span><span class="p">)</span>
485
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
486
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
487
- <span class="go">0</span>
488
- </pre></div>
489
- </div>
490
- <p>Filling cusps 0 and 2 :</p>
491
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227(1,2)(3,4)(5,6)&#39;</span><span class="p">)</span>
492
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
493
- <span class="go">v3227_filled(3,4)</span>
494
- </pre></div>
495
- </div>
496
- </dd></dl>
497
-
498
- <dl class="py method">
499
- <dt class="sig sig-object py" id="snappy.Triangulation.fundamental_group">
500
- <span class="sig-name descname"><span class="pre">fundamental_group</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">simplify_presentation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fillings_may_affect_generators</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">minimize_number_of_generators</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">try_hard_to_shorten_relators</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.fundamental_group" title="Link to this definition"></a></dt>
501
- <dd><p>Returns a FundamentalGroup object representing the fundamental
502
- group of the manifold. If integer Dehn surgery parameters
503
- have been set, then the corresponding peripheral elements are
504
- killed.</p>
505
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
506
- <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">()</span>
507
- <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span>
508
- <span class="go">Generators:</span>
509
- <span class="go"> a,b</span>
510
- <span class="go">Relators:</span>
511
- <span class="go"> aaabABBAb</span>
512
- <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span><span class="o">.</span><span class="n">peripheral_curves</span><span class="p">()</span>
513
- <span class="go">[(&#39;ab&#39;, &#39;aBAbABab&#39;)]</span>
514
- </pre></div>
515
- </div>
516
- <p>There are four optional arguments all of which default to True:</p>
517
- <ul class="simple">
518
- <li><p>simplify_presentation</p></li>
519
- <li><p>fillings_may_affect_generators</p></li>
520
- <li><p>minimize_number_of_generators</p></li>
521
- <li><p>try_hard_to_shorten_relators</p></li>
522
- </ul>
523
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
524
- <span class="go">Generators:</span>
525
- <span class="go"> a,b,c</span>
526
- <span class="go">Relators:</span>
527
- <span class="go"> CbAcB</span>
528
- <span class="go"> BacA</span>
529
- </pre></div>
530
- </div>
531
- </dd></dl>
532
-
533
- <dl class="py method">
534
- <dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations">
535
- <span class="sig-name descname"><span class="pre">gluing_equations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">form</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'log'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations" title="Link to this definition"></a></dt>
536
- <dd><p>In the default mode, this function returns a matrix with rows
537
- of the form</p>
538
- <blockquote>
539
- <div><p>a b c d e f …</p>
540
- </div></blockquote>
541
- <p>which means</p>
542
- <blockquote>
543
- <div><p>a*log(z0) + b*log(1/(1-z0)) + c*log((z0-1)/z0) + d*log(z1) +… = 2 pi i</p>
544
- </div></blockquote>
545
- <p>for an edge equation, and (same) = 0 for a cusp equation.
546
- Here, the cusp equations come at the bottom of the matrix, and
547
- are listed in the form: meridian of cusp 0, longitude of cusp
548
- 0, meridian of cusp 1, longitude of cusp 1,…</p>
549
- <p>In terms of the tetrahedra, a is the invariant of the edge
550
- (2,3), b the invariant of the edge (0,2) and c is the
551
- invariant of the edge (1,2). See kernel_code/edge_classes.c
552
- for a detailed account of the convention used.</p>
553
- <p>If the optional argument form=’rect’ is given, then this
554
- function returns a list of tuples of the form:</p>
555
- <blockquote>
556
- <div><p>( [a0, a1,..,a_n], [b_0, b_1,…,b_n], c)</p>
557
- </div></blockquote>
558
- <p>where this corresponds to the equation</p>
559
- <blockquote>
560
- <div><p>z0^a0 (1 - z0)^b0 z1^a1(1 - z1)^b1 = c</p>
561
- </div></blockquote>
562
- <p>where c = 1 or -1.</p>
563
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004(2,3)&#39;</span><span class="p">)</span>
564
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">()</span>
565
- <span class="go">[ 2 1 0 1 0 2]</span>
566
- <span class="go">[ 0 1 2 1 2 0]</span>
567
- <span class="go">[ 2 0 0 0 -8 6]</span>
568
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">(</span><span class="n">form</span><span class="o">=</span><span class="s1">&#39;rect&#39;</span><span class="p">)</span>
569
- <span class="go">[([2, -1], [-1, 2], 1), ([-2, 1], [1, -2], 1), ([2, -6], [0, 14], 1)]</span>
570
- </pre></div>
571
- </div>
572
- </dd></dl>
573
-
574
- <dl class="py method">
575
- <dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations_pgl">
576
- <span class="sig-name descname"><span class="pre">gluing_equations_pgl</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">equation_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations_pgl" title="Link to this definition"></a></dt>
577
- <dd><p>M.gluing_equations_pgl(N = 2, equation_type=’all’)</p>
578
- <p>Returns a NeumannZagierTypeEquations object that contains a matrix
579
- encoding the gluing equations for boundary-parabolic PGL(N,C)
580
- representations together with explanations of the meaning
581
- of the rows and the columns of the matrix.</p>
582
- <p>This method generalizes gluing_equations() to PGL(N,C)-representations
583
- as described in
584
- Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
585
- “Gluing Equations for PGL(n,C)-Representations of 3-Manifolds”
586
- (<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>).</p>
587
- <p>The result of the traditional gluing_equations() can be obtained from
588
- the general method by:</p>
589
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
590
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span><span class="o">.</span><span class="n">matrix</span>
591
- <span class="go">[ 2 1 0 1 0 2]</span>
592
- <span class="go">[ 0 1 2 1 2 0]</span>
593
- <span class="go">[ 1 0 0 0 -1 0]</span>
594
- <span class="go">[ 0 0 0 0 -2 2]</span>
595
- </pre></div>
596
- </div>
597
- <p>But besides the matrix, the method also returns explanations of
598
- the columns and rows:</p>
599
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
600
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span>
601
- <span class="go">NeumannZagierTypeEquations(</span>
602
- <span class="go"> [ 2 1 0 1 0 2]</span>
603
- <span class="go"> [ 0 1 2 1 2 0]</span>
604
- <span class="go"> [ 1 0 0 0 -1 0]</span>
605
- <span class="go"> [ 0 0 0 0 -2 2],</span>
606
- <span class="go"> explain_columns = [&#39;z_0000_0&#39;, &#39;zp_0000_0&#39;, &#39;zpp_0000_0&#39;, &#39;z_0000_1&#39;, &#39;zp_0000_1&#39;, &#39;zpp_0000_1&#39;],</span>
607
- <span class="go"> explain_rows = [&#39;edge_0_0&#39;, &#39;edge_0_1&#39;, &#39;meridian_0_0&#39;, &#39;longitude_0_0&#39;])</span>
608
- </pre></div>
609
- </div>
610
- <p>The first row of the matrix means that the edge equation for
611
- edge 0 is</p>
612
- <blockquote>
613
- <div><p>z_0000_0 ^ 2 * zp_0000_0 * z_0000_1 * zpp_0000_1 ^ 2 = 1.</p>
614
- </div></blockquote>
615
- <p>Similarly, the next row encodes the edge equation for the other edge
616
- and the next two rows encode peripheral equations.</p>
617
- <p>Following the SnapPy convention, a z denotes the cross ratio z at the
618
- edge (0,1), a zp the cross ratio z’ at the edge (0,2) and a zpp the cross
619
- ratio z” at the edge (1,2). The entire symbol z_xxxx_y then
620
- denotes the cross ratio belonging to the subsimplex at integral
621
- point xxxx (always 0000 for N = 2) of the simplex y. Note: the
622
- SnapPy convention is different from the paper
623
- mentioned above, e.g., compare
624
- kernel_code/edge_classes.c with Figure 3. We follow the SnapPy
625
- convention here so that all computations done in SnapPy are
626
- consistent.</p>
627
- <p>The explanations of the rows and columns can be obtained explicitly by:</p>
628
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">equation_type</span> <span class="o">=</span> <span class="s1">&#39;peripheral&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">explain_rows</span>
629
- <span class="go">[&#39;meridian_0_0&#39;, &#39;meridian_1_0&#39;, &#39;longitude_0_0&#39;, &#39;longitude_1_0&#39;]</span>
630
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">explain_columns</span>
631
- <span class="go">[&#39;z_0000_0&#39;, &#39;zp_0000_0&#39;, &#39;zpp_0000_0&#39;, &#39;z_0000_1&#39;, &#39;zp_0000_1&#39;, &#39;zpp_0000_1&#39;]</span>
632
- </pre></div>
633
- </div>
634
- <p>A subset of all gluing equations can be obtained by setting the
635
- equation_type:</p>
636
- <ul class="simple">
637
- <li><p>all gluing equations: ‘all’</p></li>
638
- <li><p>non-peripheral equations: ‘non_peripheral’</p>
639
- <ul>
640
- <li><p>edge gluing equations: ‘edge’</p></li>
641
- <li><p>face gluing equations: ‘face’</p></li>
642
- <li><p>internal gluing equations: ‘internal’</p></li>
643
- </ul>
644
- </li>
645
- <li><p>cusp gluing equations: ‘peripheral’</p>
646
- <ul>
647
- <li><p>cusp gluing equations for meridians: ‘meridian’</p></li>
648
- <li><p>cusp gluing equations for longitudes: ‘longitude’</p></li>
649
- </ul>
650
- </li>
651
- </ul>
652
- </dd></dl>
653
-
654
- <dl class="py method">
655
- <dt class="sig sig-object py" id="snappy.Triangulation.has_finite_vertices">
656
- <span class="sig-name descname"><span class="pre">has_finite_vertices</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.has_finite_vertices" title="Link to this definition"></a></dt>
657
- <dd><p>Returns True if and only if the triangulation has finite (non-ideal)
658
- vertices.</p>
659
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
660
- <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
661
- <span class="go">False</span>
662
- <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">))</span>
663
- <span class="gp">&gt;&gt;&gt; </span><span class="n">S</span> <span class="o">=</span> <span class="n">T</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
664
- <span class="gp">&gt;&gt;&gt; </span><span class="n">S</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
665
- <span class="go">True</span>
666
- </pre></div>
667
- </div>
668
- <p>When trying to find a hyperbolic structure, SnapPea will eliminate
669
- finite vertices:</p>
670
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">S</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
671
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
672
- <span class="go">False</span>
673
- </pre></div>
674
- </div>
675
- </dd></dl>
676
-
677
- <dl class="py method">
678
- <dt class="sig sig-object py" id="snappy.Triangulation.homological_longitude">
679
- <span class="sig-name descname"><span class="pre">homological_longitude</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.homological_longitude" title="Link to this definition"></a></dt>
680
- <dd><p>Returns the peripheral curve in the given cusp, if any, which is
681
- homologically trivial (with rational coefficients) in the manifold:</p>
682
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
683
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
684
- <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
685
- </pre></div>
686
- </div>
687
- <p>If no cusp is specified, the default is the first unfilled cusp;
688
- if all cusps are filled, the default is the first cusp:</p>
689
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L5a1(3,4)(0,0)&#39;</span><span class="p">)</span>
690
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
691
- <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
692
- </pre></div>
693
- </div>
694
- <p>The components of the next link have nontrivial linking number
695
- so there is no such curve:</p>
696
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">W</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L7a2&#39;</span><span class="p">)</span>
697
- <span class="n">sage</span><span class="p">:</span> <span class="n">W</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">(</span><span class="n">cusp</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span>
698
- <span class="kc">True</span>
699
- </pre></div>
700
- </div>
701
- <p>If every curve in the given cusp is trivial in the rational homology of
702
- the manifold, an exception is raised:</p>
703
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1(1,0)&#39;</span><span class="p">)</span>
704
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
705
- <span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
706
- <span class="o">...</span>
707
- <span class="ne">ValueError</span><span class="p">:</span> <span class="n">Every</span> <span class="n">curve</span> <span class="n">on</span> <span class="n">cusp</span> <span class="ow">is</span> <span class="n">homologically</span> <span class="n">trivial</span>
708
- </pre></div>
709
- </div>
710
- </dd></dl>
711
-
712
- <dl class="py method">
713
- <dt class="sig sig-object py" id="snappy.Triangulation.homology">
714
- <span class="sig-name descname"><span class="pre">homology</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.homology" title="Link to this definition"></a></dt>
715
- <dd><p>Returns an AbelianGroup representing the first integral
716
- homology group of the underlying (Dehn filled) manifold.</p>
717
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m003&#39;</span><span class="p">)</span>
718
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
719
- <span class="go">Z/5 + Z</span>
720
- </pre></div>
721
- </div>
722
- </dd></dl>
723
-
724
- <dl class="py method">
725
- <dt class="sig sig-object py" id="snappy.Triangulation.is_orientable">
726
- <span class="sig-name descname"><span class="pre">is_orientable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.is_orientable" title="Link to this definition"></a></dt>
727
- <dd><p>Return whether the underlying 3-manifold is orientable.</p>
728
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;x124&#39;</span><span class="p">)</span>
729
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
730
- <span class="go">False</span>
731
- </pre></div>
732
- </div>
733
- </dd></dl>
734
-
735
- <dl class="py method">
736
- <dt class="sig sig-object py" id="snappy.Triangulation.isomorphisms_to">
737
- <span class="sig-name descname"><span class="pre">isomorphisms_to</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">Triangulation</span> <span class="pre">other</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.isomorphisms_to" title="Link to this definition"></a></dt>
738
- <dd><p>Returns a complete list of combinatorial isomorphisms between
739
- the two triangulations:</p>
740
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;5^2_1&#39;</span><span class="p">)</span>
741
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;5^2_1&#39;</span><span class="p">)</span>
742
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">set_peripheral_curves</span><span class="p">([[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">]],[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]]])</span>
743
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isoms</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
744
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isoms</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span>
745
- <span class="go">0 -&gt; 1 1 -&gt; 0</span>
746
- <span class="go">[ 1 0] [-1 1]</span>
747
- <span class="go">[-1 1] [-3 2]</span>
748
- <span class="go">Does not extend to link</span>
749
- </pre></div>
750
- </div>
751
- <p>Each transformation between cusps is given by a matrix which
752
- acts on the left. That is, the two <em>columns</em> of the matrix
753
- give the image of the meridian and longitude respectively. In
754
- the above example, the meridian of cusp 0 is sent to the
755
- meridian of cusp 1.</p>
756
- </dd></dl>
757
-
758
- <dl class="py method">
759
- <dt class="sig sig-object py" id="snappy.Triangulation.link">
760
- <span class="sig-name descname"><span class="pre">link</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.link" title="Link to this definition"></a></dt>
761
- <dd><p>If the manifold is stored as a link complement in your
762
- current session then it returns the number of components
763
- and crossing of the link. To view and interact with the
764
- link see <a class="reference internal" href="spherogram.html#spherogram.Link.view" title="spherogram.Link.view"><code class="xref py py-meth docutils literal notranslate"><span class="pre">spherogram.Link.view()</span></code></a>
765
- and <a class="reference internal" href="manifold.html#snappy.Manifold.plink" title="snappy.Manifold.plink"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Manifold.plink()</span></code></a>.</p>
766
- </dd></dl>
767
-
768
- <dl class="py method">
769
- <dt class="sig sig-object py" id="snappy.Triangulation.name">
770
- <span class="sig-name descname"><span class="pre">name</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.name" title="Link to this definition"></a></dt>
771
- <dd><p>Return the name of the triangulation.</p>
772
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
773
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">name</span><span class="p">()</span>
774
- <span class="go">&#39;4_1&#39;</span>
775
- </pre></div>
776
- </div>
777
- </dd></dl>
778
-
779
- <dl class="py method">
780
- <dt class="sig sig-object py" id="snappy.Triangulation.normal_boundary_slopes">
781
- <span class="sig-name descname"><span class="pre">normal_boundary_slopes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">subset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_boundary_slopes" title="Link to this definition"></a></dt>
782
- <dd><p>For a one-cusped manifold, returns all the nonempty boundary slopes of
783
- spun normal surfaces. Provided the triangulation supports a
784
- genuine hyperbolic structure, then by <a class="reference external" href="http://arxiv.org/abs/math/0503027">Thurston and Walsh</a> any strict boundary slope
785
- (the boundary of an essential surface which is not a fiber or
786
- semifiber) must be listed here.</p>
787
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K3_1&#39;</span><span class="p">)</span>
788
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
789
- <span class="go">[(16, -1), (20, -1), (37, -2)]</span>
790
- </pre></div>
791
- </div>
792
- <p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'kabaya'</span></code>, then it only
793
- returns boundary slopes associated to vertex surfaces with a quad
794
- in every tetrahedron; by Theorem 1.1. of <a class="reference external" href="http://arxiv.org/abs/1102.4588">[DG]</a> these are all strict boundary
795
- slopes.</p>
796
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m113&#39;</span><span class="p">)</span>
797
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
798
- <span class="go">[(1, 1), (1, 2), (2, -1), (2, 3), (8, 11)]</span>
799
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">&#39;kabaya&#39;</span><span class="p">)</span>
800
- <span class="go">[(8, 11)]</span>
801
- </pre></div>
802
- </div>
803
- <p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'brasile'</span></code> then it returns
804
- only the boundary slopes that are associated to vertex surfaces
805
- giving isolated rays in the space of embedded normal surfaces.</p>
806
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">&#39;brasile&#39;</span><span class="p">)</span>
807
- <span class="go">[(1, 2), (8, 11)]</span>
808
- </pre></div>
809
- </div>
810
- </dd></dl>
811
-
812
- <dl class="py method">
813
- <dt class="sig sig-object py" id="snappy.Triangulation.normal_surfaces">
814
- <span class="sig-name descname"><span class="pre">normal_surfaces</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_surfaces" title="Link to this definition"></a></dt>
815
- <dd><p>All the vertex spun-normal surfaces in the current triangulation.</p>
816
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
817
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">normal_surfaces</span><span class="p">()</span>
818
- <span class="go">[&lt;Surface 0: [0, 0] [1, 2] (4, 1)&gt;,</span>
819
- <span class="go"> &lt;Surface 1: [0, 1] [1, 2] (4, -1)&gt;,</span>
820
- <span class="go"> &lt;Surface 2: [1, 2] [2, 1] (-4, -1)&gt;,</span>
821
- <span class="go"> &lt;Surface 3: [2, 2] [2, 1] (-4, 1)&gt;]</span>
822
- </pre></div>
823
- </div>
824
- </dd></dl>
825
-
826
- <dl class="py method">
827
- <dt class="sig sig-object py" id="snappy.Triangulation.num_cusps">
828
- <span class="sig-name descname"><span class="pre">num_cusps</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.num_cusps" title="Link to this definition"></a></dt>
829
- <dd><p>Return the total number of cusps. By giving the optional argument
830
- ‘orientable’ or ‘nonorientable’ it will only count cusps of that type.</p>
831
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
832
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
833
- <span class="go">2</span>
834
- </pre></div>
835
- </div>
836
- </dd></dl>
837
-
838
- <dl class="py method">
839
- <dt class="sig sig-object py" id="snappy.Triangulation.num_tetrahedra">
840
- <span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.num_tetrahedra" title="Link to this definition"></a></dt>
841
- <dd><p>Return the number of tetrahedra in the triangulation.</p>
842
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
843
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
844
- <span class="go">2</span>
845
- </pre></div>
846
- </div>
847
- </dd></dl>
848
-
849
- <dl class="py method">
850
- <dt class="sig sig-object py" id="snappy.Triangulation.orientation_cover">
851
- <span class="sig-name descname"><span class="pre">orientation_cover</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.orientation_cover" title="Link to this definition"></a></dt>
852
- <dd><p>For a non-orientable Triangulation, returns the 2-fold cover which
853
- is orientable.</p>
854
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">X</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;x123&#39;</span><span class="p">)</span>
855
- <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">orientation_cover</span><span class="p">()</span>
856
- <span class="gp">&gt;&gt;&gt; </span><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">(),</span> <span class="n">Y</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">())</span>
857
- <span class="go">(False, True)</span>
858
- <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span>
859
- <span class="go">x123~(0,0)(0,0)</span>
860
- <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span>
861
- <span class="go">&#39;cyclic&#39;</span>
862
- </pre></div>
863
- </div>
864
- </dd></dl>
865
-
866
- <dl class="py method">
867
- <dt class="sig sig-object py" id="snappy.Triangulation.pickle">
868
- <span class="sig-name descname"><span class="pre">pickle</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.pickle" title="Link to this definition"></a></dt>
869
- <dd></dd></dl>
870
-
871
- <dl class="py method">
872
- <dt class="sig sig-object py" id="snappy.Triangulation.plink">
873
- <span class="sig-name descname"><span class="pre">plink</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.plink" title="Link to this definition"></a></dt>
874
- <dd><p>Brings up a link editor window if the manifold is stored
875
- as a link complement in your current session.</p>
876
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span> <span class="c1"># stored as a triangulation with a link</span>
877
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
878
- <span class="go">&lt;Link: 1 comp; 4 cross&gt;</span>
879
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span> <span class="c1"># stored as a triangulation without a link</span>
880
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
881
- <span class="gt">Traceback (most recent call last):</span>
882
- <span class="c">...</span>
883
- <span class="gr">ValueError</span>: <span class="n">No associated link known.</span>
884
- </pre></div>
885
- </div>
886
- </dd></dl>
887
-
888
- <dl class="py method">
889
- <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_generalized_obstruction_classes">
890
- <span class="sig-name descname"><span class="pre">ptolemy_generalized_obstruction_classes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes" title="Link to this definition"></a></dt>
891
- <dd><p>M.ptolemy_generalized_obstruction_classes(N)</p>
892
- <p>Returns the obstruction classes needed to compute
893
- PGL(N,C)-representations for any N, i.e., it returns a list with
894
- a representative cocycle for each element in
895
- H^2(M, boundary M; Z/N) / (Z/N)^* where (Z/N)^* are the units in Z/N.
896
- The first element in the list always corresponds to the trivial
897
- obstruction class.
898
- The generalized ptolemy obstruction classes are thus a generalization
899
- of the ptolemy obstruction classes that allow to find all
900
- boundary-unipotent
901
- PGL(N,C)-representations including those that do not lift to
902
- boundary-unipotent SL(N,C)-representations for N odd or
903
- SL(N,C)/{+1,-1}-representations for N even.</p>
904
- <p>For example, 4_1 has three obstruction classes up to equivalence:</p>
905
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
906
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
907
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
908
- <span class="go">3</span>
909
- </pre></div>
910
- </div>
911
- <p>For 4_1, we only get three obstruction classes even though we have
912
- H^2(M, boundary M; Z/4) = Z/4 because the two obstruction classes
913
- 1 in Z/4 and -1 in Z/4 are related by a unit and thus give
914
- isomorphic Ptolemy varieties.</p>
915
- <p>The primary use of an obstruction class sigma is to construct the
916
- Ptolemy variety of sigma. This variety computes boundary-unipotent
917
- PGL(N,C)-representations whose obstruction class to a
918
- boundary-unipotent lift to SL(N,C) is sigma.</p>
919
- <p>For example for 4_1, there are 2 obstruction classes for N = 3:</p>
920
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
921
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
922
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
923
- <span class="go">2</span>
924
- </pre></div>
925
- </div>
926
- <p>The Ptolemy variety parametrizing boundary-unipotent
927
- SL(3,C)-representations of 4_1 is obtained by</p>
928
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
929
- </pre></div>
930
- </div>
931
- <p>and the Ptolemy variety parametrizing boundary-unipotent
932
- PSL(3,C)-representations of 4_1 that do not lift to
933
- boundary-unipotent SL(3,C)-representations is obtained by</p>
934
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
935
- </pre></div>
936
- </div>
937
- <p>The cocycle representing the non-trivial obstruction class looks as
938
- follows:</p>
939
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
940
- <span class="go">PtolemyGeneralizedObstructionClass([2, 0, 0, 1])</span>
941
- </pre></div>
942
- </div>
943
- <p>This means that the cocycle takes the value -1 in Z/3 on the first face
944
- class and 1 on the fourth face class but zero on every other of the
945
- four face classes.</p>
946
- </dd></dl>
947
-
948
- <dl class="py method">
949
- <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_obstruction_classes">
950
- <span class="sig-name descname"><span class="pre">ptolemy_obstruction_classes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_obstruction_classes" title="Link to this definition"></a></dt>
951
- <dd><p>Returns the obstruction classes needed to compute
952
- pSL(N,C) = SL(N,C)/{+1,-1} representations for even N, i.e., it
953
- returns a list with a representative cocycle for each class in
954
- H^2(M, boundary M; Z/2). The first element in the list is always
955
- representing the trivial obstruction class.</p>
956
- <p>For example, 4_1 has two obstruction classes:</p>
957
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
958
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
959
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
960
- <span class="go">2</span>
961
- </pre></div>
962
- </div>
963
- <p>The primary use of these obstruction classes is to construct
964
- the Ptolemy variety as described in Definition 1.7 of
965
- Stavros Garoufalidis, Dylan Thurston, Christian K. Zickert:
966
- “The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
967
- (<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>).</p>
968
- <p>For example, to construct the Ptolemy variety for
969
- PSL(2,C)-representations of 4_1 that do not lift to boundary-parabolic
970
- SL(2,C)-representations, use:</p>
971
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
972
- </pre></div>
973
- </div>
974
- <p>Or the following short-cut:</p>
975
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
976
- </pre></div>
977
- </div>
978
- <p>Note that this obstruction class only makes sense for even N:</p>
979
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
980
- <span class="gt">Traceback (most recent call last):</span>
981
- <span class="c">...</span>
982
- <span class="gr">AssertionError</span>: <span class="n">PtolemyObstructionClass only makes sense for even N, try PtolemyGeneralizedObstructionClass</span>
983
- </pre></div>
984
- </div>
985
- <p>To obtain PGL(N,C)-representations for N &gt; 2, use the generalized
986
- obstruction class:</p>
987
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
988
- <span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
989
- </pre></div>
990
- </div>
991
- <p>The original obstruction class encodes a representing cocycle in Z/2 as follows:</p>
992
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
993
- <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
994
- <span class="go">PtolemyObstructionClass(s_0_0 + 1, s_1_0 - 1, s_2_0 - 1, s_3_0 + 1, s_0_0 - s_0_1, s_1_0 - s_3_1, s_2_0 - s_2_1, s_3_0 - s_1_1)</span>
995
- </pre></div>
996
- </div>
997
- <p>This means that the cocycle to represent this obstruction class in Z/2
998
- takes value 1 in Z/2 on face 0 of tetrahedra 0 (because s_0_0 = -1)
999
- and value 0 in Z/2 on face 1 of tetrahedra 0 (because s_1_0 = +1).</p>
1000
- <p>Face 3 of tetrahedra 0 and face 1 of tetrahedra 1 are identified,
1001
- hence the cocycle takes the same value on those two faces (s_3_0 = s_1_1).</p>
1002
- </dd></dl>
1003
-
1004
- <dl class="py method">
1005
- <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_variety">
1006
- <span class="sig-name descname"><span class="pre">ptolemy_variety</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obstruction_class</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eliminate_fixed_ptolemys</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_variety" title="Link to this definition"></a></dt>
1007
- <dd><p>M.ptolemy_variety(N, obstruction_class = None, simplify = True, eliminate_fixed_ptolemys = False)</p>
1008
- <p>Returns a Ptolemy variety as described in</p>
1009
- <ul class="simple">
1010
- <li><p>Stavros Garoufalidis, Dyland Thurston, Christian K. Zickert:
1011
- “The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
1012
- (<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>)</p></li>
1013
- <li><p>Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
1014
- “Gluing Equations for PGL(n,C)-Representations of 3-Manifolds ”
1015
- (<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>)</p></li>
1016
- </ul>
1017
- <p>The variety can be exported to magma or sage and solved there. The
1018
- solutions can be processed to compute invariants. The method can also
1019
- be used to automatically look up precomputed solutions from the
1020
- database at <a class="reference external" href="http://ptolemy.unhyperbolic.org/data">http://ptolemy.unhyperbolic.org/data</a> .</p>
1021
- <p>Example for m011 and PSL(2,C)-representations:</p>
1022
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m011&quot;</span><span class="p">)</span>
1023
- </pre></div>
1024
- </div>
1025
- <p>Obtain all Ptolemy varieties for PSL(2,C)-representations:</p>
1026
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span>
1027
- </pre></div>
1028
- </div>
1029
- <p>There are two Ptolemy varieties for the two obstruction classes:</p>
1030
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
1031
- <span class="go">2</span>
1032
- </pre></div>
1033
- </div>
1034
- <p>Retrieve the solutions from the database</p>
1035
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
1036
- </pre></div>
1037
- </div>
1038
- <p>Compute the solutions using magma (default in SnapPy)</p>
1039
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">&#39;magma&#39;</span><span class="p">)</span>
1040
- </pre></div>
1041
- </div>
1042
- <p>Compute the solutions using singular (default in sage)</p>
1043
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">&#39;sage&#39;</span><span class="p">)</span>
1044
- </pre></div>
1045
- </div>
1046
- <p>Note that magma is significantly faster.</p>
1047
- <p>Compute all resulting complex volumes</p>
1048
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">complex_volume_numerical</span><span class="p">()</span>
1049
- <span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span>
1050
- <span class="go">[[[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
1051
- <span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
1052
- <span class="go"> 0.942707362776931 + 0.459731436553693*I]],</span>
1053
- <span class="go"> [[3.94159248086745 E-15 + 0.312682687518267*I,</span>
1054
- <span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
1055
- <span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
1056
- <span class="go"> 2.78183391239608 - 0.496837853805869*I]]]</span>
1057
- </pre></div>
1058
- </div>
1059
- <p>Show complex volumes as a non-nested list:</p>
1060
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="n">depth</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
1061
- <span class="go">[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
1062
- <span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
1063
- <span class="go"> 0.942707362776931 + 0.459731436553693*I,</span>
1064
- <span class="go"> 3.94159248086745 E-15 + 0.312682687518267*I,</span>
1065
- <span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
1066
- <span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
1067
- <span class="go"> 2.78183391239608 - 0.496837853805869*I]</span>
1068
- </pre></div>
1069
- </div>
1070
- <p>For more examples, go to <a class="reference external" href="http://ptolemy.unhyperbolic.org/">http://ptolemy.unhyperbolic.org/</a></p>
1071
- <p>=== Optional Arguments ===</p>
1072
- <p>obstruction_class class from Definition 1.7 of (1).
1073
- None for trivial class or a value returned from ptolemy_obstruction_classes.
1074
- Short cuts: obstruction_class = ‘all’ returns a list of Ptolemy varieties
1075
- for each obstruction. For easier iteration, can set obstruction_class to
1076
- an integer.</p>
1077
- <p>simplify — boolean to indicate whether to simplify the equations which
1078
- significantly reduces the number of variables.
1079
- Simplifying means that several identified Ptolemy coordinates x = y = z = …
1080
- are eliminated instead of adding relations x - y = 0, y - z = 0, …</p>
1081
- <p>eliminate_fixed_ptolemys boolean to indicate whether to eliminate
1082
- the Ptolemy coordinates that are set to 1 for fixing the decoration.
1083
- Even though this simplifies the resulting representation, setting it to
1084
- True can cause magma to run longer when finding a Groebner basis.</p>
1085
- <p>=== Examples for 4_1 ===</p>
1086
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
1087
- </pre></div>
1088
- </div>
1089
- <p>Get the varieties for all obstruction classes at once (use
1090
- help(varieties[0]) for more information):</p>
1091
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">varieties</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s2">&quot;all&quot;</span><span class="p">)</span>
1092
- </pre></div>
1093
- </div>
1094
- <p>Print the variety as an ideal (sage object) for the non-trivial class:</p>
1095
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">ideal</span>
1096
- <span class="go">Ideal (-c_0011_0^2 + c_0011_0*c_0101_0 + c_0101_0^2, -c_0011_0^2 - c_0011_0*c_0101_0 + c_0101_0^2, c_0011_0 - 1) of Multivariate Polynomial Ring in c_0011_0, c_0101_0 over Rational Field</span>
1097
- </pre></div>
1098
- </div>
1099
- <p>Print the equations of the variety for the non-trivial class:</p>
1100
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">eqn</span> <span class="ow">in</span> <span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">equations</span><span class="p">:</span>
1101
- <span class="gp">... </span> <span class="nb">print</span><span class="p">(</span><span class="n">eqn</span><span class="p">)</span>
1102
- <span class="go"> - c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2</span>
1103
- <span class="go"> c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
1104
- <span class="go"> - 1 + c_0011_0</span>
1105
- </pre></div>
1106
- </div>
1107
- <p>Generate a magma file to compute Primary Decomposition for N = 3:</p>
1108
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
1109
- <span class="gp">&gt;&gt;&gt; </span><span class="n">s</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">to_magma</span><span class="p">()</span>
1110
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;ring and ideal&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">strip</span><span class="p">())</span>
1111
- <span class="go">R&lt;c_0012_0, c_0012_1, c_0102_0, c_0111_0, c_0201_0, c_1011_0, c_1011_1, c_1101_0&gt; := PolynomialRing(RationalField(), 8, &quot;grevlex&quot;);</span>
1112
- <span class="go">MyIdeal := ideal&lt;R |</span>
1113
- <span class="go"> c_0012_0 * c_1101_0 + c_0102_0 * c_0111_0 - c_0102_0 * c_1011_0,</span>
1114
- <span class="go"> ...</span>
1115
- </pre></div>
1116
- </div>
1117
- <p>=== If you have a magma installation ===</p>
1118
- <p>Call p.compute_solutions() to automatically call magma on the above output
1119
- and produce exact solutions!!!</p>
1120
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">try</span><span class="p">:</span>
1121
- <span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">()</span>
1122
- <span class="gp">... </span><span class="k">except</span><span class="p">:</span>
1123
- <span class="gp">... </span> <span class="c1"># magma failed, use precomputed_solutions</span>
1124
- <span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="kc">None</span>
1125
- </pre></div>
1126
- </div>
1127
- <p>Check solutions against manifold
1128
- &gt;&gt;&gt; if sols:
1129
- … dummy = sols.check_against_manifold()</p>
1130
- <p>=== If you do not have a magma installation ===</p>
1131
- <p>Load a precomputed example from magma which is provided with the package:</p>
1132
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
1133
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
1134
-
1135
- <span class="go">==TRIANGULATION=BEGINS==</span>
1136
- <span class="go">% Triangulation</span>
1137
- <span class="go">4_1</span>
1138
- <span class="go">...</span>
1139
- </pre></div>
1140
- </div>
1141
- <p>Parse the file and produce solutions:</p>
1142
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
1143
- </pre></div>
1144
- </div>
1145
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dummy</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">()</span>
1146
- </pre></div>
1147
- </div>
1148
- <p>=== Continue here whether you have or do not have magma ===</p>
1149
- <p>Pick the first solution of the three different solutions (up to Galois
1150
- conjugates):</p>
1151
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">sols</span><span class="p">)</span>
1152
- <span class="go">3</span>
1153
- <span class="gp">&gt;&gt;&gt; </span><span class="n">solution</span> <span class="o">=</span> <span class="n">sols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
1154
- </pre></div>
1155
- </div>
1156
- <p>Read the exact value for c_1020_0 (help(solution) for more information
1157
- on how to compute cross ratios, volumes and other invariants):</p>
1158
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">solution</span><span class="p">[</span><span class="s1">&#39;c_1020_0&#39;</span><span class="p">]</span>
1159
- <span class="go">Mod(-1/2*x - 3/2, x^2 + 3*x + 4)</span>
1160
- </pre></div>
1161
- </div>
1162
- <p>Example of simplified vs non-simplified variety for N = 4:</p>
1163
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">simplified</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
1164
- <span class="gp">&gt;&gt;&gt; </span><span class="n">full</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">simplify</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
1165
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">variables</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">variables</span><span class="p">)</span>
1166
- <span class="go">(21, 63)</span>
1167
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">equations</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">equations</span><span class="p">)</span>
1168
- <span class="go">(24, 72)</span>
1169
- </pre></div>
1170
- </div>
1171
- </dd></dl>
1172
-
1173
- <dl class="py method">
1174
- <dt class="sig sig-object py" id="snappy.Triangulation.randomize">
1175
- <span class="sig-name descname"><span class="pre">randomize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">blowup_multiple</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.randomize" title="Link to this definition"></a></dt>
1176
- <dd><p>Perform random Pachner moves on the underlying triangulation,
1177
- including some initial 3 -&gt; 2 moves that increase the number of
1178
- tetrahedra by blowup_multiple.</p>
1179
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;Braid:[1,2,-3,-3,1,2]&#39;</span><span class="p">)</span>
1180
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">randomize</span><span class="p">()</span>
1181
- </pre></div>
1182
- </div>
1183
- </dd></dl>
1184
-
1185
- <dl class="py method">
1186
- <dt class="sig sig-object py" id="snappy.Triangulation.reverse_orientation">
1187
- <span class="sig-name descname"><span class="pre">reverse_orientation</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.reverse_orientation" title="Link to this definition"></a></dt>
1188
- <dd><p>Reverses the orientation of the Triangulation, presuming that
1189
- it is orientable.</p>
1190
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
1191
- <span class="gp">&gt;&gt;&gt; </span><span class="n">cs</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">()</span>
1192
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1193
- <span class="gp">&gt;&gt;&gt; </span><span class="nb">abs</span><span class="p">(</span><span class="n">cs</span> <span class="o">+</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">())</span>
1194
- <span class="go">0.0</span>
1195
- </pre></div>
1196
- </div>
1197
- </dd></dl>
1198
-
1199
- <dl class="py method">
1200
- <dt class="sig sig-object py" id="snappy.Triangulation.save">
1201
- <span class="sig-name descname"><span class="pre">save</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">file_name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.save" title="Link to this definition"></a></dt>
1202
- <dd><p>Save the triangulation as a SnapPea triangulation file.</p>
1203
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1204
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri&#39;</span><span class="p">)</span>
1205
- </pre></div>
1206
- </div>
1207
- <p>To retrieve a SnapPea triangulation from the saved file
1208
- you can do the following. The first command creates a cusped
1209
- manifold M. The second one creates the filled manifold M1
1210
- with Dehn coefficients (2,3).</p>
1211
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri&#39;</span><span class="p">)</span>
1212
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M1</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri(2,3)&#39;</span><span class="p">)</span>
1213
- </pre></div>
1214
- </div>
1215
- </dd></dl>
1216
-
1217
- <dl class="py method">
1218
- <dt class="sig sig-object py" id="snappy.Triangulation.set_name">
1219
- <span class="sig-name descname"><span class="pre">set_name</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">new_name</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.set_name" title="Link to this definition"></a></dt>
1220
- <dd><p>Give the triangulation a new name.</p>
1221
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
1222
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">set_name</span><span class="p">(</span><span class="s1">&#39;figure-eight-comp&#39;</span><span class="p">)</span>
1223
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
1224
- <span class="go">figure-eight-comp(0,0)</span>
1225
- </pre></div>
1226
- </div>
1227
- </dd></dl>
1228
-
1229
- <dl class="py method">
1230
- <dt class="sig sig-object py" id="snappy.Triangulation.set_peripheral_curves">
1231
- <span class="sig-name descname"><span class="pre">set_peripheral_curves</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">peripheral_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_matrices</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.set_peripheral_curves" title="Link to this definition"></a></dt>
1232
- <dd><p>Each cusp has a preferred marking. In the case of a torus
1233
- cusp, this is pair of essential simple curves meeting in one
1234
- point; equivalently, a basis of the first homology of the
1235
- boundary torus. These curves are called the meridian and the
1236
- longitude.</p>
1237
- <p>This method changes these markings in various ways. In many
1238
- cases, if the flag return_matrices is True then it returns
1239
- a list of change-of-basis matrices is returned, one per
1240
- cusp, which will restore the original markings if passed
1241
- as peripheral_data.</p>
1242
- </dd></dl>
1243
-
1244
- <dl class="py method">
1245
- <dt class="sig sig-object py" id="snappy.Triangulation.simplify">
1246
- <span class="sig-name descname"><span class="pre">simplify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.simplify" title="Link to this definition"></a></dt>
1247
- <dd><p>Try to simplify the triangulation by doing Pachner moves.</p>
1248
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;12n123&#39;</span><span class="p">)</span>
1249
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">simplify</span><span class="p">()</span>
1250
- </pre></div>
1251
- </div>
1252
- <p>It does four kinds of moves that reduce the number of
1253
- tetrahedra:</p>
1254
- <ul class="simple">
1255
- <li><p>3 -&gt; 2 and 2 -&gt; 0 Pacher moves, which eliminate one or two
1256
- tetrahedra respectively.</p></li>
1257
- <li><p>On suitable valence-1 edges, does a 2 -&gt; 3 and then 2 -&gt; 0 move,
1258
- which removes a tetrahedron and creates a new valence-1 edge.</p></li>
1259
- <li><p>When a 2-simplex has two edges of valence-4 giving rise to the
1260
- suspension of a pentagon, replace these 6 tetrahedra with a
1261
- single edge of valence 5.</p></li>
1262
- </ul>
1263
- <p>It also does random 4 -&gt; 4 moves in hopes of setting up a
1264
- simplfication. The argument passes_at_fours is the number of
1265
- times it goes through the valence-4 edges without progress
1266
- before giving up.</p>
1267
- </dd></dl>
1268
-
1269
- <dl class="py method">
1270
- <dt class="sig sig-object py" id="snappy.Triangulation.slice_obstruction_HKL">
1271
- <span class="sig-name descname"><span class="pre">slice_obstruction_HKL</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">primes_spec</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_in_S3</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.slice_obstruction_HKL" title="Link to this definition"></a></dt>
1272
- <dd><p>For the exterior of a knot in S^3, searches for a topological
1273
- slicing obstruction from:</p>
1274
- <p>Herald, Kirk, Livingston, Math Zeit., 2010
1275
- <a class="reference external" href="https://dx.doi.org/10.1007/s00209-009-0548-1">https://dx.doi.org/10.1007/s00209-009-0548-1</a>
1276
- <a class="reference external" href="https://arxiv.org/abs/0804.1355">https://arxiv.org/abs/0804.1355</a></p>
1277
- <p>The test looks at the cyclic branched covers of the knot of prime
1278
- order p and the F_q homology thereof where q is an odd prime. The
1279
- range of such (p, q) pairs searched is given by primes_spec as a
1280
- list of (p_max, [q_min, q_max]). It returns the pair (p, q) of
1281
- the first nonzero obstruction found (in which case K is not
1282
- slice), and otherwise returns None:</p>
1283
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K12n813&#39;</span><span class="p">)</span>
1284
- <span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">10</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">]),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])]</span>
1285
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1286
- <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">...</span>
1287
- <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">...</span>
1288
- <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
1289
- <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1290
- </pre></div>
1291
- </div>
1292
- <p>You can also specify the p to examine by a range [p_min, p_max] or
1293
- the q by just q_max:</p>
1294
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[([</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="mi">10</span><span class="p">)]</span>
1295
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1296
- <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">...</span>
1297
- <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
1298
- <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1299
- </pre></div>
1300
- </div>
1301
- <p>If primes_spec is just a pair (p, q) then only that obstruction is
1302
- checked:</p>
1303
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
1304
- <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">))</span>
1305
- <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1306
- </pre></div>
1307
- </div>
1308
- <p>Technical note: As implemented, can only get an obstruction when
1309
- the decomposition of H_1(cover; F_q) into irreducible Z/pZ-modules
1310
- has no repeat factors. The method of [HKL] can be used more
1311
- broadly, but other cases requires computing many more twisted
1312
- Alexander polynomials.</p>
1313
- </dd></dl>
1314
-
1315
- <dl class="py method">
1316
- <dt class="sig sig-object py" id="snappy.Triangulation.triangulation_isosig">
1317
- <span class="sig-name descname"><span class="pre">triangulation_isosig</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">decorated</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_cusp_ordering</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_curve_orientations</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_orientation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.triangulation_isosig" title="Link to this definition"></a></dt>
1318
- <dd><p>Returns a compact text representation of the triangulation, called a
1319
- “decorated isomorphism signature”</p>
1320
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1321
- <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1322
- <span class="go">&#39;cPcbbbiht_BaCB&#39;</span>
1323
- </pre></div>
1324
- </div>
1325
- <p>You can use this string to recreate an isomorphic triangulation later</p>
1326
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">A</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;y233&#39;</span><span class="p">)</span>
1327
- <span class="gp">&gt;&gt;&gt; </span><span class="n">A</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1328
- <span class="go">&#39;hLMzMkbcdefggghhhqxqhx_BaaB&#39;</span>
1329
- <span class="gp">&gt;&gt;&gt; </span><span class="n">B</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;hLMzMkbcdefggghhhqxqhx_BaaB&#39;</span><span class="p">)</span>
1330
- <span class="gp">&gt;&gt;&gt; </span><span class="n">A</span> <span class="o">==</span> <span class="n">B</span>
1331
- <span class="go">True</span>
1332
- </pre></div>
1333
- </div>
1334
- <p>By default, the returned string encodes the peripheral curves (and
1335
- slopes of Dehn-fillings if any are present), but you can request
1336
- only the “isomorphism signature” which can be given to
1337
- <a class="reference external" href="https://regina-normal.github.io/">Regina</a>.</p>
1338
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">E</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;K3_1&#39;</span><span class="p">)</span> <span class="c1"># the (-2, 3, 7) exterior</span>
1339
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isosig</span> <span class="o">=</span> <span class="n">E</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span> <span class="o">=</span> <span class="kc">False</span><span class="p">);</span> <span class="n">isosig</span>
1340
- <span class="go">&#39;dLQacccjsnk&#39;</span>
1341
- <span class="gp">&gt;&gt;&gt; </span><span class="n">F</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="n">isosig</span><span class="p">)</span>
1342
- <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">F</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span>
1343
- <span class="go">0 -&gt; 0</span>
1344
- <span class="go">[1 18]</span>
1345
- <span class="go">[0 1]</span>
1346
- <span class="go">Extends to link</span>
1347
- <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1348
- <span class="go">&#39;dLQacccjsnk_BaRsB&#39;</span>
1349
- <span class="gp">&gt;&gt;&gt; </span><span class="n">F</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1350
- <span class="go">&#39;dLQacccjsnk_BaaB&#39;</span>
1351
- <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;dLQacccjsnk_BaRsB&#39;</span><span class="p">)</span>
1352
- <span class="gp">&gt;&gt;&gt; </span><span class="n">E</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">G</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
1353
- <span class="go">0 -&gt; 0</span>
1354
- <span class="go">[1 0]</span>
1355
- <span class="go">[0 1]</span>
1356
- <span class="go">Extends to link</span>
1357
- </pre></div>
1358
- </div>
1359
- <p>If you do not care about the indexing of the cusps when using a
1360
- decorated signature, use ignore_cusp_ordering</p>
1361
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;L14n64110(1,2)(2,3)(-2,1)(3,4)(0,0)&quot;</span><span class="p">)</span>
1362
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isosig</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">ignore_cusp_ordering</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
1363
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isosig</span>
1364
- <span class="go">&#39;xLLvLvMLPMPLAMQQcceflnjmmmospsrttvvvtswwwiieiifdeauinasltltahmbjn_bacBbaaBBaBbBbbaabba(2,3)(-2,1)(1,2)(3,4)(0,0)&#39;</span>
1365
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="n">isosig</span><span class="p">)</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
1366
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">())</span>
1367
- <span class="go">True</span>
1368
- </pre></div>
1369
- </div>
1370
- <p>If you do not care about the orientations of the peripheral curves,
1371
- use ignore_curve_orientations</p>
1372
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;L6a1&quot;</span><span class="p">)</span>
1373
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1374
- <span class="go">&#39;gLLAQcdeefffdopuado_BabbBaab&#39;</span>
1375
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isosig</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">ignore_curve_orientations</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
1376
- <span class="gp">&gt;&gt;&gt; </span><span class="n">isosig</span>
1377
- <span class="go">&#39;gLLAQcdeefffdopuado_babbbaab&#39;</span>
1378
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="n">isosig</span><span class="p">)</span>
1379
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
1380
- <span class="go">[0 -&gt; 0 1 -&gt; 1</span>
1381
- <span class="go">[-1 0] [-1 0]</span>
1382
- <span class="go">[ 0 1] [ 0 1]</span>
1383
- <span class="go">Extends to link, 0 -&gt; 0 1 -&gt; 1</span>
1384
- <span class="go">[1 0] [1 0]</span>
1385
- <span class="go">[0 -1] [0 -1]</span>
1386
- <span class="go">Extends to link]</span>
1387
- </pre></div>
1388
- </div>
1389
- <p>By default, the isomorphism signature does not capture the orientation
1390
- of an orientable triangulation. If you specify
1391
- <cite>ignore_orientation = False</cite>, the isomorphism signature for an oriented
1392
- triangulation and its mirror image will be different if the
1393
- triangulation is cheiral.</p>
1394
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m006&quot;</span><span class="p">)</span>
1395
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
1396
- <span class="go">&#39;dLQacccjnjs&#39;</span>
1397
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1398
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
1399
- <span class="go">&#39;dLQacccnsnk&#39;</span>
1400
- </pre></div>
1401
- </div>
1402
- <p>Note that a decorated triangulation isosig with the default values
1403
- <cite>ignore_orientation = True</cite> but <cite>ignore_curve_orientations = False</cite>
1404
- still captures the orientations of the triangulation through the
1405
- peripheral curves.</p>
1406
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m006&quot;</span><span class="p">)</span>
1407
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1408
- <span class="go">&#39;dLQacccjnjs_aBbB&#39;</span>
1409
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1410
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1411
- <span class="go">&#39;dLQacccjnjs_aBBb&#39;</span>
1412
- </pre></div>
1413
- </div>
1414
- <p>The code has been copied from <a class="reference external" href="https://regina-normal.github.io/">Regina</a> where
1415
- the corresponding method is called “isoSig”.</p>
1416
- <p>Unlike dehydrations for 3-manifold triangulations, an
1417
- isomorphism signature uniquely determines a triangulation up
1418
- to combinatorial isomorphism. That is, two triangulations of
1419
- 3-dimensional manifolds are combinatorially isomorphic if and
1420
- only if their isomorphism signatures are the same string. For
1421
- full details, see <a class="reference external" href="http://arxiv.org/abs/1110.6080">Simplification paths in the Pachner graphs
1422
- of closed orientable 3-manifold triangulations, Burton, 2011</a>.</p>
1423
- <p>For details about how the peripheral decorations work, see
1424
- the SnapPy source code.</p>
1425
- </dd></dl>
1426
-
1427
- <dl class="py method">
1428
- <dt class="sig sig-object py" id="snappy.Triangulation.with_hyperbolic_structure">
1429
- <span class="sig-name descname"><span class="pre">with_hyperbolic_structure</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.with_hyperbolic_structure" title="Link to this definition"></a></dt>
1430
- <dd><p>Add a (possibly degenerate) hyperbolic structure, turning the
1431
- Triangulation into a Manifold.</p>
1432
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1433
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
1434
- <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
1435
- <span class="go">2.02988321</span>
1436
- </pre></div>
1437
- </div>
1438
- </dd></dl>
1439
-
1440
- </dd></dl>
1441
-
1442
- </section>
1443
-
1444
-
1445
- </div>
1446
- </div>
1447
- <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
1448
- <a href="manifoldhp.html" class="btn btn-neutral float-left" title="ManifoldHP: High-precision variant" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
1449
- <a href="additional_classes.html" class="btn btn-neutral float-right" title="Additional Classes" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
1450
- </div>
1451
-
1452
- <hr/>
1453
-
1454
- <div role="contentinfo">
1455
- <p>&#169; Copyright 2009-2023, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
1456
- </div>
1457
-
1458
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
1459
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
1460
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
1461
-
1462
-
1463
- </footer>
1464
- </div>
1465
- </div>
1466
- </section>
1467
- </div>
1468
- <script>
1469
- jQuery(function () {
1470
- SphinxRtdTheme.Navigation.enable(true);
1471
- });
1472
- </script>
1473
-
1474
- </body>
1
+
2
+
3
+ <!DOCTYPE html>
4
+ <html class="writer-html5" lang="en" data-content_root="./">
5
+ <head>
6
+ <meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
7
+
8
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
9
+ <title>Triangulation &mdash; SnapPy 3.2 documentation</title>
10
+ <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
11
+ <link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
12
+ <link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
13
+
14
+
15
+ <link rel="shortcut icon" href="_static/SnapPy.ico"/>
16
+ <script src="_static/jquery.js?v=5d32c60e"></script>
17
+ <script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
18
+ <script src="_static/documentation_options.js?v=828ea960"></script>
19
+ <script src="_static/doctools.js?v=9a2dae69"></script>
20
+ <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
21
+ <script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
22
+ <script src="_static/js/theme.js"></script>
23
+ <link rel="index" title="Index" href="genindex.html" />
24
+ <link rel="search" title="Search" href="search.html" />
25
+ <link rel="next" title="Additional Classes" href="additional_classes.html" />
26
+ <link rel="prev" title="ManifoldHP: High-precision variant" href="manifoldhp.html" />
27
+ </head>
28
+
29
+ <body class="wy-body-for-nav">
30
+ <div class="wy-grid-for-nav">
31
+ <nav data-toggle="wy-nav-shift" class="wy-nav-side">
32
+ <div class="wy-side-scroll">
33
+ <div class="wy-side-nav-search" >
34
+
35
+
36
+
37
+ <a href="index.html" class="icon icon-home">
38
+ SnapPy
39
+ <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
40
+ </a>
41
+ <div role="search">
42
+ <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
43
+ <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
44
+ <input type="hidden" name="check_keywords" value="yes" />
45
+ <input type="hidden" name="area" value="default" />
46
+ </form>
47
+ </div>
48
+ </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
49
+ <ul class="current">
50
+ <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
51
+ <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
52
+ <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
53
+ <li class="toctree-l1 current"><a class="reference internal" href="snappy.html">The snappy module and its classes</a><ul class="current">
54
+ <li class="toctree-l2"><a class="reference internal" href="manifold.html">Manifold: the main class</a></li>
55
+ <li class="toctree-l2"><a class="reference internal" href="manifoldhp.html">ManifoldHP: High-precision variant</a></li>
56
+ <li class="toctree-l2 current"><a class="current reference internal" href="#">Triangulation</a><ul>
57
+ <li class="toctree-l3"><a class="reference internal" href="#snappy.Triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation</span></code></a><ul>
58
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.DT_code"><code class="docutils literal notranslate"><span class="pre">Triangulation.DT_code()</span></code></a></li>
59
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.alexander_polynomial"><code class="docutils literal notranslate"><span class="pre">Triangulation.alexander_polynomial()</span></code></a></li>
60
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.copy"><code class="docutils literal notranslate"><span class="pre">Triangulation.copy()</span></code></a></li>
61
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover()</span></code></a></li>
62
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cover_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cover_info()</span></code></a></li>
63
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.covers"><code class="docutils literal notranslate"><span class="pre">Triangulation.covers()</span></code></a></li>
64
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.cusp_info"><code class="docutils literal notranslate"><span class="pre">Triangulation.cusp_info()</span></code></a></li>
65
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.dehn_fill"><code class="docutils literal notranslate"><span class="pre">Triangulation.dehn_fill()</span></code></a></li>
66
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.edge_valences"><code class="docutils literal notranslate"><span class="pre">Triangulation.edge_valences()</span></code></a></li>
67
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.exterior_to_link"><code class="docutils literal notranslate"><span class="pre">Triangulation.exterior_to_link()</span></code></a></li>
68
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.filled_triangulation"><code class="docutils literal notranslate"><span class="pre">Triangulation.filled_triangulation()</span></code></a></li>
69
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.fundamental_group"><code class="docutils literal notranslate"><span class="pre">Triangulation.fundamental_group()</span></code></a></li>
70
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations()</span></code></a></li>
71
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.gluing_equations_pgl"><code class="docutils literal notranslate"><span class="pre">Triangulation.gluing_equations_pgl()</span></code></a></li>
72
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.has_finite_vertices"><code class="docutils literal notranslate"><span class="pre">Triangulation.has_finite_vertices()</span></code></a></li>
73
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homological_longitude"><code class="docutils literal notranslate"><span class="pre">Triangulation.homological_longitude()</span></code></a></li>
74
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.homology"><code class="docutils literal notranslate"><span class="pre">Triangulation.homology()</span></code></a></li>
75
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.is_orientable"><code class="docutils literal notranslate"><span class="pre">Triangulation.is_orientable()</span></code></a></li>
76
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.isomorphisms_to"><code class="docutils literal notranslate"><span class="pre">Triangulation.isomorphisms_to()</span></code></a></li>
77
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.link"><code class="docutils literal notranslate"><span class="pre">Triangulation.link()</span></code></a></li>
78
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.name"><code class="docutils literal notranslate"><span class="pre">Triangulation.name()</span></code></a></li>
79
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_boundary_slopes"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_boundary_slopes()</span></code></a></li>
80
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.normal_surfaces"><code class="docutils literal notranslate"><span class="pre">Triangulation.normal_surfaces()</span></code></a></li>
81
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_cusps"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_cusps()</span></code></a></li>
82
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.num_tetrahedra"><code class="docutils literal notranslate"><span class="pre">Triangulation.num_tetrahedra()</span></code></a></li>
83
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.orientation_cover"><code class="docutils literal notranslate"><span class="pre">Triangulation.orientation_cover()</span></code></a></li>
84
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.plink"><code class="docutils literal notranslate"><span class="pre">Triangulation.plink()</span></code></a></li>
85
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_generalized_obstruction_classes()</span></code></a></li>
86
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_obstruction_classes"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_obstruction_classes()</span></code></a></li>
87
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.ptolemy_variety"><code class="docutils literal notranslate"><span class="pre">Triangulation.ptolemy_variety()</span></code></a></li>
88
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.randomize"><code class="docutils literal notranslate"><span class="pre">Triangulation.randomize()</span></code></a></li>
89
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.reverse_orientation"><code class="docutils literal notranslate"><span class="pre">Triangulation.reverse_orientation()</span></code></a></li>
90
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.save"><code class="docutils literal notranslate"><span class="pre">Triangulation.save()</span></code></a></li>
91
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_name"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_name()</span></code></a></li>
92
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.set_peripheral_curves"><code class="docutils literal notranslate"><span class="pre">Triangulation.set_peripheral_curves()</span></code></a></li>
93
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.simplify"><code class="docutils literal notranslate"><span class="pre">Triangulation.simplify()</span></code></a></li>
94
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.slice_obstruction_HKL"><code class="docutils literal notranslate"><span class="pre">Triangulation.slice_obstruction_HKL()</span></code></a></li>
95
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.symplectic_basis"><code class="docutils literal notranslate"><span class="pre">Triangulation.symplectic_basis()</span></code></a></li>
96
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.triangulation_isosig"><code class="docutils literal notranslate"><span class="pre">Triangulation.triangulation_isosig()</span></code></a></li>
97
+ <li class="toctree-l4"><a class="reference internal" href="#snappy.Triangulation.with_hyperbolic_structure"><code class="docutils literal notranslate"><span class="pre">Triangulation.with_hyperbolic_structure()</span></code></a></li>
98
+ </ul>
99
+ </li>
100
+ </ul>
101
+ </li>
102
+ <li class="toctree-l2"><a class="reference internal" href="additional_classes.html">Additional Classes</a></li>
103
+ <li class="toctree-l2"><a class="reference internal" href="censuses.html">Census manifolds</a></li>
104
+ </ul>
105
+ </li>
106
+ <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
107
+ <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
108
+ <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
109
+ <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
110
+ <li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
111
+ <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
112
+ <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
113
+ <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
114
+ <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
115
+ <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
116
+ </ul>
117
+
118
+ </div>
119
+ </div>
120
+ </nav>
121
+
122
+ <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
123
+ <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
124
+ <a href="index.html">SnapPy</a>
125
+ </nav>
126
+
127
+ <div class="wy-nav-content">
128
+ <div class="rst-content">
129
+ <div role="navigation" aria-label="Page navigation">
130
+ <ul class="wy-breadcrumbs">
131
+ <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
132
+ <li class="breadcrumb-item"><a href="snappy.html">The snappy module and its classes</a></li>
133
+ <li class="breadcrumb-item active">Triangulation</li>
134
+ <li class="wy-breadcrumbs-aside">
135
+ </li>
136
+ </ul>
137
+ <hr/>
138
+ </div>
139
+ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
140
+ <div itemprop="articleBody">
141
+
142
+ <section id="triangulation">
143
+ <h1>Triangulation<a class="headerlink" href="#triangulation" title="Link to this heading"></a></h1>
144
+ <p>The main snappy class, namely Manifold, is derived from the more
145
+ basic class below.</p>
146
+ <dl class="py class">
147
+ <dt class="sig sig-object py" id="snappy.Triangulation">
148
+ <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.</span></span><span class="sig-name descname"><span class="pre">Triangulation</span></span><a class="headerlink" href="#snappy.Triangulation" title="Link to this definition"></a></dt>
149
+ <dd><p>A Triangulation object represents a compact 3-manifold with torus
150
+ boundary components, given as an ideal triangulation of the
151
+ manifold’s interior. A Dehn-filling can be specified for each
152
+ boundary component, allowing the description of closed 3-manifolds
153
+ and some orbifolds. For non-orientable 3-manifolds, the boundary
154
+ components can also be Klein bottles. Two Triangulations are equal
155
+ (‘==’) if they represent combinatorially isomorphic
156
+ triangulations. A Triangulation does <em>not</em> have any geometric
157
+ structure, and usually one works with the subclass Manifold which
158
+ adds this. Here’s a quick example:</p>
159
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;9_42&#39;</span><span class="p">)</span>
160
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
161
+ <span class="go">5</span>
162
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
163
+ <span class="go">True</span>
164
+ </pre></div>
165
+ </div>
166
+ <p>A Triangulation can be specified in a number of ways, e.g.</p>
167
+ <ul class="simple">
168
+ <li><p>Triangulation(‘9_42’) : The complement of the knot 9_42 in S^3.</p></li>
169
+ <li><p>Triangulation(‘m125(1,2)(4,5)’) : The SnapPea census manifold m125
170
+ where the first cusp has Dehn filling (1,2) and the second cusp has
171
+ filling (4,5).</p></li>
172
+ <li><p>Triangulation() : Opens a link editor window where can you
173
+ specify a link complement.</p></li>
174
+ </ul>
175
+ <p>In general, the specification can be from among the below, with
176
+ information on Dehn fillings added.</p>
177
+ <ul>
178
+ <li><p>SnapPea cusped census manifolds: e.g. ‘m123’, ‘s123’, ‘v123’.</p></li>
179
+ <li><p>Link complements:</p>
180
+ <blockquote>
181
+ <div><ul class="simple">
182
+ <li><p>Rolfsen’s table: e.g. ‘4_1’, ‘04_1’, ‘5^2_6’, ‘6_4^7’, ‘L20935’, ‘l104001’.</p></li>
183
+ <li><p>Knots and links up to 14 crossings from tabulations by Hoste
184
+ and Thistlethwaite: e.g. ‘K12a456’ or ‘L13n579’.</p></li>
185
+ <li><p>Hoste-Thistlethwaite Knotscape table: e.g. ‘11a17’ or ‘12n345’</p></li>
186
+ <li><p>Dowker-Thistlethwaite code: e.g. ‘DT:[(6,8,2,4)]’,DT:dadbcda’</p></li>
187
+ </ul>
188
+ </div></blockquote>
189
+ </li>
190
+ <li><p>Once-punctured torus bundles: e.g. ‘b++LLR’, ‘b+-llR’, ‘bo-RRL’, ‘bn+LRLR’</p></li>
191
+ <li><p>Fibered manifold associated to a braid: ‘Braid:[1,2,-3,4]’</p>
192
+ <p>Here, the braid is thought of as a mapping class of the
193
+ punctured disc, and this manifold is the corresponding
194
+ mapping torus. If you want the braid closure, do (1,0) filling
195
+ of the last cusp.</p>
196
+ </li>
197
+ <li><p>From mapping class group data using Twister:</p>
198
+ <p>‘Bundle(S_{1,1}, [a0, B1])’ or ‘Splitting(S_{1,0}, [b1, A0], [a0,B1])’</p>
199
+ <p>See the help for the ‘twister’ module for more.</p>
200
+ </li>
201
+ <li><p>A SnapPea triangulation or link projection file: ‘filename’</p>
202
+ <p>The file will be loaded if found in the current directory or the
203
+ path given by the shell variable SNAPPEA_MANIFOLD_DIRECTORY.</p>
204
+ </li>
205
+ <li><p>A Regina-style isomorphism signature, such as ‘dLQbcccdxwb’.</p></li>
206
+ <li><p>A string containing the contents of a SnapPea triangulation or link
207
+ projection file.</p></li>
208
+ </ul>
209
+ <dl class="py method">
210
+ <dt class="sig sig-object py" id="snappy.Triangulation.DT_code">
211
+ <span class="sig-name descname"><span class="pre">DT_code</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">alpha</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">flips</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.DT_code" title="Link to this definition"></a></dt>
212
+ <dd><p>Return the Dowker-Thistlethwaite code of this link complement,
213
+ if it is a link complement. The DT code is intended to be an
214
+ immutable attribute, for use with knot and link exteriors
215
+ only, which is set only when the manifold was created.</p>
216
+ <p>Here is the Whitehead link:</p>
217
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L5a1&#39;</span><span class="p">)</span>
218
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">()</span>
219
+ <span class="go">[(6, 8), (2, 10, 4)]</span>
220
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
221
+ <span class="go">&#39;ebbccdaeb&#39;</span>
222
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
223
+ <span class="go">&#39;ebbccdaeb.01110&#39;</span>
224
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">DT_code</span><span class="p">(</span><span class="n">flips</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
225
+ <span class="go">([(6, 8), (2, 10, 4)], [0, 1, 1, 1, 0])</span>
226
+ </pre></div>
227
+ </div>
228
+ </dd></dl>
229
+
230
+ <dl class="py method">
231
+ <dt class="sig sig-object py" id="snappy.Triangulation.alexander_polynomial">
232
+ <span class="sig-name descname"><span class="pre">alexander_polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.alexander_polynomial" title="Link to this definition"></a></dt>
233
+ <dd><p>Computes the multivariable Alexander polynomial of the manifold:</p>
234
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K12n123&#39;</span><span class="p">)</span>
235
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
236
+ <span class="mi">2</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">6</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">5</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">4</span> <span class="o">-</span> <span class="mi">45</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">3</span> <span class="o">+</span> <span class="mi">34</span><span class="o">*</span><span class="n">a</span><span class="o">^</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">14</span><span class="o">*</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span>
237
+
238
+ <span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v1539(5,1)&#39;</span><span class="p">)</span>
239
+ <span class="n">sage</span><span class="p">:</span> <span class="n">N</span><span class="o">.</span><span class="n">alexander_polynomial</span><span class="p">()</span>
240
+ <span class="n">a</span><span class="o">^</span><span class="mi">2</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span><span class="o">^</span><span class="mi">2</span> <span class="o">+</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span> <span class="o">+</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
241
+ </pre></div>
242
+ </div>
243
+ <p>Any provided keyword arguments are passed to
244
+ <a class="reference internal" href="#snappy.Triangulation.fundamental_group" title="snappy.Triangulation.fundamental_group"><code class="xref py py-meth docutils literal notranslate"><span class="pre">fundamental_group</span></code></a> and
245
+ so affect the group presentation used in the computation.</p>
246
+ </dd></dl>
247
+
248
+ <dl class="py method">
249
+ <dt class="sig sig-object py" id="snappy.Triangulation.copy">
250
+ <span class="sig-name descname"><span class="pre">copy</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.copy" title="Link to this definition"></a></dt>
251
+ <dd><p>Returns a copy of the triangulation.</p>
252
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
253
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
254
+ </pre></div>
255
+ </div>
256
+ </dd></dl>
257
+
258
+ <dl class="py method">
259
+ <dt class="sig sig-object py" id="snappy.Triangulation.cover">
260
+ <span class="sig-name descname"><span class="pre">cover</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">permutation_rep</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.cover" title="Link to this definition"></a></dt>
261
+ <dd><p>Returns a <a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a> representing the finite cover specified
262
+ by a transitive permutation representation. The representation is
263
+ specified by a list of permutations, one for each generator of the
264
+ simplified presentation of the fundamental group. Each permutation is
265
+ specified as a list <code class="docutils literal notranslate"><span class="pre">P</span></code> such that <code class="docutils literal notranslate"><span class="pre">set(P)</span> <span class="pre">==</span> <span class="pre">set(range(d))</span></code> where
266
+ <code class="docutils literal notranslate"><span class="pre">d</span></code> is the degree of the cover.</p>
267
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
268
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cover</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">]])</span>
269
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
270
+ <span class="go">Z + Z + Z</span>
271
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span>
272
+ <span class="go">&#39;irregular&#39;</span>
273
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;base&#39;</span><span class="p">]</span>
274
+ <span class="go">&#39;m004&#39;</span>
275
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N0</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;degree&#39;</span><span class="p">]</span>
276
+ <span class="go">5</span>
277
+ </pre></div>
278
+ </div>
279
+ <p>Within Sage the permutations can also be of type
280
+ <code class="docutils literal notranslate"><span class="pre">PermutationGroupElement</span></code>, in which case they act on the set
281
+ <code class="docutils literal notranslate"><span class="pre">range(1,</span> <span class="pre">d</span> <span class="pre">+</span> <span class="pre">1)</span></code>. Or, you can specify a GAP or Magma subgroup
282
+ of the fundamental group. For more examples, see the docstring for
283
+ <a class="reference internal" href="manifold.html#snappy.Manifold.cover" title="snappy.Manifold.cover"><code class="xref py py-meth docutils literal notranslate"><span class="pre">Manifold.cover()</span></code></a>.</p>
284
+ </dd></dl>
285
+
286
+ <dl class="py method">
287
+ <dt class="sig sig-object py" id="snappy.Triangulation.cover_info">
288
+ <span class="sig-name descname"><span class="pre">cover_info</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cover_info" title="Link to this definition"></a></dt>
289
+ <dd><p>If this is a manifold or triangulation which was constructed as
290
+ a covering space, return a dictionary describing the cover. Otherwise
291
+ return 0. The dictionary keys are ‘base’, ‘type’ and ‘degree’.</p>
292
+ </dd></dl>
293
+
294
+ <dl class="py method">
295
+ <dt class="sig sig-object py" id="snappy.Triangulation.covers">
296
+ <span class="sig-name descname"><span class="pre">covers</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">degree</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cover_type</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">list</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#snappy.Triangulation.covers" title="Link to this definition"></a></dt>
297
+ <dd><p>Returns a list of Triangulations corresponding to all of the
298
+ finite covers of the given degree. The default method is
299
+ ‘low_index’ for general covers and ‘snappea for cyclic
300
+ covers. The former uses Sim’s algorithm while the latter
301
+ uses the original Snappea algorithm.</p>
302
+ <p>WARNING: If the degree is large this might take a very, very,
303
+ very long time.</p>
304
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m003&#39;</span><span class="p">)</span>
305
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
306
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">)</span>
307
+ <span class="go">[Z/3 + Z/15 + Z, Z/5 + Z + Z]</span>
308
+ </pre></div>
309
+ </div>
310
+ <p>It is faster to look just at cyclic covers.</p>
311
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">covers</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">cover_type</span><span class="o">=</span><span class="s1">&#39;cyclic&#39;</span><span class="p">)</span>
312
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">[(</span><span class="n">N</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">homology</span><span class="p">())</span> <span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">covers</span><span class="p">]</span>
313
+ <span class="go">[(m003~cyc~0(0,0), Z/3 + Z/15 + Z)]</span>
314
+ </pre></div>
315
+ </div>
316
+ <p>Here we check that we get the same number of covers with the
317
+ ‘snappea’ and ‘low_index’ methods.</p>
318
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
319
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">))</span>
320
+ <span class="go">19</span>
321
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">covers</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;snappea&#39;</span><span class="p">))</span>
322
+ <span class="go">19</span>
323
+ </pre></div>
324
+ </div>
325
+ <p>If you are using Sage, you can use GAP to find the subgroups,
326
+ which is often much faster, by specifying the optional
327
+ argument method = ‘gap’ If you have Magma installed, you can
328
+ used it to do the heavy lifting by specifying method=’magma’.</p>
329
+ </dd></dl>
330
+
331
+ <dl class="py method">
332
+ <dt class="sig sig-object py" id="snappy.Triangulation.cusp_info">
333
+ <span class="sig-name descname"><span class="pre">cusp_info</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_spec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.cusp_info" title="Link to this definition"></a></dt>
334
+ <dd><p>Returns an info object containing information about the given
335
+ cusp. Usage:</p>
336
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227(0,0)(1,2)(3,2)&#39;</span><span class="p">)</span>
337
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
338
+ <span class="go">Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0)</span>
339
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
340
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="o">.</span><span class="n">is_complete</span>
341
+ <span class="go">False</span>
342
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
343
+ <span class="go">[&#39;filling&#39;, &#39;index&#39;, &#39;is_complete&#39;, &#39;topology&#39;]</span>
344
+ </pre></div>
345
+ </div>
346
+ <p>You can get information about multiple cusps at once:</p>
347
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">()</span>
348
+ <span class="go">[Cusp 0 : torus cusp, not filled,</span>
349
+ <span class="go"> Cusp 1 : torus cusp with Dehn filling coefficients (M, L) = (1.0, 2.0),</span>
350
+ <span class="go"> Cusp 2 : torus cusp with Dehn filling coefficients (M, L) = (3.0, 2.0)]</span>
351
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">cusp_info</span><span class="p">(</span><span class="s1">&#39;is_complete&#39;</span><span class="p">)</span>
352
+ <span class="go">[True, False, False]</span>
353
+ </pre></div>
354
+ </div>
355
+ </dd></dl>
356
+
357
+ <dl class="py method">
358
+ <dt class="sig sig-object py" id="snappy.Triangulation.dehn_fill">
359
+ <span class="sig-name descname"><span class="pre">dehn_fill</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filling_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.dehn_fill" title="Link to this definition"></a></dt>
360
+ <dd><p>Set the Dehn filling coefficients of the cusps. This can be
361
+ specified in the following ways, where the cusps are numbered
362
+ by 0,1,…,(num_cusps - 1).</p>
363
+ <ul>
364
+ <li><p>Fill cusp 2:</p>
365
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;8^4_1&#39;</span><span class="p">)</span>
366
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
367
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
368
+ <span class="go">8^4_1(0,0)(0,0)(2,3)(0,0)</span>
369
+ </pre></div>
370
+ </div>
371
+ </li>
372
+ <li><p>Fill the last cusp:</p>
373
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">5</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
374
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
375
+ <span class="go">8^4_1(0,0)(0,0)(2,3)(1,5)</span>
376
+ </pre></div>
377
+ </div>
378
+ </li>
379
+ <li><p>Fill the first two cusps:</p>
380
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">[</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">4</span><span class="p">)</span> <span class="p">])</span>
381
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
382
+ <span class="go">8^4_1(3,0)(1,-4)(2,3)(1,5)</span>
383
+ </pre></div>
384
+ </div>
385
+ </li>
386
+ <li><p>When there is only one cusp, there’s a shortcut</p>
387
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
388
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">(</span> <span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span> <span class="p">)</span>
389
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span>
390
+ <span class="go">m004(-3,4)</span>
391
+ </pre></div>
392
+ </div>
393
+ </li>
394
+ </ul>
395
+ <p>Does not return a new <a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a>.</p>
396
+ </dd></dl>
397
+
398
+ <dl class="py method">
399
+ <dt class="sig sig-object py" id="snappy.Triangulation.edge_valences">
400
+ <span class="sig-name descname"><span class="pre">edge_valences</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.edge_valences" title="Link to this definition"></a></dt>
401
+ <dd><p>Returns a dictionary whose keys are the valences of the edges
402
+ in the triangulation, and the value associated to a key is the
403
+ number of edges of that valence.</p>
404
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227&#39;</span><span class="p">)</span>
405
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">edge_valences</span><span class="p">()</span>
406
+ <span class="go">{10: 1, 4: 1, 5: 2, 6: 3}</span>
407
+ </pre></div>
408
+ </div>
409
+ </dd></dl>
410
+
411
+ <dl class="py method">
412
+ <dt class="sig sig-object py" id="snappy.Triangulation.exterior_to_link">
413
+ <span class="sig-name descname"><span class="pre">exterior_to_link</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_input</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_answer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">careful_perturbation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify_link</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pachner_search_tries</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">int</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">None</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="spherogram.html#spherogram.Link" title="spherogram.Link"><span class="pre">Link</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.exterior_to_link" title="Link to this definition"></a></dt>
414
+ <dd><p>For a triangulation of the exterior of a link in the 3-sphere,
415
+ return a planar diagram for the link. The peripheral curves whose
416
+ Dehn filling is the 3-sphere are <strong>part of the input</strong>, specified
417
+ by either:</p>
418
+ <ol class="loweralpha simple">
419
+ <li><p>If no cusp is filled, then they are the meridians of the
420
+ current peripheral curves.</p></li>
421
+ <li><p>If every cusp is filled, then they are the current Dehn filling
422
+ curves.</p></li>
423
+ </ol>
424
+ <p>In particular, it does <strong>not</strong> try to determine whether there exist
425
+ fillings on the input which give the 3-sphere. Example usage:</p>
426
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m016&#39;</span><span class="p">)</span>
427
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span> <span class="o">=</span> <span class="n">exterior_to_link</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
428
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">L</span><span class="o">.</span><span class="n">exterior</span><span class="p">()</span><span class="o">.</span><span class="n">is_isometric_to</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
429
+ <span class="go">True</span>
430
+ </pre></div>
431
+ </div>
432
+ <p>The algorithm used is that of <a class="reference external" href="https://arxiv.org/abs/2112.03251">Dunfield, Obeidin, and Rudd</a>. The optional arguments are
433
+ as follows.</p>
434
+ <ul class="simple">
435
+ <li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code>, prints progress updates as the algorithm
436
+ goes along.</p></li>
437
+ <li><p><code class="docutils literal notranslate"><span class="pre">check_input</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), first checks that the
438
+ fundamental group of the specified Dehn filling is trivial. As
439
+ it doesn’t try too hard to simplify the group presentation, it
440
+ can happen that this check fails but the algorithm still finds a
441
+ diagram if you pass <code class="docutils literal notranslate"><span class="pre">check_input=False</span></code>.</p></li>
442
+ <li><p><code class="docutils literal notranslate"><span class="pre">check_answer</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), take the exterior of
443
+ the final link diagram and use <code class="docutils literal notranslate"><span class="pre">Manifold.is_isometric_to</span></code> to
444
+ confirm that it is homeomorphic to the input. If the input is
445
+ not hyperbolic or is very large, this check may fail even though
446
+ the diagram is correct.</p></li>
447
+ <li><p><code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code>: The rational coordinates of the
448
+ intermediate PL links are periodically rounded to control the
449
+ size of their denominators. When <code class="docutils literal notranslate"><span class="pre">careful_perturbation=True</span></code>
450
+ (the default), computations are performed to ensure this
451
+ rounding does not change the isotopy class of the link.</p></li>
452
+ <li><p><code class="docutils literal notranslate"><span class="pre">simplify_link</span></code>: When <code class="docutils literal notranslate"><span class="pre">True</span></code> (the default), uses
453
+ <code class="docutils literal notranslate"><span class="pre">Link.simplify('global')</span></code> to minimize the size of the final
454
+ diagram; otherwise, it just does <code class="docutils literal notranslate"><span class="pre">basic</span></code> simplifications, which
455
+ can be much faster if the initial link is complicated.</p></li>
456
+ <li><p><code class="docutils literal notranslate"><span class="pre">pachner_search_tries</span></code>: Controls how hard to search for a
457
+ suitable sequence of Pachner moves from the filled input
458
+ triangulation to a standard triangulation of the 3-sphere.</p></li>
459
+ <li><p><code class="docutils literal notranslate"><span class="pre">seed</span></code>: The algorithm involves many random choices, and hence
460
+ each run typically produces a different diagram of the
461
+ underlying link. If you need the same output each time, you can
462
+ specify a fixed seed for the various pseudo-random number
463
+ generators.</p></li>
464
+ </ul>
465
+ <p>Note on rigor: Provided at least one of <code class="docutils literal notranslate"><span class="pre">check_answer</span></code> and
466
+ <code class="docutils literal notranslate"><span class="pre">careful_perturbation</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, the exterior of the output
467
+ link is guaranteed to match the input (including the choice of
468
+ meridians).</p>
469
+ <p><strong>Warning:</strong> The order of the link components and the cusps of the
470
+ input manifold is only guaranteed to match when
471
+ <code class="docutils literal notranslate"><span class="pre">check_answer=True</span></code>. Even then, the implicit orientation along
472
+ each component of the link may not be preserved.</p>
473
+ </dd></dl>
474
+
475
+ <dl class="py method">
476
+ <dt class="sig sig-object py" id="snappy.Triangulation.filled_triangulation">
477
+ <span class="sig-name descname"><span class="pre">filled_triangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusps_to_fill</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">snappy.Triangulation</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.filled_triangulation" title="Link to this definition"></a></dt>
478
+ <dd><p>Return a new manifold where the specified cusps have been
479
+ permanently filled in. Examples:</p>
480
+ <p>Filling all the cusps:</p>
481
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125(1,2)(3,4)&#39;</span><span class="p">)</span>
482
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
483
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
484
+ <span class="go">0</span>
485
+ </pre></div>
486
+ </div>
487
+ <p>Filling cusps 0 and 2 :</p>
488
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;v3227(1,2)(3,4)(5,6)&#39;</span><span class="p">)</span>
489
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
490
+ <span class="go">v3227_filled(3,4)</span>
491
+ </pre></div>
492
+ </div>
493
+ </dd></dl>
494
+
495
+ <dl class="py method">
496
+ <dt class="sig sig-object py" id="snappy.Triangulation.fundamental_group">
497
+ <span class="sig-name descname"><span class="pre">fundamental_group</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">simplify_presentation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fillings_may_affect_generators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">minimize_number_of_generators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">try_hard_to_shorten_relators</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">FundamentalGroup</span></span></span><a class="headerlink" href="#snappy.Triangulation.fundamental_group" title="Link to this definition"></a></dt>
498
+ <dd><p>Returns a <code class="xref py py-class docutils literal notranslate"><span class="pre">FundamentalGroup</span></code> object representing the fundamental
499
+ group of the manifold. If integer Dehn surgery parameters
500
+ have been set, then the corresponding peripheral elements are
501
+ killed.</p>
502
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
503
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">()</span>
504
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span>
505
+ <span class="go">Generators:</span>
506
+ <span class="go"> a,b</span>
507
+ <span class="go">Relators:</span>
508
+ <span class="go"> aaabABBAb</span>
509
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">G</span><span class="o">.</span><span class="n">peripheral_curves</span><span class="p">()</span>
510
+ <span class="go">[(&#39;ab&#39;, &#39;aBAbABab&#39;)]</span>
511
+ </pre></div>
512
+ </div>
513
+ <p>There are four optional arguments all of which default to True:</p>
514
+ <ul class="simple">
515
+ <li><p>simplify_presentation</p></li>
516
+ <li><p>fillings_may_affect_generators</p></li>
517
+ <li><p>minimize_number_of_generators</p></li>
518
+ <li><p>try_hard_to_shorten_relators</p></li>
519
+ </ul>
520
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">fundamental_group</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
521
+ <span class="go">Generators:</span>
522
+ <span class="go"> a,b,c</span>
523
+ <span class="go">Relators:</span>
524
+ <span class="go"> CbAcB</span>
525
+ <span class="go"> BacA</span>
526
+ </pre></div>
527
+ </div>
528
+ </dd></dl>
529
+
530
+ <dl class="py method">
531
+ <dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations">
532
+ <span class="sig-name descname"><span class="pre">gluing_equations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">form</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'log'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations" title="Link to this definition"></a></dt>
533
+ <dd><p>In the default mode, this function returns a matrix with rows
534
+ of the form</p>
535
+ <blockquote>
536
+ <div><p>a b c d e f …</p>
537
+ </div></blockquote>
538
+ <p>which means</p>
539
+ <blockquote>
540
+ <div><p>a*log(z0) + b*log(1/(1-z0)) + c*log((z0-1)/z0) + d*log(z1) +… = 2 pi i</p>
541
+ </div></blockquote>
542
+ <p>for an edge equation, and (same) = 0 for a cusp equation.
543
+ Here, the cusp equations come at the bottom of the matrix, and
544
+ are listed in the form: meridian of cusp 0, longitude of cusp
545
+ 0, meridian of cusp 1, longitude of cusp 1,…</p>
546
+ <p>In terms of the tetrahedra, a is the invariant of the edge
547
+ (2,3), b the invariant of the edge (0,2) and c is the
548
+ invariant of the edge (1,2). See kernel_code/edge_classes.c
549
+ for a detailed account of the convention used.</p>
550
+ <p>If the optional argument form=’rect’ is given, then this
551
+ function returns a list of tuples of the form:</p>
552
+ <blockquote>
553
+ <div><p>( [a0, a1,..,a_n], [b_0, b_1,…,b_n], c)</p>
554
+ </div></blockquote>
555
+ <p>where this corresponds to the equation</p>
556
+ <blockquote>
557
+ <div><p>z0^a0 (1 - z0)^b0 z1^a1(1 - z1)^b1 … = c</p>
558
+ </div></blockquote>
559
+ <p>where c = 1 or -1.</p>
560
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004(2,3)&#39;</span><span class="p">)</span>
561
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">()</span>
562
+ <span class="go">[ 2 1 0 1 0 2]</span>
563
+ <span class="go">[ 0 1 2 1 2 0]</span>
564
+ <span class="go">[ 2 0 0 0 -8 6]</span>
565
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">(</span><span class="n">form</span><span class="o">=</span><span class="s1">&#39;rect&#39;</span><span class="p">)</span>
566
+ <span class="go">[([2, -1], [-1, 2], 1), ([-2, 1], [1, -2], 1), ([2, -6], [0, 14], 1)]</span>
567
+ </pre></div>
568
+ </div>
569
+ </dd></dl>
570
+
571
+ <dl class="py method">
572
+ <dt class="sig sig-object py" id="snappy.Triangulation.gluing_equations_pgl">
573
+ <span class="sig-name descname"><span class="pre">gluing_equations_pgl</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">equation_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.gluing_equations_pgl" title="Link to this definition"></a></dt>
574
+ <dd><p>Returns a NeumannZagierTypeEquations object that contains a matrix
575
+ encoding the gluing equations for boundary-parabolic PGL(N,C)
576
+ representations together with explanations of the meaning
577
+ of the rows and the columns of the matrix.</p>
578
+ <p>This method generalizes gluing_equations() to PGL(N,C)-representations
579
+ as described in
580
+ Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
581
+ “Gluing Equations for PGL(n,C)-Representations of 3-Manifolds”
582
+ (<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>).</p>
583
+ <p>The result of the <a class="reference internal" href="#snappy.Triangulation.gluing_equations" title="snappy.Triangulation.gluing_equations"><code class="xref py py-meth docutils literal notranslate"><span class="pre">gluing_equations()</span></code></a> can be obtained from
584
+ the general method by:</p>
585
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
586
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span><span class="o">.</span><span class="n">matrix</span>
587
+ <span class="go">[ 2 1 0 1 0 2]</span>
588
+ <span class="go">[ 0 1 2 1 2 0]</span>
589
+ <span class="go">[ 1 0 0 0 -1 0]</span>
590
+ <span class="go">[ 0 0 0 0 -2 2]</span>
591
+ </pre></div>
592
+ </div>
593
+ <p>But besides the matrix, the method also returns explanations of
594
+ the columns and rows:</p>
595
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
596
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">()</span>
597
+ <span class="go">NeumannZagierTypeEquations(</span>
598
+ <span class="go"> [ 2 1 0 1 0 2]</span>
599
+ <span class="go"> [ 0 1 2 1 2 0]</span>
600
+ <span class="go"> [ 1 0 0 0 -1 0]</span>
601
+ <span class="go"> [ 0 0 0 0 -2 2],</span>
602
+ <span class="go"> explain_columns = [&#39;z_0000_0&#39;, &#39;zp_0000_0&#39;, &#39;zpp_0000_0&#39;, &#39;z_0000_1&#39;, &#39;zp_0000_1&#39;, &#39;zpp_0000_1&#39;],</span>
603
+ <span class="go"> explain_rows = [&#39;edge_0_0&#39;, &#39;edge_0_1&#39;, &#39;meridian_0_0&#39;, &#39;longitude_0_0&#39;])</span>
604
+ </pre></div>
605
+ </div>
606
+ <p>The first row of the matrix means that the edge equation for
607
+ edge 0 is</p>
608
+ <div class="math notranslate nohighlight">
609
+ \[{z_{0000,0}}^2 * z'_{0000,0} * z_{0000,1} * {z''_{0000,1}}^2 = 1.\]</div>
610
+ <p>Similarly, the next row encodes the edge equation for the other edge
611
+ and the next two rows encode peripheral equations.</p>
612
+ <p>Following the SnapPy convention, a <code class="docutils literal notranslate"><span class="pre">z</span></code> denotes the cross ratio
613
+ <span class="math notranslate nohighlight">\(z\)</span> at the edge (0,1), a <code class="docutils literal notranslate"><span class="pre">zp</span></code> the cross ratio <span class="math notranslate nohighlight">\(z'\)</span> at
614
+ the edge (0,2) and a <code class="docutils literal notranslate"><span class="pre">zpp</span></code> the cross
615
+ ratio <span class="math notranslate nohighlight">\(z''\)</span> at the edge (1,2). The entire symbol <code class="docutils literal notranslate"><span class="pre">z_xxxx_y</span></code> then
616
+ denotes the cross ratio belonging to the subsimplex at integral
617
+ point <code class="docutils literal notranslate"><span class="pre">xxxx</span></code> (always <code class="docutils literal notranslate"><span class="pre">0000</span></code> for <code class="docutils literal notranslate"><span class="pre">N</span> <span class="pre">=</span> <span class="pre">2</span></code>) of the simplex <code class="docutils literal notranslate"><span class="pre">y</span></code>.</p>
618
+ <p>Note: the SnapPy convention is different from the paper
619
+ mentioned above, e.g., compare
620
+ kernel_code/edge_classes.c with Figure 3. We follow the SnapPy
621
+ convention here so that all computations done in SnapPy are
622
+ consistent.</p>
623
+ <p>The explanations of the rows and columns can be obtained explicitly by:</p>
624
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">equation_type</span> <span class="o">=</span> <span class="s1">&#39;peripheral&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">explain_rows</span>
625
+ <span class="go">[&#39;meridian_0_0&#39;, &#39;meridian_1_0&#39;, &#39;longitude_0_0&#39;, &#39;longitude_1_0&#39;]</span>
626
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">gluing_equations_pgl</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">explain_columns</span>
627
+ <span class="go">[&#39;z_0000_0&#39;, &#39;zp_0000_0&#39;, &#39;zpp_0000_0&#39;, &#39;z_0000_1&#39;, &#39;zp_0000_1&#39;, &#39;zpp_0000_1&#39;]</span>
628
+ </pre></div>
629
+ </div>
630
+ <p>A subset of all gluing equations can be obtained by setting the
631
+ <code class="docutils literal notranslate"><span class="pre">equation_type</span></code>:</p>
632
+ <ul class="simple">
633
+ <li><p>all gluing equations: <code class="docutils literal notranslate"><span class="pre">all</span></code></p></li>
634
+ <li><p>non-peripheral equations: <code class="docutils literal notranslate"><span class="pre">non_peripheral</span></code></p>
635
+ <ul>
636
+ <li><p>edge gluing equations: <code class="docutils literal notranslate"><span class="pre">edge</span></code></p></li>
637
+ <li><p>face gluing equations: <code class="docutils literal notranslate"><span class="pre">face</span></code></p></li>
638
+ <li><p>internal gluing equations: <code class="docutils literal notranslate"><span class="pre">internal</span></code></p></li>
639
+ </ul>
640
+ </li>
641
+ <li><p>cusp gluing equations: <code class="docutils literal notranslate"><span class="pre">peripheral</span></code></p>
642
+ <ul>
643
+ <li><p>cusp gluing equations for meridians: <code class="docutils literal notranslate"><span class="pre">meridian</span></code></p></li>
644
+ <li><p>cusp gluing equations for longitudes: <code class="docutils literal notranslate"><span class="pre">longitude</span></code></p></li>
645
+ </ul>
646
+ </li>
647
+ </ul>
648
+ </dd></dl>
649
+
650
+ <dl class="py method">
651
+ <dt class="sig sig-object py" id="snappy.Triangulation.has_finite_vertices">
652
+ <span class="sig-name descname"><span class="pre">has_finite_vertices</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">bool</span></span></span><a class="headerlink" href="#snappy.Triangulation.has_finite_vertices" title="Link to this definition"></a></dt>
653
+ <dd><p>Returns <code class="docutils literal notranslate"><span class="pre">True</span></code> if and only if the triangulation has finite (non-ideal)
654
+ vertices.</p>
655
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
656
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
657
+ <span class="go">False</span>
658
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">12</span><span class="p">,</span><span class="mi">13</span><span class="p">))</span>
659
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">S</span> <span class="o">=</span> <span class="n">T</span><span class="o">.</span><span class="n">filled_triangulation</span><span class="p">()</span>
660
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">S</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
661
+ <span class="go">True</span>
662
+ </pre></div>
663
+ </div>
664
+ <p>When trying to find a hyperbolic structure, SnapPea will eliminate
665
+ finite vertices:</p>
666
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">S</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
667
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
668
+ <span class="go">False</span>
669
+ </pre></div>
670
+ </div>
671
+ </dd></dl>
672
+
673
+ <dl class="py method">
674
+ <dt class="sig sig-object py" id="snappy.Triangulation.homological_longitude">
675
+ <span class="sig-name descname"><span class="pre">homological_longitude</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.homological_longitude" title="Link to this definition"></a></dt>
676
+ <dd><p>Returns the peripheral curve in the given cusp, if any, which is
677
+ homologically trivial (with rational coefficients) in the manifold:</p>
678
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
679
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
680
+ <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
681
+ </pre></div>
682
+ </div>
683
+ <p>If no cusp is specified, the default is the first unfilled cusp;
684
+ if all cusps are filled, the default is the first cusp:</p>
685
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L5a1(3,4)(0,0)&#39;</span><span class="p">)</span>
686
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
687
+ <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
688
+ </pre></div>
689
+ </div>
690
+ <p>The components of the next link have nontrivial linking number
691
+ so there is no such curve:</p>
692
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">W</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L7a2&#39;</span><span class="p">)</span>
693
+ <span class="n">sage</span><span class="p">:</span> <span class="n">W</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">(</span><span class="n">cusp</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span>
694
+ <span class="kc">True</span>
695
+ </pre></div>
696
+ </div>
697
+ <p>If every curve in the given cusp is trivial in the rational homology of
698
+ the manifold, an exception is raised:</p>
699
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1(1,0)&#39;</span><span class="p">)</span>
700
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">homological_longitude</span><span class="p">()</span>
701
+ <span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
702
+ <span class="o">...</span>
703
+ <span class="ne">ValueError</span><span class="p">:</span> <span class="n">Every</span> <span class="n">curve</span> <span class="n">on</span> <span class="n">cusp</span> <span class="ow">is</span> <span class="n">homologically</span> <span class="n">trivial</span>
704
+ </pre></div>
705
+ </div>
706
+ </dd></dl>
707
+
708
+ <dl class="py method">
709
+ <dt class="sig sig-object py" id="snappy.Triangulation.homology">
710
+ <span class="sig-name descname"><span class="pre">homology</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="additional_classes.html#snappy.AbelianGroup" title="SnapPy.AbelianGroup"><span class="pre">AbelianGroup</span></a></span></span><a class="headerlink" href="#snappy.Triangulation.homology" title="Link to this definition"></a></dt>
711
+ <dd><p>Returns an <a class="reference internal" href="additional_classes.html#snappy.AbelianGroup" title="snappy.AbelianGroup"><code class="xref py py-class docutils literal notranslate"><span class="pre">AbelianGroup</span></code></a> representing the first integral
712
+ homology group of the underlying (Dehn filled) manifold.</p>
713
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m003&#39;</span><span class="p">)</span>
714
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">homology</span><span class="p">()</span>
715
+ <span class="go">Z/5 + Z</span>
716
+ </pre></div>
717
+ </div>
718
+ </dd></dl>
719
+
720
+ <dl class="py method">
721
+ <dt class="sig sig-object py" id="snappy.Triangulation.is_orientable">
722
+ <span class="sig-name descname"><span class="pre">is_orientable</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">bool</span></span></span><a class="headerlink" href="#snappy.Triangulation.is_orientable" title="Link to this definition"></a></dt>
723
+ <dd><p>Return whether the underlying 3-manifold is orientable.</p>
724
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;x124&#39;</span><span class="p">)</span>
725
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">()</span>
726
+ <span class="go">False</span>
727
+ </pre></div>
728
+ </div>
729
+ </dd></dl>
730
+
731
+ <dl class="py method">
732
+ <dt class="sig sig-object py" id="snappy.Triangulation.isomorphisms_to">
733
+ <span class="sig-name descname"><span class="pre">isomorphisms_to</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">other</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><span class="pre">Triangulation</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">TriangulationHP</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">Isometry</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#snappy.Triangulation.isomorphisms_to" title="Link to this definition"></a></dt>
734
+ <dd><p>Returns a complete list of combinatorial isomorphisms between
735
+ the two triangulations:</p>
736
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;5^2_1&#39;</span><span class="p">)</span>
737
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;5^2_1&#39;</span><span class="p">)</span>
738
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">set_peripheral_curves</span><span class="p">([[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">]],[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]]])</span>
739
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">isoms</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
740
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">isoms</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span>
741
+ <span class="go">0 -&gt; 1 1 -&gt; 0</span>
742
+ <span class="go">[ 1 0] [-1 1]</span>
743
+ <span class="go">[-1 1] [-3 2]</span>
744
+ <span class="go">Does not extend to link</span>
745
+ </pre></div>
746
+ </div>
747
+ <p>Each transformation between cusps is given by a matrix which
748
+ acts on the left. That is, the two <em>columns</em> of the matrix
749
+ give the image of the meridian and longitude respectively. In
750
+ the above example, the meridian of cusp 0 is sent to the
751
+ meridian of cusp 1.</p>
752
+ </dd></dl>
753
+
754
+ <dl class="py method">
755
+ <dt class="sig sig-object py" id="snappy.Triangulation.link">
756
+ <span class="sig-name descname"><span class="pre">link</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.link" title="Link to this definition"></a></dt>
757
+ <dd><p>If the manifold is stored as a link complement in your
758
+ current session then it returns the number of components
759
+ and crossing of the link. To view and interact with the
760
+ link see <a class="reference internal" href="spherogram.html#spherogram.Link.view" title="spherogram.Link.view"><code class="xref py py-meth docutils literal notranslate"><span class="pre">spherogram.Link.view()</span></code></a>
761
+ and <a class="reference internal" href="#snappy.Triangulation.plink" title="snappy.Triangulation.plink"><code class="xref py py-meth docutils literal notranslate"><span class="pre">plink</span></code></a>.</p>
762
+ </dd></dl>
763
+
764
+ <dl class="py method">
765
+ <dt class="sig sig-object py" id="snappy.Triangulation.name">
766
+ <span class="sig-name descname"><span class="pre">name</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="headerlink" href="#snappy.Triangulation.name" title="Link to this definition"></a></dt>
767
+ <dd><p>Return the name of the triangulation.</p>
768
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
769
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">name</span><span class="p">()</span>
770
+ <span class="go">&#39;4_1&#39;</span>
771
+ </pre></div>
772
+ </div>
773
+ </dd></dl>
774
+
775
+ <dl class="py method">
776
+ <dt class="sig sig-object py" id="snappy.Triangulation.normal_boundary_slopes">
777
+ <span class="sig-name descname"><span class="pre">normal_boundary_slopes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">subset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_boundary_slopes" title="Link to this definition"></a></dt>
778
+ <dd><p>For a one-cusped manifold, returns all the nonempty boundary slopes of
779
+ spun normal surfaces. Provided the triangulation supports a
780
+ genuine hyperbolic structure, then by <a class="reference external" href="http://arxiv.org/abs/math/0503027">Thurston and Walsh</a> any strict boundary slope
781
+ (the boundary of an essential surface which is not a fiber or
782
+ semifiber) must be listed here.</p>
783
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K3_1&#39;</span><span class="p">)</span>
784
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
785
+ <span class="go">[(16, -1), (20, -1), (37, -2)]</span>
786
+ </pre></div>
787
+ </div>
788
+ <p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'kabaya'</span></code>, then it only
789
+ returns boundary slopes associated to vertex surfaces with a quad
790
+ in every tetrahedron; by Theorem 1.1. of
791
+ <a class="reference external" href="http://arxiv.org/abs/1102.4588">Dunfield and Garoufalidis ‘12</a>
792
+ these are all strict boundary slopes.</p>
793
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m113&#39;</span><span class="p">)</span>
794
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">()</span>
795
+ <span class="go">[(1, 1), (1, 2), (2, -1), (2, 3), (8, 11)]</span>
796
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">&#39;kabaya&#39;</span><span class="p">)</span>
797
+ <span class="go">[(8, 11)]</span>
798
+ </pre></div>
799
+ </div>
800
+ <p>If the <code class="docutils literal notranslate"><span class="pre">subset</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">'brasile'</span></code> then it returns
801
+ only the boundary slopes that are associated to vertex surfaces
802
+ giving isolated rays in the space of embedded normal surfaces.</p>
803
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">normal_boundary_slopes</span><span class="p">(</span><span class="s1">&#39;brasile&#39;</span><span class="p">)</span>
804
+ <span class="go">[(1, 2), (8, 11)]</span>
805
+ </pre></div>
806
+ </div>
807
+ </dd></dl>
808
+
809
+ <dl class="py method">
810
+ <dt class="sig sig-object py" id="snappy.Triangulation.normal_surfaces">
811
+ <span class="sig-name descname"><span class="pre">normal_surfaces</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'FXrays'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.normal_surfaces" title="Link to this definition"></a></dt>
812
+ <dd><p>All the vertex spun-normal surfaces in the current triangulation.</p>
813
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
814
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">normal_surfaces</span><span class="p">()</span>
815
+ <span class="go">[&lt;Surface 0: [0, 0] [1, 2] (4, 1)&gt;,</span>
816
+ <span class="go"> &lt;Surface 1: [0, 1] [1, 2] (4, -1)&gt;,</span>
817
+ <span class="go"> &lt;Surface 2: [1, 2] [2, 1] (-4, -1)&gt;,</span>
818
+ <span class="go"> &lt;Surface 3: [2, 2] [2, 1] (-4, 1)&gt;]</span>
819
+ </pre></div>
820
+ </div>
821
+ </dd></dl>
822
+
823
+ <dl class="py method">
824
+ <dt class="sig sig-object py" id="snappy.Triangulation.num_cusps">
825
+ <span class="sig-name descname"><span class="pre">num_cusps</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">cusp_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'all'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="headerlink" href="#snappy.Triangulation.num_cusps" title="Link to this definition"></a></dt>
826
+ <dd><p>Return the total number of cusps. By giving the optional argument
827
+ ‘orientable’ or ‘nonorientable’ it will only count cusps of that type.</p>
828
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m125&#39;</span><span class="p">)</span>
829
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_cusps</span><span class="p">()</span>
830
+ <span class="go">2</span>
831
+ </pre></div>
832
+ </div>
833
+ </dd></dl>
834
+
835
+ <dl class="py method">
836
+ <dt class="sig sig-object py" id="snappy.Triangulation.num_tetrahedra">
837
+ <span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">int</span></span></span><a class="headerlink" href="#snappy.Triangulation.num_tetrahedra" title="Link to this definition"></a></dt>
838
+ <dd><p>Return the number of tetrahedra in the triangulation.</p>
839
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
840
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
841
+ <span class="go">2</span>
842
+ </pre></div>
843
+ </div>
844
+ </dd></dl>
845
+
846
+ <dl class="py method">
847
+ <dt class="sig sig-object py" id="snappy.Triangulation.orientation_cover">
848
+ <span class="sig-name descname"><span class="pre">orientation_cover</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.orientation_cover" title="Link to this definition"></a></dt>
849
+ <dd><p>For a non-orientable Triangulation, returns the 2-fold cover which
850
+ is orientable.</p>
851
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">X</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;x123&#39;</span><span class="p">)</span>
852
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">orientation_cover</span><span class="p">()</span>
853
+ <span class="gp">&gt;&gt;&gt; </span><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">(),</span> <span class="n">Y</span><span class="o">.</span><span class="n">is_orientable</span><span class="p">())</span>
854
+ <span class="go">(False, True)</span>
855
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span>
856
+ <span class="go">x123~(0,0)(0,0)</span>
857
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Y</span><span class="o">.</span><span class="n">cover_info</span><span class="p">()[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span>
858
+ <span class="go">&#39;cyclic&#39;</span>
859
+ </pre></div>
860
+ </div>
861
+ </dd></dl>
862
+
863
+ <dl class="py method">
864
+ <dt class="sig sig-object py" id="snappy.Triangulation.plink">
865
+ <span class="sig-name descname"><span class="pre">plink</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.plink" title="Link to this definition"></a></dt>
866
+ <dd><p>Brings up a link editor window if the manifold is stored
867
+ as a link complement in your current session.</p>
868
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span> <span class="c1"># stored as a triangulation with a link</span>
869
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
870
+ <span class="go">&lt;Link: 1 comp; 4 cross&gt;</span>
871
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span> <span class="c1"># stored as a triangulation without a link</span>
872
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">link</span><span class="p">()</span>
873
+ <span class="gt">Traceback (most recent call last):</span>
874
+ <span class="c">...</span>
875
+ <span class="gr">ValueError</span>: <span class="n">No associated link known.</span>
876
+ </pre></div>
877
+ </div>
878
+ </dd></dl>
879
+
880
+ <dl class="py method">
881
+ <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_generalized_obstruction_classes">
882
+ <span class="sig-name descname"><span class="pre">ptolemy_generalized_obstruction_classes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_generalized_obstruction_classes" title="Link to this definition"></a></dt>
883
+ <dd><p>Returns the obstruction classes needed to compute
884
+ PGL(N,C)-representations for any N, i.e., it returns a list with
885
+ a representative cocycle for each element in
886
+ H^2(M, boundary M; Z/N) / (Z/N)^* where (Z/N)^* are the units in Z/N.
887
+ The first element in the list always corresponds to the trivial
888
+ obstruction class.
889
+ The generalized ptolemy obstruction classes are thus a generalization
890
+ of the ptolemy obstruction classes that allow to find all
891
+ boundary-unipotent
892
+ PGL(N,C)-representations including those that do not lift to
893
+ boundary-unipotent SL(N,C)-representations for N odd or
894
+ SL(N,C)/{+1,-1}-representations for N even.</p>
895
+ <p>For example, 4_1 has three obstruction classes up to equivalence:</p>
896
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
897
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
898
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
899
+ <span class="go">3</span>
900
+ </pre></div>
901
+ </div>
902
+ <p>For 4_1, we only get three obstruction classes even though we have
903
+ H^2(M, boundary M; Z/4) = Z/4 because the two obstruction classes
904
+ 1 in Z/4 and -1 in Z/4 are related by a unit and thus give
905
+ isomorphic Ptolemy varieties.</p>
906
+ <p>The primary use of an obstruction class sigma is to construct the
907
+ Ptolemy variety of sigma. This variety computes boundary-unipotent
908
+ PGL(N,C)-representations whose obstruction class to a
909
+ boundary-unipotent lift to SL(N,C) is sigma.</p>
910
+ <p>For example for 4_1, there are 2 obstruction classes for N = 3:</p>
911
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
912
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
913
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
914
+ <span class="go">2</span>
915
+ </pre></div>
916
+ </div>
917
+ <p>The Ptolemy variety parametrizing boundary-unipotent
918
+ SL(3,C)-representations of 4_1 is obtained by</p>
919
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
920
+ </pre></div>
921
+ </div>
922
+ <p>and the Ptolemy variety parametrizing boundary-unipotent
923
+ PSL(3,C)-representations of 4_1 that do not lift to
924
+ boundary-unipotent SL(3,C)-representations is obtained by</p>
925
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
926
+ </pre></div>
927
+ </div>
928
+ <p>The cocycle representing the non-trivial obstruction class looks as
929
+ follows:</p>
930
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
931
+ <span class="go">PtolemyGeneralizedObstructionClass([2, 0, 0, 1])</span>
932
+ </pre></div>
933
+ </div>
934
+ <p>This means that the cocycle takes the value -1 in Z/3 on the first face
935
+ class and 1 on the fourth face class but zero on every other of the
936
+ four face classes.</p>
937
+ </dd></dl>
938
+
939
+ <dl class="py method">
940
+ <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_obstruction_classes">
941
+ <span class="sig-name descname"><span class="pre">ptolemy_obstruction_classes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_obstruction_classes" title="Link to this definition"></a></dt>
942
+ <dd><p>Returns the obstruction classes needed to compute
943
+ pSL(N,C) = SL(N,C)/{+1,-1} representations for even N, i.e., it
944
+ returns a list with a representative cocycle for each class in
945
+ H^2(M, boundary M; Z/2). The first element in the list is always
946
+ representing the trivial obstruction class.</p>
947
+ <p>For example, 4_1 has two obstruction classes:</p>
948
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
949
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
950
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
951
+ <span class="go">2</span>
952
+ </pre></div>
953
+ </div>
954
+ <p>The primary use of these obstruction classes is to construct
955
+ the Ptolemy variety as described in Definition 1.7 of
956
+ Stavros Garoufalidis, Dylan Thurston, Christian K. Zickert:
957
+ “The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
958
+ (<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>).</p>
959
+ <p>For example, to construct the Ptolemy variety for
960
+ PSL(2,C)-representations of 4_1 that do not lift to boundary-parabolic
961
+ SL(2,C)-representations, use:</p>
962
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="n">N</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
963
+ </pre></div>
964
+ </div>
965
+ <p>Or the following short-cut:</p>
966
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
967
+ </pre></div>
968
+ </div>
969
+ <p>Note that this obstruction class only makes sense for even N:</p>
970
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
971
+ <span class="gt">Traceback (most recent call last):</span>
972
+ <span class="c">...</span>
973
+ <span class="gr">AssertionError</span>: <span class="n">PtolemyObstructionClass only makes sense for even N, try PtolemyGeneralizedObstructionClass</span>
974
+ </pre></div>
975
+ </div>
976
+ <p>To obtain PGL(N,C)-representations for N &gt; 2, use the generalized
977
+ obstruction class:</p>
978
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_generalized_obstruction_classes</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
979
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
980
+ </pre></div>
981
+ </div>
982
+ <p>The original obstruction class encodes a representing cocycle in Z/2 as follows:</p>
983
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">c</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_obstruction_classes</span><span class="p">()</span>
984
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
985
+ <span class="go">PtolemyObstructionClass(s_0_0 + 1, s_1_0 - 1, s_2_0 - 1, s_3_0 + 1, s_0_0 - s_0_1, s_1_0 - s_3_1, s_2_0 - s_2_1, s_3_0 - s_1_1)</span>
986
+ </pre></div>
987
+ </div>
988
+ <p>This means that the cocycle to represent this obstruction class in Z/2
989
+ takes value 1 in Z/2 on face 0 of tetrahedra 0 (because s_0_0 = -1)
990
+ and value 0 in Z/2 on face 1 of tetrahedra 0 (because s_1_0 = +1).</p>
991
+ <p>Face 3 of tetrahedra 0 and face 1 of tetrahedra 1 are identified,
992
+ hence the cocycle takes the same value on those two faces (s_3_0 = s_1_1).</p>
993
+ </dd></dl>
994
+
995
+ <dl class="py method">
996
+ <dt class="sig sig-object py" id="snappy.Triangulation.ptolemy_variety">
997
+ <span class="sig-name descname"><span class="pre">ptolemy_variety</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obstruction_class</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eliminate_fixed_ptolemys</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.ptolemy_variety" title="Link to this definition"></a></dt>
998
+ <dd><p>Returns a Ptolemy variety as described in</p>
999
+ <ul class="simple">
1000
+ <li><p>Stavros Garoufalidis, Dyland Thurston, Christian K. Zickert:
1001
+ “The Complex Volume of SL(n,C)-Representations of 3-Manifolds”
1002
+ (<a class="reference external" href="http://arxiv.org/abs/1111.2828">http://arxiv.org/abs/1111.2828</a>)</p></li>
1003
+ <li><p>Stavros Garoufalidis, Matthias Goerner, Christian K. Zickert:
1004
+ “Gluing Equations for PGL(n,C)-Representations of 3-Manifolds ”
1005
+ (<a class="reference external" href="http://arxiv.org/abs/1207.6711">http://arxiv.org/abs/1207.6711</a>)</p></li>
1006
+ </ul>
1007
+ <p>The variety can be exported to magma or sage and solved there. The
1008
+ solutions can be processed to compute invariants. The method can also
1009
+ be used to automatically look up precomputed solutions from the
1010
+ database at <a class="reference external" href="http://ptolemy.unhyperbolic.org/data">http://ptolemy.unhyperbolic.org/data</a> .</p>
1011
+ <p>Example for m011 and PSL(2,C)-representations:</p>
1012
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m011&quot;</span><span class="p">)</span>
1013
+ </pre></div>
1014
+ </div>
1015
+ <p>Obtain all Ptolemy varieties for PSL(2,C)-representations:</p>
1016
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span>
1017
+ </pre></div>
1018
+ </div>
1019
+ <p>There are two Ptolemy varieties for the two obstruction classes:</p>
1020
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
1021
+ <span class="go">2</span>
1022
+ </pre></div>
1023
+ </div>
1024
+ <p>Retrieve the solutions from the database</p>
1025
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
1026
+ </pre></div>
1027
+ </div>
1028
+ <p>Compute the solutions using magma (default in SnapPy)</p>
1029
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">&#39;magma&#39;</span><span class="p">)</span>
1030
+ </pre></div>
1031
+ </div>
1032
+ <p>Compute the solutions using singular (default in sage)</p>
1033
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">(</span><span class="n">engine</span> <span class="o">=</span> <span class="s1">&#39;sage&#39;</span><span class="p">)</span>
1034
+ </pre></div>
1035
+ </div>
1036
+ <p>Note that magma is significantly faster.</p>
1037
+ <p>Compute all resulting complex volumes</p>
1038
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">complex_volume_numerical</span><span class="p">()</span>
1039
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span>
1040
+ <span class="go">[[[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
1041
+ <span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
1042
+ <span class="go"> 0.942707362776931 + 0.459731436553693*I]],</span>
1043
+ <span class="go"> [[3.94159248086745 E-15 + 0.312682687518267*I,</span>
1044
+ <span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
1045
+ <span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
1046
+ <span class="go"> 2.78183391239608 - 0.496837853805869*I]]]</span>
1047
+ </pre></div>
1048
+ </div>
1049
+ <p>Show complex volumes as a non-nested list:</p>
1050
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">cvols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="n">depth</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
1051
+ <span class="go">[-4.29405713186238 E-16 + 0.725471193740844*I,</span>
1052
+ <span class="go"> -0.942707362776931 + 0.459731436553693*I,</span>
1053
+ <span class="go"> 0.942707362776931 + 0.459731436553693*I,</span>
1054
+ <span class="go"> 3.94159248086745 E-15 + 0.312682687518267*I,</span>
1055
+ <span class="go"> 4.64549527022581 E-15 + 0.680993020093457*I,</span>
1056
+ <span class="go"> -2.78183391239608 - 0.496837853805869*I,</span>
1057
+ <span class="go"> 2.78183391239608 - 0.496837853805869*I]</span>
1058
+ </pre></div>
1059
+ </div>
1060
+ <p>For more examples, go to <a class="reference external" href="http://ptolemy.unhyperbolic.org/">http://ptolemy.unhyperbolic.org/</a></p>
1061
+ <p>=== Optional Arguments ===</p>
1062
+ <p>obstruction_class class from Definition 1.7 of (1).
1063
+ None for trivial class or a value returned from ptolemy_obstruction_classes.
1064
+ Short cuts: obstruction_class = ‘all’ returns a list of Ptolemy varieties
1065
+ for each obstruction. For easier iteration, can set obstruction_class to
1066
+ an integer.</p>
1067
+ <p>simplify boolean to indicate whether to simplify the equations which
1068
+ significantly reduces the number of variables.
1069
+ Simplifying means that several identified Ptolemy coordinates x = y = z = …
1070
+ are eliminated instead of adding relations x - y = 0, y - z = 0, …</p>
1071
+ <p>eliminate_fixed_ptolemys boolean to indicate whether to eliminate
1072
+ the Ptolemy coordinates that are set to 1 for fixing the decoration.
1073
+ Even though this simplifies the resulting representation, setting it to
1074
+ True can cause magma to run longer when finding a Groebner basis.</p>
1075
+ <p>=== Examples for 4_1 ===</p>
1076
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
1077
+ </pre></div>
1078
+ </div>
1079
+ <p>Get the varieties for all obstruction classes at once (use
1080
+ help(varieties[0]) for more information):</p>
1081
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">varieties</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s2">&quot;all&quot;</span><span class="p">)</span>
1082
+ </pre></div>
1083
+ </div>
1084
+ <p>Print the variety as an ideal (sage object) for the non-trivial class:</p>
1085
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">ideal</span>
1086
+ <span class="go">Ideal (-c_0011_0^2 + c_0011_0*c_0101_0 + c_0101_0^2, -c_0011_0^2 - c_0011_0*c_0101_0 + c_0101_0^2, c_0011_0 - 1) of Multivariate Polynomial Ring in c_0011_0, c_0101_0 over Rational Field</span>
1087
+ </pre></div>
1088
+ </div>
1089
+ <p>Print the equations of the variety for the non-trivial class:</p>
1090
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">eqn</span> <span class="ow">in</span> <span class="n">varieties</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">equations</span><span class="p">:</span>
1091
+ <span class="gp">... </span> <span class="nb">print</span><span class="p">(</span><span class="n">eqn</span><span class="p">)</span>
1092
+ <span class="go"> - c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2</span>
1093
+ <span class="go"> c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
1094
+ <span class="go"> - 1 + c_0011_0</span>
1095
+ </pre></div>
1096
+ </div>
1097
+ <p>Generate a magma file to compute Primary Decomposition for N = 3:</p>
1098
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
1099
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">s</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">to_magma</span><span class="p">()</span>
1100
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;ring and ideal&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">strip</span><span class="p">())</span>
1101
+ <span class="go">R&lt;c_0012_0, c_0012_1, c_0102_0, c_0111_0, c_0201_0, c_1011_0, c_1011_1, c_1101_0&gt; := PolynomialRing(RationalField(), 8, &quot;grevlex&quot;);</span>
1102
+ <span class="go">MyIdeal := ideal&lt;R |</span>
1103
+ <span class="go"> c_0012_0 * c_1101_0 + c_0102_0 * c_0111_0 - c_0102_0 * c_1011_0,</span>
1104
+ <span class="go"> ...</span>
1105
+ </pre></div>
1106
+ </div>
1107
+ <p>=== If you have a magma installation ===</p>
1108
+ <p>Call p.compute_solutions() to automatically call magma on the above output
1109
+ and produce exact solutions!!!</p>
1110
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">try</span><span class="p">:</span>
1111
+ <span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">compute_solutions</span><span class="p">()</span>
1112
+ <span class="gp">... </span><span class="k">except</span><span class="p">:</span>
1113
+ <span class="gp">... </span> <span class="c1"># magma failed, use precomputed_solutions</span>
1114
+ <span class="gp">... </span> <span class="n">sols</span> <span class="o">=</span> <span class="kc">None</span>
1115
+ </pre></div>
1116
+ </div>
1117
+ <p>Check solutions against manifold
1118
+ &gt;&gt;&gt; if sols:
1119
+ … dummy = sols.check_against_manifold()</p>
1120
+ <p>=== If you do not have a magma installation ===</p>
1121
+ <p>Load a precomputed example from magma which is provided with the package:</p>
1122
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
1123
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
1124
+
1125
+ <span class="go">==TRIANGULATION=BEGINS==</span>
1126
+ <span class="go">% Triangulation</span>
1127
+ <span class="go">4_1</span>
1128
+ <span class="go">...</span>
1129
+ </pre></div>
1130
+ </div>
1131
+ <p>Parse the file and produce solutions:</p>
1132
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
1133
+ </pre></div>
1134
+ </div>
1135
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dummy</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">()</span>
1136
+ </pre></div>
1137
+ </div>
1138
+ <p>=== Continue here whether you have or do not have magma ===</p>
1139
+ <p>Pick the first solution of the three different solutions (up to Galois
1140
+ conjugates):</p>
1141
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">sols</span><span class="p">)</span>
1142
+ <span class="go">3</span>
1143
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">solution</span> <span class="o">=</span> <span class="n">sols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
1144
+ </pre></div>
1145
+ </div>
1146
+ <p>Read the exact value for c_1020_0 (help(solution) for more information
1147
+ on how to compute cross ratios, volumes and other invariants):</p>
1148
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">solution</span><span class="p">[</span><span class="s1">&#39;c_1020_0&#39;</span><span class="p">]</span>
1149
+ <span class="go">Mod(-1/2*x - 3/2, x^2 + 3*x + 4)</span>
1150
+ </pre></div>
1151
+ </div>
1152
+ <p>Example of simplified vs non-simplified variety for N = 4:</p>
1153
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">simplified</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
1154
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">full</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">simplify</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
1155
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">variables</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">variables</span><span class="p">)</span>
1156
+ <span class="go">(21, 63)</span>
1157
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">simplified</span><span class="o">.</span><span class="n">equations</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">full</span><span class="o">.</span><span class="n">equations</span><span class="p">)</span>
1158
+ <span class="go">(24, 72)</span>
1159
+ </pre></div>
1160
+ </div>
1161
+ </dd></dl>
1162
+
1163
+ <dl class="py method">
1164
+ <dt class="sig sig-object py" id="snappy.Triangulation.randomize">
1165
+ <span class="sig-name descname"><span class="pre">randomize</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">blowup_multiple</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.randomize" title="Link to this definition"></a></dt>
1166
+ <dd><p>Perform random Pachner moves on the underlying triangulation,
1167
+ including some initial 3 -&gt; 2 moves that increase the number of
1168
+ tetrahedra by blowup_multiple.</p>
1169
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;Braid:[1,2,-3,-3,1,2]&#39;</span><span class="p">)</span>
1170
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">randomize</span><span class="p">()</span>
1171
+ </pre></div>
1172
+ </div>
1173
+ </dd></dl>
1174
+
1175
+ <dl class="py method">
1176
+ <dt class="sig sig-object py" id="snappy.Triangulation.reverse_orientation">
1177
+ <span class="sig-name descname"><span class="pre">reverse_orientation</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.reverse_orientation" title="Link to this definition"></a></dt>
1178
+ <dd><p>Reverses the orientation of the Triangulation, presuming that
1179
+ it is orientable.</p>
1180
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
1181
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">cs</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">()</span>
1182
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1183
+ <span class="gp">&gt;&gt;&gt; </span><span class="nb">abs</span><span class="p">(</span><span class="n">cs</span> <span class="o">+</span> <span class="n">M</span><span class="o">.</span><span class="n">chern_simons</span><span class="p">())</span>
1184
+ <span class="go">0.0</span>
1185
+ </pre></div>
1186
+ </div>
1187
+ </dd></dl>
1188
+
1189
+ <dl class="py method">
1190
+ <dt class="sig sig-object py" id="snappy.Triangulation.save">
1191
+ <span class="sig-name descname"><span class="pre">save</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">file_name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.save" title="Link to this definition"></a></dt>
1192
+ <dd><p>Save the triangulation as a SnapPea triangulation file.</p>
1193
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1194
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri&#39;</span><span class="p">)</span>
1195
+ </pre></div>
1196
+ </div>
1197
+ <p>To retrieve a SnapPea triangulation from the saved file
1198
+ you can do the following. The first command creates a cusped
1199
+ manifold M. The second one creates the filled manifold M1
1200
+ with Dehn coefficients (2,3).</p>
1201
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri&#39;</span><span class="p">)</span>
1202
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M1</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;fig-eight.tri(2,3)&#39;</span><span class="p">)</span>
1203
+ </pre></div>
1204
+ </div>
1205
+ </dd></dl>
1206
+
1207
+ <dl class="py method">
1208
+ <dt class="sig sig-object py" id="snappy.Triangulation.set_name">
1209
+ <span class="sig-name descname"><span class="pre">set_name</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">new_name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#snappy.Triangulation.set_name" title="Link to this definition"></a></dt>
1210
+ <dd><p>Give the triangulation a new name.</p>
1211
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;4_1&#39;</span><span class="p">)</span>
1212
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">set_name</span><span class="p">(</span><span class="s1">&#39;figure-eight-comp&#39;</span><span class="p">)</span>
1213
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span>
1214
+ <span class="go">figure-eight-comp(0,0)</span>
1215
+ </pre></div>
1216
+ </div>
1217
+ </dd></dl>
1218
+
1219
+ <dl class="py method">
1220
+ <dt class="sig sig-object py" id="snappy.Triangulation.set_peripheral_curves">
1221
+ <span class="sig-name descname"><span class="pre">set_peripheral_curves</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">peripheral_data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">which_cusp</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_matrices</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.set_peripheral_curves" title="Link to this definition"></a></dt>
1222
+ <dd><p>Each cusp has a preferred marking. In the case of a torus
1223
+ cusp, this is pair of essential simple curves meeting in one
1224
+ point; equivalently, a basis of the first homology of the
1225
+ boundary torus. These curves are called the meridian and the
1226
+ longitude.</p>
1227
+ <p>This method changes these markings in various ways. In many
1228
+ cases, if the flag return_matrices is True then it returns
1229
+ a list of change-of-basis matrices is returned, one per
1230
+ cusp, which will restore the original markings if passed
1231
+ as peripheral_data.</p>
1232
+ </dd></dl>
1233
+
1234
+ <dl class="py method">
1235
+ <dt class="sig sig-object py" id="snappy.Triangulation.simplify">
1236
+ <span class="sig-name descname"><span class="pre">simplify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">passes_at_fours</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">6</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.simplify" title="Link to this definition"></a></dt>
1237
+ <dd><p>Try to simplify the triangulation by doing Pachner moves.</p>
1238
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;12n123&#39;</span><span class="p">)</span>
1239
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">simplify</span><span class="p">()</span>
1240
+ </pre></div>
1241
+ </div>
1242
+ <p>It does four kinds of moves that reduce the number of
1243
+ tetrahedra:</p>
1244
+ <ul class="simple">
1245
+ <li><p>3 -&gt; 2 and 2 -&gt; 0 Pacher moves, which eliminate one or two
1246
+ tetrahedra respectively.</p></li>
1247
+ <li><p>On suitable valence-1 edges, does a 2 -&gt; 3 and then 2 -&gt; 0 move,
1248
+ which removes a tetrahedron and creates a new valence-1 edge.</p></li>
1249
+ <li><p>When a 2-simplex has two edges of valence-4 giving rise to the
1250
+ suspension of a pentagon, replace these 6 tetrahedra with a
1251
+ single edge of valence 5.</p></li>
1252
+ </ul>
1253
+ <p>It also does random 4 -&gt; 4 moves in hopes of setting up a
1254
+ simplfication. The argument passes_at_fours is the number of
1255
+ times it goes through the valence-4 edges without progress
1256
+ before giving up.</p>
1257
+ </dd></dl>
1258
+
1259
+ <dl class="py method">
1260
+ <dt class="sig sig-object py" id="snappy.Triangulation.slice_obstruction_HKL">
1261
+ <span class="sig-name descname"><span class="pre">slice_obstruction_HKL</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">primes_spec</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">check_in_S3</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.slice_obstruction_HKL" title="Link to this definition"></a></dt>
1262
+ <dd><p>For the exterior of a knot in S^3, searches for a topological
1263
+ slicing obstruction from:</p>
1264
+ <p>Herald, Kirk, Livingston, Math Zeit., 2010
1265
+ <a class="reference external" href="https://dx.doi.org/10.1007/s00209-009-0548-1">https://dx.doi.org/10.1007/s00209-009-0548-1</a>
1266
+ <a class="reference external" href="https://arxiv.org/abs/0804.1355">https://arxiv.org/abs/0804.1355</a></p>
1267
+ <p>The test looks at the cyclic branched covers of the knot of prime
1268
+ order p and the F_q homology thereof where q is an odd prime. The
1269
+ range of such (p, q) pairs searched is given by primes_spec as a
1270
+ list of (p_max, [q_min, q_max]). It returns the pair (p, q) of
1271
+ the first nonzero obstruction found (in which case K is not
1272
+ slice), and otherwise returns None:</p>
1273
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;K12n813&#39;</span><span class="p">)</span>
1274
+ <span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">10</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">]),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])]</span>
1275
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1276
+ <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">...</span>
1277
+ <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
1278
+ <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1279
+ </pre></div>
1280
+ </div>
1281
+ <p>You can also specify the p to examine by a range [p_min, p_max] or
1282
+ the q by just q_max:</p>
1283
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">spec</span> <span class="o">=</span> <span class="p">[([</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="mi">10</span><span class="p">)]</span>
1284
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">(</span><span class="n">spec</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1285
+ <span class="n">Looking</span> <span class="n">at</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span> <span class="o">...</span>
1286
+ <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1287
+ </pre></div>
1288
+ </div>
1289
+ <p>If primes_spec is just a pair (p, q) then only that obstruction is
1290
+ checked:</p>
1291
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
1292
+ <span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">slice_obstruction_HKL</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">))</span>
1293
+ <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
1294
+ </pre></div>
1295
+ </div>
1296
+ <p>Technical note: As implemented, can only get an obstruction when
1297
+ the decomposition of H_1(cover; F_q) into irreducible Z/pZ-modules
1298
+ has no repeat factors. The method of [HKL] can be used more
1299
+ broadly, but other cases requires computing many more twisted
1300
+ Alexander polynomials.</p>
1301
+ </dd></dl>
1302
+
1303
+ <dl class="py method">
1304
+ <dt class="sig sig-object py" id="snappy.Triangulation.symplectic_basis">
1305
+ <span class="sig-name descname"><span class="pre">symplectic_basis</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verify</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.symplectic_basis" title="Link to this definition"></a></dt>
1306
+ <dd><p>Extend the Neumann-Zagier matrix to one which is symplectic
1307
+ (up to factors of 2) using oscillating curves, see
1308
+ <a class="reference external" href="https://arxiv.org/abs/2208.06969">Mathews and Purcell ‘22</a>.
1309
+ Only accepts triangulations with 1 cusp.</p>
1310
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;4_1&quot;</span><span class="p">)</span>
1311
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">symplectic_basis</span><span class="p">()</span>
1312
+ <span class="go">[-1 0 -1 -1]</span>
1313
+ <span class="go">[ 2 0 -2 0]</span>
1314
+ <span class="go">[-2 -1 -2 -1]</span>
1315
+ <span class="go">[ 0 -1 -2 -1]</span>
1316
+ </pre></div>
1317
+ </div>
1318
+ <dl class="field-list simple">
1319
+ <dt class="field-odd">Parameters<span class="colon">:</span></dt>
1320
+ <dd class="field-odd"><p><strong>verify</strong> Explicitly test if the resulting matrix is symplectic.</p>
1321
+ </dd>
1322
+ </dl>
1323
+ </dd></dl>
1324
+
1325
+ <dl class="py method">
1326
+ <dt class="sig sig-object py" id="snappy.Triangulation.triangulation_isosig">
1327
+ <span class="sig-name descname"><span class="pre">triangulation_isosig</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">decorated</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_cusp_ordering</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_curves</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_curve_orientations</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_filling_orientations</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_orientation</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">bool</span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">str</span></span></span><a class="headerlink" href="#snappy.Triangulation.triangulation_isosig" title="Link to this definition"></a></dt>
1328
+ <dd><p>Returns the “(decorated) isomorphism signature”, a compact text
1329
+ representation of the triangulation:</p>
1330
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1331
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1332
+ <span class="go">&#39;cPcbbbiht_BaCB&#39;</span>
1333
+ </pre></div>
1334
+ </div>
1335
+ <p>This string can be used later to recreate an isomorphic triangulation:</p>
1336
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">U</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;cPcbbbiht_BaCB&#39;</span><span class="p">)</span>
1337
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">==</span> <span class="n">U</span>
1338
+ <span class="go">True</span>
1339
+ </pre></div>
1340
+ </div>
1341
+ <p>The isomorphism signature is also used to compute the
1342
+ <a class="reference internal" href="manifold.html#snappy.Manifold.isometry_signature" title="snappy.Manifold.isometry_signature"><code class="xref py py-meth docutils literal notranslate"><span class="pre">isometry_signature</span></code></a>.
1343
+ It comes in two flavors controlled by the <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span></code> flag.</p>
1344
+ <p><strong>Undecorated isomorphism signature</strong></p>
1345
+ <p>The undecorated isomorphism signature is a complete invariant of the
1346
+ (oriented) triangulation up to combinatorial isomorphism:</p>
1347
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
1348
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1349
+ <span class="go">&#39;dLQbcccdero&#39;</span>
1350
+ </pre></div>
1351
+ </div>
1352
+ <p>It was introduced in
1353
+ <a class="reference external" href="http://arxiv.org/abs/1110.6080">Burton ‘11</a>. It canonizes and
1354
+ generalizes the ealier dehydration string by
1355
+ <a class="reference external" href="https://doi.org/10.1090/S0025-5718-99-01036-4">Callahan, Hildebrand and Weeks ‘99</a>.
1356
+ The undecorated isomorphism signature can also be given to
1357
+ <a class="reference external" href="https://regina-normal.github.io/">Regina</a>’s
1358
+ <code class="docutils literal notranslate"><span class="pre">Triangulation3.fromIsoSig</span></code>.</p>
1359
+ <p>By default, the orientation (if orientable) is ignored. More
1360
+ precisely, it computes the string for both orientations (if orientable)
1361
+ and uses the lexicographically smaller string:</p>
1362
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
1363
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1364
+ <span class="go">&#39;dLQbcccdero&#39;</span>
1365
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1366
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1367
+ <span class="go">&#39;dLQbcccdero&#39;</span>
1368
+ </pre></div>
1369
+ </div>
1370
+ <p>When specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation</span> <span class="pre">=</span> <span class="pre">False</span></code>, the result
1371
+ encodes the orientation (if orientable). Now the result is
1372
+ different if we change the orientation of a chiral triangulation:</p>
1373
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">T</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m015&#39;</span><span class="p">)</span>
1374
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1375
+ <span class="go">&#39;dLQbcccdero&#39;</span>
1376
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">reverse_orientation</span><span class="p">()</span>
1377
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">T</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1378
+ <span class="go">&#39;dLQbccceekg&#39;</span>
1379
+ </pre></div>
1380
+ </div>
1381
+ <p><strong>Decorated isomorphism signature (default)</strong></p>
1382
+ <p>SnapPy can decorate the isomorphism signature to include the following
1383
+ peripheral information in a canonical way (that is invariant under
1384
+ the action by combinatorial isomorphisms of the triangulation):</p>
1385
+ <ol class="arabic simple">
1386
+ <li><p>Indexing of the cusps (that is, ideal vertices).</p>
1387
+ <ul class="simple">
1388
+ <li><p>Included by default.
1389
+ Can be suppressed with <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_cusp_ordering</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
1390
+ </ul>
1391
+ </li>
1392
+ <li><p>Peripheral curves (aka meridian and longitude, up to homotopy).</p>
1393
+ <ul class="simple">
1394
+ <li><p>Included by default.
1395
+ Can be suppressed with <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
1396
+ <li><p>By default, the decoration encodes the oriented peripheral curves.
1397
+ By specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curve_orientations</span> <span class="pre">=</span> <span class="pre">True</span></code>, it encodes
1398
+ the unoriented peripheral curves instead.</p></li>
1399
+ </ul>
1400
+ </li>
1401
+ <li><p>Dehn-fillings (if present).</p>
1402
+ <ul class="simple">
1403
+ <li><p>By default, the decoration encodes the oriented Dehn-fillings.
1404
+ That is, we also encodes the orientation of the peripheral curve
1405
+ that is used for the Dehn-filling (this explanation only
1406
+ works if the coefficients are integral).
1407
+ By specifying <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_filling_orientations</span> <span class="pre">=</span> <span class="pre">True</span></code>, the
1408
+ decoration encodes the unoriented Dehn-fillings.
1409
+ That is, it normalizes the Dehn-filling coefficients by picking
1410
+ a canonical pair among <span class="math notranslate nohighlight">\((m,l)\)</span> and <span class="math notranslate nohighlight">\((-m,-l)\)</span>.</p></li>
1411
+ </ul>
1412
+ </li>
1413
+ </ol>
1414
+ <p>Details of the encoding are explained in the
1415
+ <a class="reference external" href="https://github.com/3-manifolds/SnapPy/blob/master/python/decorated_isosig.py">SnapPy source code</a>.</p>
1416
+ <p><strong>Example</strong></p>
1417
+ <p>Let us consider the links <span class="math notranslate nohighlight">\(9^2_{34}\)</span> and <code class="docutils literal notranslate"><span class="pre">L9a21</span></code>. Note that we use
1418
+ <a class="reference internal" href="manifold.html#snappy.Manifold.canonical_retriangulation" title="snappy.Manifold.canonical_retriangulation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code></a>
1419
+ to make the following examples say something intrinsic about the
1420
+ hyperbolic manifold:</p>
1421
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
1422
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;9^2_34&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">()</span>
1423
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">&#39;L9a21&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">()</span>
1424
+ </pre></div>
1425
+ </div>
1426
+ <p>The decorated isosig recovers the entire peripheral information faithfully
1427
+ (including orientation, see below):</p>
1428
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
1429
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_baBabbbBbC&#39;</span>
1430
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">K</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_baBabbbBbC&#39;</span><span class="p">)</span>
1431
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
1432
+ <span class="go">[0 -&gt; 0 1 -&gt; 1</span>
1433
+ <span class="go">[1 0] [1 0]</span>
1434
+ <span class="go">[0 1] [0 1]</span>
1435
+ <span class="go">Extends to link]</span>
1436
+ </pre></div>
1437
+ </div>
1438
+ <p>The two links have isometric complements:</p>
1439
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1440
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo&#39;</span>
1441
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1442
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo&#39;</span>
1443
+ </pre></div>
1444
+ </div>
1445
+ <p>However, the complements have different handedness:</p>
1446
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1447
+ <span class="go">&#39;oLLzLPwzQQccdeghjiiklmnmnnuvuvvavovvffffo&#39;</span>
1448
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">ignore_orientation</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
1449
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo&#39;</span>
1450
+ </pre></div>
1451
+ </div>
1452
+ <p>Also, the cusps/components of the link are indexed differently:</p>
1453
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1454
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_ba&#39;</span>
1455
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1456
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_ab&#39;</span>
1457
+ </pre></div>
1458
+ </div>
1459
+ <p>Ignoring the indexing, we also see that the oriented merdians and
1460
+ longitudes do not match:</p>
1461
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1462
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBbCBabb&#39;</span>
1463
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1464
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_BbbCbabb&#39;</span>
1465
+ </pre></div>
1466
+ </div>
1467
+ <p>However, they are the same links (ignoring indexing and orientation):</p>
1468
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_curve_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1469
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBBcbabb&#39;</span>
1470
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span><span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_curve_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1471
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo_bBBcbabb&#39;</span>
1472
+ </pre></div>
1473
+ </div>
1474
+ <p>Let us create two surgery presentations from the links (note that we
1475
+ fill after
1476
+ <a class="reference internal" href="manifold.html#snappy.Manifold.canonical_retriangulation" title="snappy.Manifold.canonical_retriangulation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code></a>
1477
+ since it rejects Dehn-fillings):</p>
1478
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span><span class="mi">0</span><span class="p">)</span>
1479
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">dehn_fill</span><span class="p">((</span><span class="mi">4</span><span class="p">,</span><span class="o">-</span><span class="mi">5</span><span class="p">),</span><span class="mi">1</span><span class="p">)</span>
1480
+ </pre></div>
1481
+ </div>
1482
+ <p>They are equivalent surgery presentations (of the same manifold):</p>
1483
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span>
1484
+ <span class="gp">... </span> <span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
1485
+ <span class="gp">... </span> <span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
1486
+ <span class="gp">... </span> <span class="n">ignore_filling_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1487
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo(0,0)(1,5)&#39;</span>
1488
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">(</span>
1489
+ <span class="gp">... </span> <span class="n">ignore_cusp_ordering</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
1490
+ <span class="gp">... </span> <span class="n">ignore_curves</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
1491
+ <span class="gp">... </span> <span class="n">ignore_filling_orientations</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
1492
+ <span class="go">&#39;oLLvzQLLQQccdhifihnlmkmlnnpvuvbvouggbggoo(0,0)(1,5)&#39;</span>
1493
+ </pre></div>
1494
+ </div>
1495
+ <p><strong>Orientation</strong></p>
1496
+ <p>Note that <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation=True</span></code> only applies to the undecorated
1497
+ part of the isomorphism signature. The decoration can still capture the
1498
+ the orientation.
1499
+ More, precisely, the result of <a class="reference internal" href="#snappy.Triangulation.triangulation_isosig" title="snappy.Triangulation.triangulation_isosig"><code class="xref py py-meth docutils literal notranslate"><span class="pre">triangulation_isosig()</span></code></a> depends on
1500
+ the orientation (if the triangulation is orientable and chiral) if any
1501
+ of the following is true:</p>
1502
+ <ol class="arabic simple">
1503
+ <li><p><code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_orientation</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
1504
+ <li><p><code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code> and
1505
+ <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">False</span></code> and
1506
+ <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_filling_orientations</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
1507
+ </ol>
1508
+ <p>In these cases, re-constructing a triangulation from the isomorphism
1509
+ signature yields a triangulation with the same handedness.</p>
1510
+ <dl class="field-list simple">
1511
+ <dt class="field-odd">Parameters<span class="colon">:</span></dt>
1512
+ <dd class="field-odd"><ul class="simple">
1513
+ <li><p><strong>decorated</strong> – Include peripheral information such as indexing of the cusps,
1514
+ (oriented or unoriented) peripheral curves and
1515
+ (oriented or unoriented) Dehn-fillings.</p></li>
1516
+ <li><p><strong>ignore_cusp_ordering</strong> – Do not encode the indexing of the cusps.
1517
+ Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
1518
+ <li><p><strong>ignore_curves</strong> – Do not encode the peripheral curves.
1519
+ Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.
1520
+ This is new in SnapPy version 3.2.
1521
+ If <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">True</span></code>, the result of this method cannot
1522
+ be given to prior versions.</p></li>
1523
+ <li><p><strong>ignore_curve_orientations</strong> – Do not encode the orientations of the peripheral curves.
1524
+ Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code> and
1525
+ <code class="xref py py-attr docutils literal notranslate"><span class="pre">ignore_curves</span> <span class="pre">=</span> <span class="pre">False</span></code>.</p></li>
1526
+ <li><p><strong>ignore_filling_orientations</strong> – Do not encode the orientations of the Dehn-fillings.
1527
+ Only relevant if <code class="xref py py-attr docutils literal notranslate"><span class="pre">decorated</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p></li>
1528
+ <li><p><strong>ignore_orientation</strong> – Do not encode the orientation of the triangulation in the
1529
+ undecorated part of the triangulation isosig.
1530
+ See above section about orientation.</p></li>
1531
+ </ul>
1532
+ </dd>
1533
+ </dl>
1534
+ </dd></dl>
1535
+
1536
+ <dl class="py method">
1537
+ <dt class="sig sig-object py" id="snappy.Triangulation.with_hyperbolic_structure">
1538
+ <span class="sig-name descname"><span class="pre">with_hyperbolic_structure</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.Triangulation.with_hyperbolic_structure" title="Link to this definition"></a></dt>
1539
+ <dd><p>Add a (possibly degenerate) hyperbolic structure, turning the
1540
+ <a class="reference internal" href="#snappy.Triangulation" title="snappy.Triangulation"><code class="xref py py-class docutils literal notranslate"><span class="pre">Triangulation</span></code></a> into a <a class="reference internal" href="manifold.html#snappy.Manifold" title="snappy.Manifold"><code class="xref py py-class docutils literal notranslate"><span class="pre">Manifold</span></code></a>.</p>
1541
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Triangulation</span><span class="p">(</span><span class="s1">&#39;m004&#39;</span><span class="p">)</span>
1542
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">with_hyperbolic_structure</span><span class="p">()</span>
1543
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">N</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span>
1544
+ <span class="go">2.02988321</span>
1545
+ </pre></div>
1546
+ </div>
1547
+ </dd></dl>
1548
+
1549
+ </dd></dl>
1550
+
1551
+ </section>
1552
+
1553
+
1554
+ </div>
1555
+ </div>
1556
+ <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
1557
+ <a href="manifoldhp.html" class="btn btn-neutral float-left" title="ManifoldHP: High-precision variant" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
1558
+ <a href="additional_classes.html" class="btn btn-neutral float-right" title="Additional Classes" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
1559
+ </div>
1560
+
1561
+ <hr/>
1562
+
1563
+ <div role="contentinfo">
1564
+ <p>&#169; Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
1565
+ </div>
1566
+
1567
+ Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
1568
+ <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
1569
+ provided by <a href="https://readthedocs.org">Read the Docs</a>.
1570
+
1571
+
1572
+ </footer>
1573
+ </div>
1574
+ </div>
1575
+ </section>
1576
+ </div>
1577
+ <script>
1578
+ jQuery(function () {
1579
+ SphinxRtdTheme.Navigation.enable(true);
1580
+ });
1581
+ </script>
1582
+
1583
+ </body>
1475
1584
  </html>