snappy 3.1.1__cp311-cp311-macosx_11_0_arm64.whl → 3.2__cp311-cp311-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snappy/CyOpenGL.cpython-311-darwin.so +0 -0
- snappy/SnapPy.cpython-311-darwin.so +0 -0
- snappy/SnapPyHP.cpython-311-darwin.so +0 -0
- snappy/__init__.py +299 -402
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/development.rst.txt +66 -46
- snappy/doc/_sources/index.rst.txt +72 -5
- snappy/doc/_sources/installing.rst.txt +145 -162
- snappy/doc/_sources/news.rst.txt +73 -1
- snappy/doc/_sources/ptolemy_examples1.rst.txt +8 -7
- snappy/doc/_sources/ptolemy_examples3.rst.txt +2 -2
- snappy/doc/_sources/triangulation.rst.txt +2 -2
- snappy/doc/_sources/verify.rst.txt +89 -29
- snappy/doc/_sources/verify_internals.rst.txt +5 -16
- snappy/doc/_static/basic.css +23 -1
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +2 -3
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +2 -2
- snappy/doc/_static/pygments.css +1 -0
- snappy/doc/_static/searchtools.js +125 -71
- snappy/doc/_static/sphinx_highlight.js +13 -3
- snappy/doc/additional_classes.html +291 -122
- snappy/doc/bugs.html +17 -20
- snappy/doc/censuses.html +34 -53
- snappy/doc/credits.html +18 -21
- snappy/doc/development.html +88 -68
- snappy/doc/genindex.html +66 -145
- snappy/doc/index.html +86 -31
- snappy/doc/installing.html +164 -182
- snappy/doc/manifold.html +1168 -556
- snappy/doc/manifoldhp.html +18 -21
- snappy/doc/news.html +91 -33
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +20 -22
- snappy/doc/platonic_census.html +31 -34
- snappy/doc/plink.html +19 -22
- snappy/doc/ptolemy.html +20 -22
- snappy/doc/ptolemy_classes.html +102 -105
- snappy/doc/ptolemy_examples1.html +34 -36
- snappy/doc/ptolemy_examples2.html +28 -31
- snappy/doc/ptolemy_examples3.html +26 -29
- snappy/doc/ptolemy_examples4.html +20 -23
- snappy/doc/ptolemy_prelim.html +25 -28
- snappy/doc/py-modindex.html +16 -19
- snappy/doc/screenshots.html +22 -24
- snappy/doc/search.html +15 -18
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +18 -21
- snappy/doc/snappy.html +18 -20
- snappy/doc/spherogram.html +84 -87
- snappy/doc/todo.html +17 -20
- snappy/doc/triangulation.html +324 -215
- snappy/doc/tutorial.html +17 -20
- snappy/doc/verify.html +100 -46
- snappy/doc/verify_internals.html +106 -563
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +8 -4
- snappy/phone_home.py +2 -1
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +113 -84
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cpython-311-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/__pycache__/browser.cpython-311.pyc +0 -0
- snappy/__pycache__/cache.cpython-311.pyc +0 -0
- snappy/__pycache__/database.cpython-311.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-311.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-311.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-311.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-311.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-311.pyc +0 -0
- snappy/__pycache__/gui.cpython-311.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-311.pyc +0 -0
- snappy/__pycache__/infowindow.cpython-311.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-311.pyc +0 -0
- snappy/__pycache__/matrix.cpython-311.pyc +0 -0
- snappy/__pycache__/number.cpython-311.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-311.pyc +0 -0
- snappy/__pycache__/pari.cpython-311.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-311.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-311.pyc +0 -0
- snappy/__pycache__/version.cpython-311.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-311.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-311.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-311.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-311.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-311.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/finite_raytracing_data.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/gui_utilities.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/hyperboloid_navigation.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/hyperboloid_utilities.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/ideal_raytracing_data.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/inside_viewer.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/raytracing_data.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/raytracing_view.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/upper_halfspace_utilities.cpython-311.pyc +0 -0
- snappy/raytracing/__pycache__/view_scale_controller.cpython-311.pyc +0 -0
- snappy/raytracing/zoom_slider/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-311.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-311.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-311.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-311.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-311.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-311.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-311.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-311.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-311.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-311.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-311.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-311.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-311.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-311.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-311.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-311.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-311.pyc +0 -0
- snappy-3.1.1.dist-info/RECORD +0 -585
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,90 +0,0 @@
|
|
1
|
-
Canonical retriangulation and isometry signature
|
2
|
-
--------------------------------------------------------
|
3
|
-
|
4
|
-
The canonical retriangulation is a close relative to the canonical cell
|
5
|
-
decomposition defined by `Epstein and Penner
|
6
|
-
<https://projecteuclid.org/euclid.jdg/1214441650>`_.
|
7
|
-
Like the canonical cell decomposition, it is intrinsic to
|
8
|
-
a hyperbolic manifold M and is (up to combinatorial isomorphism
|
9
|
-
relabeling the tetrahedra and vertices) completely determined by the
|
10
|
-
isometry type of a hyperbolic manifold. Unlike the canonical cell decomposition,
|
11
|
-
the canonical retriangulation always consists entirely of tetrahedra which makes
|
12
|
-
it more amenable for many computations by SnapPy.
|
13
|
-
|
14
|
-
If the canonical cell decomposition of manifold M has only tetrahedral cells,
|
15
|
-
we define the canonical retriangulation to be the canonical cell decomposition.
|
16
|
-
In this case, the canonical retriangulation consists of ideal hyperbolic
|
17
|
-
tetrahedra and the ``canonical_retriangulation`` method returns a
|
18
|
-
SnapPy manifold. Example::
|
19
|
-
|
20
|
-
sage: M = Manifold("m015")
|
21
|
-
sage: K = M.canonical_retriangulation(verified = True)
|
22
|
-
sage: K.has_finite_vertices() # False iff all canonical cells tetrahedral
|
23
|
-
False
|
24
|
-
|
25
|
-
If the canonical cell decomposition has non-tetrahedral cells, we turn it into
|
26
|
-
a topological triangulation as follows: pick a point (called center) in each
|
27
|
-
3-cell. "Suspend" each 2-cell (which is an ideal n-gon) between
|
28
|
-
the centers of the two neighboring 3-cells. These suspensions form a
|
29
|
-
decomposition of M into topological "diamonds". Each diamond can be split along
|
30
|
-
its central axis into n tetrahedra. This introduces finite vertices, thus
|
31
|
-
the ``verified_canonical_retriangulation`` method returns only a SnapPy
|
32
|
-
triangulation. Example (canonical cell is a cube)::
|
33
|
-
|
34
|
-
sage: M = Manifold("m412")
|
35
|
-
sage: K = M.canonical_retriangulation(verified = True)
|
36
|
-
sage: K.has_finite_vertices()
|
37
|
-
True
|
38
|
-
|
39
|
-
The canonical retriangulation can be used to certifiably find all isometries
|
40
|
-
of a manifold::
|
41
|
-
|
42
|
-
sage: K.isomorphisms_to(K)
|
43
|
-
[0 -> 1 1 -> 0
|
44
|
-
[1 0] [1 0]
|
45
|
-
[0 1] [0 1]
|
46
|
-
Extends to link,
|
47
|
-
...
|
48
|
-
Extends to link]
|
49
|
-
sage: len(K.isomorphisms_to(K))
|
50
|
-
8
|
51
|
-
|
52
|
-
Recall that the *isomorphism
|
53
|
-
signature* is a complete invariant of the combinatorial
|
54
|
-
isomorphism type of a triangulation that was defined by `Burton
|
55
|
-
<http://arxiv.org/abs/1110.6080>`_. We can compute the isomorphism signature
|
56
|
-
of the canonical retriangulation::
|
57
|
-
|
58
|
-
sage: Manifold("m003").canonical_retriangulation(verified = True).triangulation_isosig()
|
59
|
-
'cPcbbbdxm'
|
60
|
-
|
61
|
-
The resulting invariant was called *isometry signature* by
|
62
|
-
`Goerner <http://arxiv.org/abs/1502.00383>`_ and, for convenience, can be
|
63
|
-
accessed by::
|
64
|
-
|
65
|
-
sage: Manifold("m003").isometry_signature(verified = True)
|
66
|
-
'cPcbbbdxm'
|
67
|
-
|
68
|
-
It is a complete invariant of the isometry type of a hyperbolic manifold.
|
69
|
-
Thus it can be used to easily identify isometric manifolds
|
70
|
-
(here, the last two manifolds have the same isometry signature and thus
|
71
|
-
have to be isomorphic)::
|
72
|
-
|
73
|
-
sage: Manifold("m003").isometry_signature(verified = True)
|
74
|
-
'cPcbbbdxm'
|
75
|
-
sage: Manifold("m004").isometry_signature(verified = True)
|
76
|
-
'cPcbbbiht'
|
77
|
-
sage: Manifold("4_1").isometry_signature(verified = True)
|
78
|
-
'cPcbbbiht'
|
79
|
-
sage: Manifold("m004").isometry_signature(verified = True) == Manifold("4_1").isometry_signature(verified = True)
|
80
|
-
True
|
81
|
-
|
82
|
-
|
83
|
-
Other applications of the canonical retriangulation include the detection of
|
84
|
-
2-bridge knots.
|
85
|
-
|
86
|
-
=======================================
|
87
|
-
Verifying the canonical retriangulation
|
88
|
-
=======================================
|
89
|
-
|
90
|
-
.. autofunction:: snappy.verify.verified_canonical_retriangulation
|
@@ -1,4 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* @preserve HTML5 Shiv 3.7.3-pre | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
|
3
|
-
*/
|
4
|
-
!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document);
|
@@ -1,4 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
|
3
|
-
*/
|
4
|
-
!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document);
|
snappy/doc/verify_canon.html
DELETED
@@ -1,304 +0,0 @@
|
|
1
|
-
<!DOCTYPE html>
|
2
|
-
<html class="writer-html5" lang="en" >
|
3
|
-
<head>
|
4
|
-
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
|
5
|
-
|
6
|
-
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
7
|
-
<title>Canonical retriangulation and isometry signature — SnapPy 3.1.1 documentation</title>
|
8
|
-
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
9
|
-
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
|
10
|
-
<link rel="stylesheet" href="_static/snappy_sphinx_rtd_theme.css" type="text/css" />
|
11
|
-
<link rel="shortcut icon" href="_static/SnapPy.ico"/>
|
12
|
-
<!--[if lt IE 9]>
|
13
|
-
<script src="_static/js/html5shiv.min.js"></script>
|
14
|
-
<![endif]-->
|
15
|
-
|
16
|
-
<script src="_static/jquery.js"></script>
|
17
|
-
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
|
18
|
-
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
|
19
|
-
<script src="_static/doctools.js"></script>
|
20
|
-
<script src="_static/sphinx_highlight.js"></script>
|
21
|
-
<script src="_static/js/theme.js"></script>
|
22
|
-
<link rel="index" title="Index" href="genindex.html" />
|
23
|
-
<link rel="search" title="Search" href="search.html" />
|
24
|
-
<link rel="next" title="Internals of verified computations" href="verify_internals.html" />
|
25
|
-
<link rel="prev" title="Verified computations" href="verify.html" />
|
26
|
-
</head>
|
27
|
-
|
28
|
-
<body class="wy-body-for-nav">
|
29
|
-
<div class="wy-grid-for-nav">
|
30
|
-
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
31
|
-
<div class="wy-side-scroll">
|
32
|
-
<div class="wy-side-nav-search" >
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
<a href="index.html" class="icon icon-home">
|
37
|
-
SnapPy
|
38
|
-
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
39
|
-
</a>
|
40
|
-
<div class="version">
|
41
|
-
3.1.1
|
42
|
-
</div>
|
43
|
-
<div role="search">
|
44
|
-
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
45
|
-
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
46
|
-
<input type="hidden" name="check_keywords" value="yes" />
|
47
|
-
<input type="hidden" name="area" value="default" />
|
48
|
-
</form>
|
49
|
-
</div>
|
50
|
-
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
51
|
-
<ul class="current">
|
52
|
-
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
|
53
|
-
<li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
|
54
|
-
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
|
55
|
-
<li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
|
56
|
-
<li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
|
57
|
-
<li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
|
58
|
-
<li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
|
59
|
-
<li class="toctree-l1 current"><a class="reference internal" href="verify.html">Verified computations</a><ul class="current">
|
60
|
-
<li class="toctree-l2"><a class="reference internal" href="verify.html#overview">Overview</a></li>
|
61
|
-
<li class="toctree-l2 current"><a class="reference internal" href="verify.html#verified-computation-topics">Verified computation topics</a><ul class="current">
|
62
|
-
<li class="toctree-l3 current"><a class="current reference internal" href="#">Canonical retriangulation and isometry signature</a><ul>
|
63
|
-
<li class="toctree-l4"><a class="reference internal" href="#verifying-the-canonical-retriangulation">Verifying the canonical retriangulation</a><ul>
|
64
|
-
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.verified_canonical_retriangulation"><code class="docutils literal notranslate"><span class="pre">verified_canonical_retriangulation()</span></code></a></li>
|
65
|
-
</ul>
|
66
|
-
</li>
|
67
|
-
</ul>
|
68
|
-
</li>
|
69
|
-
<li class="toctree-l3"><a class="reference internal" href="verify_internals.html">Internals of verified computations</a></li>
|
70
|
-
</ul>
|
71
|
-
</li>
|
72
|
-
</ul>
|
73
|
-
</li>
|
74
|
-
<li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
|
75
|
-
<li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
|
76
|
-
<li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
|
77
|
-
<li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
|
78
|
-
<li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
|
79
|
-
<li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
|
80
|
-
</ul>
|
81
|
-
|
82
|
-
</div>
|
83
|
-
</div>
|
84
|
-
</nav>
|
85
|
-
|
86
|
-
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
87
|
-
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
88
|
-
<a href="index.html">SnapPy</a>
|
89
|
-
</nav>
|
90
|
-
|
91
|
-
<div class="wy-nav-content">
|
92
|
-
<div class="rst-content">
|
93
|
-
<div role="navigation" aria-label="Page navigation">
|
94
|
-
<ul class="wy-breadcrumbs">
|
95
|
-
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
|
96
|
-
<li class="breadcrumb-item"><a href="verify.html">Verified computations</a></li>
|
97
|
-
<li class="breadcrumb-item active">Canonical retriangulation and isometry signature</li>
|
98
|
-
<li class="wy-breadcrumbs-aside">
|
99
|
-
</li>
|
100
|
-
</ul>
|
101
|
-
<hr/>
|
102
|
-
</div>
|
103
|
-
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
104
|
-
<div itemprop="articleBody">
|
105
|
-
|
106
|
-
<section id="canonical-retriangulation-and-isometry-signature">
|
107
|
-
<h1>Canonical retriangulation and isometry signature<a class="headerlink" href="#canonical-retriangulation-and-isometry-signature" title="Permalink to this heading"></a></h1>
|
108
|
-
<p>The canonical retriangulation is a close relative to the canonical cell
|
109
|
-
decomposition defined by <a class="reference external" href="https://projecteuclid.org/euclid.jdg/1214441650">Epstein and Penner</a>.
|
110
|
-
Like the canonical cell decomposition, it is intrinsic to
|
111
|
-
a hyperbolic manifold M and is (up to combinatorial isomorphism
|
112
|
-
relabeling the tetrahedra and vertices) completely determined by the
|
113
|
-
isometry type of a hyperbolic manifold. Unlike the canonical cell decomposition,
|
114
|
-
the canonical retriangulation always consists entirely of tetrahedra which makes
|
115
|
-
it more amenable for many computations by SnapPy.</p>
|
116
|
-
<p>If the canonical cell decomposition of manifold M has only tetrahedral cells,
|
117
|
-
we define the canonical retriangulation to be the canonical cell decomposition.
|
118
|
-
In this case, the canonical retriangulation consists of ideal hyperbolic
|
119
|
-
tetrahedra and the <code class="docutils literal notranslate"><span class="pre">canonical_retriangulation</span></code> method returns a
|
120
|
-
SnapPy manifold. Example:</p>
|
121
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m015"</span><span class="p">)</span>
|
122
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
123
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span> <span class="c1"># False iff all canonical cells tetrahedral</span>
|
124
|
-
<span class="kc">False</span>
|
125
|
-
</pre></div>
|
126
|
-
</div>
|
127
|
-
<p>If the canonical cell decomposition has non-tetrahedral cells, we turn it into
|
128
|
-
a topological triangulation as follows: pick a point (called center) in each
|
129
|
-
3-cell. “Suspend” each 2-cell (which is an ideal n-gon) between
|
130
|
-
the centers of the two neighboring 3-cells. These suspensions form a
|
131
|
-
decomposition of M into topological “diamonds”. Each diamond can be split along
|
132
|
-
its central axis into n tetrahedra. This introduces finite vertices, thus
|
133
|
-
the <code class="docutils literal notranslate"><span class="pre">verified_canonical_retriangulation</span></code> method returns only a SnapPy
|
134
|
-
triangulation. Example (canonical cell is a cube):</p>
|
135
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
136
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
137
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
138
|
-
<span class="kc">True</span>
|
139
|
-
</pre></div>
|
140
|
-
</div>
|
141
|
-
<p>The canonical retriangulation can be used to certifiably find all isometries
|
142
|
-
of a manifold:</p>
|
143
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">)</span>
|
144
|
-
<span class="p">[</span><span class="mi">0</span> <span class="o">-></span> <span class="mi">1</span> <span class="mi">1</span> <span class="o">-></span> <span class="mi">0</span>
|
145
|
-
<span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span> <span class="p">[</span><span class="mi">1</span> <span class="mi">0</span><span class="p">]</span>
|
146
|
-
<span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span> <span class="p">[</span><span class="mi">0</span> <span class="mi">1</span><span class="p">]</span>
|
147
|
-
<span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">,</span>
|
148
|
-
<span class="o">...</span>
|
149
|
-
<span class="n">Extends</span> <span class="n">to</span> <span class="n">link</span><span class="p">]</span>
|
150
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
|
151
|
-
<span class="mi">8</span>
|
152
|
-
</pre></div>
|
153
|
-
</div>
|
154
|
-
<p>Recall that the <em>isomorphism
|
155
|
-
signature</em> is a complete invariant of the combinatorial
|
156
|
-
isomorphism type of a triangulation that was defined by <a class="reference external" href="http://arxiv.org/abs/1110.6080">Burton</a>. We can compute the isomorphism signature
|
157
|
-
of the canonical retriangulation:</p>
|
158
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">canonical_retriangulation</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">triangulation_isosig</span><span class="p">()</span>
|
159
|
-
<span class="s1">'cPcbbbdxm'</span>
|
160
|
-
</pre></div>
|
161
|
-
</div>
|
162
|
-
<p>The resulting invariant was called <em>isometry signature</em> by
|
163
|
-
<a class="reference external" href="http://arxiv.org/abs/1502.00383">Goerner</a> and, for convenience, can be
|
164
|
-
accessed by:</p>
|
165
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
166
|
-
<span class="s1">'cPcbbbdxm'</span>
|
167
|
-
</pre></div>
|
168
|
-
</div>
|
169
|
-
<p>It is a complete invariant of the isometry type of a hyperbolic manifold.
|
170
|
-
Thus it can be used to easily identify isometric manifolds
|
171
|
-
(here, the last two manifolds have the same isometry signature and thus
|
172
|
-
have to be isomorphic):</p>
|
173
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m003"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
174
|
-
<span class="s1">'cPcbbbdxm'</span>
|
175
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
176
|
-
<span class="s1">'cPcbbbiht'</span>
|
177
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
178
|
-
<span class="s1">'cPcbbbiht'</span>
|
179
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">==</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">isometry_signature</span><span class="p">(</span><span class="n">verified</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
|
180
|
-
<span class="kc">True</span>
|
181
|
-
</pre></div>
|
182
|
-
</div>
|
183
|
-
<p>Other applications of the canonical retriangulation include the detection of
|
184
|
-
2-bridge knots.</p>
|
185
|
-
<section id="verifying-the-canonical-retriangulation">
|
186
|
-
<h2>Verifying the canonical retriangulation<a class="headerlink" href="#verifying-the-canonical-retriangulation" title="Permalink to this heading"></a></h2>
|
187
|
-
<dl class="py function">
|
188
|
-
<dt class="sig sig-object py" id="snappy.verify.verified_canonical_retriangulation">
|
189
|
-
<span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">verified_canonical_retriangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">interval_bits_precs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[53,</span> <span class="pre">212]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exact_bits_prec_and_degrees</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[(212,</span> <span class="pre">10),</span> <span class="pre">(1000,</span> <span class="pre">20),</span> <span class="pre">(2000,</span> <span class="pre">20)]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.verified_canonical_retriangulation" title="Permalink to this definition"></a></dt>
|
190
|
-
<dd><p>Given some triangulation of a cusped (possibly non-orientable) manifold <code class="docutils literal notranslate"><span class="pre">M</span></code>,
|
191
|
-
return its canonical retriangulation. Return <code class="docutils literal notranslate"><span class="pre">None</span></code> if it could not certify
|
192
|
-
the result.</p>
|
193
|
-
<p>To compute the canonical retriangulation, it first prepares the manifold
|
194
|
-
(filling all Dehn-filled cusps and trying to find a proto-canonical
|
195
|
-
triangulation).
|
196
|
-
It then tries to certify the canonical triangulation using interval
|
197
|
-
arithmetics. If this fails, it uses snap (using <a class="reference external" href="http://en.wikipedia.org/wiki/Lenstra%E2%80%93Lenstra%E2%80%93Lov%C3%A1sz_lattice_basis_reduction_algorithm">LLL-algorithm</a>)
|
198
|
-
to guess
|
199
|
-
exact representations of the shapes in the shape field and then certifies
|
200
|
-
that it found the proto-canonical triangulation and determines the
|
201
|
-
transparent faces to construct the canonical retriangulation.</p>
|
202
|
-
<p>The optional arguments are:</p>
|
203
|
-
<ul class="simple">
|
204
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>:
|
205
|
-
a list of precisions used to try to
|
206
|
-
certify the canonical triangulation using intervals. By default, it
|
207
|
-
first tries to certify using 53 bits precision. If it failed, it tries
|
208
|
-
212 bits precision next. If it failed again, it moves on to trying exact
|
209
|
-
arithmetics.</p></li>
|
210
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span></code>:
|
211
|
-
a list of pairs (precision, maximal degree) used when the LLL-algorithm
|
212
|
-
is trying to find the defining polynomial of the shape field.
|
213
|
-
Similar to <code class="docutils literal notranslate"><span class="pre">interval_bits_precs</span></code>, each pair is tried until we succeed.</p></li>
|
214
|
-
<li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>:
|
215
|
-
If <code class="docutils literal notranslate"><span class="pre">True</span></code>, print out additional information.</p></li>
|
216
|
-
</ul>
|
217
|
-
<p>The exact arithmetics can take a long time. To circumvent it, use
|
218
|
-
<code class="docutils literal notranslate"><span class="pre">exact_bits_prec_and_degrees</span> <span class="pre">=</span> <span class="pre">None</span></code>.</p>
|
219
|
-
<p>More information on the canonical retriangulation can be found in the
|
220
|
-
SnapPea kernel <code class="docutils literal notranslate"><span class="pre">canonize_part_2.c</span></code> and in Section 3.1 of
|
221
|
-
<a class="reference external" href="http://arxiv.org/abs/1502.00383">Fominykh, Garoufalidis, Goerner, Tarkaev, Vesnin</a>.</p>
|
222
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m004</span></code> has 2 tetrahedral cells:</p>
|
223
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
224
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m004"</span><span class="p">)</span>
|
225
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
226
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
227
|
-
<span class="kc">False</span>
|
228
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
229
|
-
<span class="mi">2</span>
|
230
|
-
</pre></div>
|
231
|
-
</div>
|
232
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m137</span></code> is not tetrahedral:</p>
|
233
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m137"</span><span class="p">)</span>
|
234
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
235
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
236
|
-
<span class="kc">True</span>
|
237
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
238
|
-
<span class="mi">18</span>
|
239
|
-
</pre></div>
|
240
|
-
</div>
|
241
|
-
<p>Canonical cell decomposition of <code class="docutils literal notranslate"><span class="pre">m412</span></code> is a cube and has exactly 8
|
242
|
-
symmetries:</p>
|
243
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
244
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
245
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
246
|
-
<span class="kc">True</span>
|
247
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
248
|
-
<span class="mi">12</span>
|
249
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">K</span><span class="p">))</span>
|
250
|
-
<span class="mi">8</span>
|
251
|
-
</pre></div>
|
252
|
-
</div>
|
253
|
-
<p><a class="reference external" href="http://arxiv.org/abs/1311.7615">Burton’s example</a> of <code class="docutils literal notranslate"><span class="pre">x101</span></code> and <code class="docutils literal notranslate"><span class="pre">x103</span></code> which are actually isometric but
|
254
|
-
SnapPea fails to show so. We certify the canonical retriangulation and
|
255
|
-
find them isomorphic:</p>
|
256
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'x101'</span><span class="p">);</span> <span class="n">K</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
257
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">N</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'x103'</span><span class="p">);</span> <span class="n">L</span> <span class="o">=</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
|
258
|
-
<span class="n">sage</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">isomorphisms_to</span><span class="p">(</span><span class="n">L</span><span class="p">))</span> <span class="o">></span> <span class="mi">0</span>
|
259
|
-
<span class="kc">True</span>
|
260
|
-
</pre></div>
|
261
|
-
</div>
|
262
|
-
<p>Avoid potentially expensive exact arithmetics (return <code class="docutils literal notranslate"><span class="pre">None</span></code> because it has
|
263
|
-
non-tetrahedral cells so interval arithmetics can’t certify it):</p>
|
264
|
-
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
265
|
-
<span class="n">sage</span><span class="p">:</span> <span class="n">verified_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">exact_bits_prec_and_degrees</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span>
|
266
|
-
</pre></div>
|
267
|
-
</div>
|
268
|
-
</dd></dl>
|
269
|
-
|
270
|
-
</section>
|
271
|
-
</section>
|
272
|
-
|
273
|
-
|
274
|
-
</div>
|
275
|
-
</div>
|
276
|
-
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
277
|
-
<a href="verify.html" class="btn btn-neutral float-left" title="Verified computations" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
278
|
-
<a href="verify_internals.html" class="btn btn-neutral float-right" title="Internals of verified computations" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
279
|
-
</div>
|
280
|
-
|
281
|
-
<hr/>
|
282
|
-
|
283
|
-
<div role="contentinfo">
|
284
|
-
<p>© Copyright 2009-2023, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
|
285
|
-
</div>
|
286
|
-
|
287
|
-
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
|
288
|
-
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
|
289
|
-
provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
290
|
-
|
291
|
-
|
292
|
-
</footer>
|
293
|
-
</div>
|
294
|
-
</div>
|
295
|
-
</section>
|
296
|
-
</div>
|
297
|
-
<script>
|
298
|
-
jQuery(function () {
|
299
|
-
SphinxRtdTheme.Navigation.enable(true);
|
300
|
-
});
|
301
|
-
</script>
|
302
|
-
|
303
|
-
</body>
|
304
|
-
</html>
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|