smftools 0.1.6__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/__init__.py +34 -0
- smftools/_settings.py +20 -0
- smftools/_version.py +1 -0
- smftools/cli.py +184 -0
- smftools/config/__init__.py +1 -0
- smftools/config/conversion.yaml +33 -0
- smftools/config/deaminase.yaml +56 -0
- smftools/config/default.yaml +253 -0
- smftools/config/direct.yaml +17 -0
- smftools/config/experiment_config.py +1191 -0
- smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
- smftools/datasets/F1_sample_sheet.csv +5 -0
- smftools/datasets/__init__.py +9 -0
- smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
- smftools/datasets/datasets.py +28 -0
- smftools/hmm/HMM.py +1576 -0
- smftools/hmm/__init__.py +20 -0
- smftools/hmm/apply_hmm_batched.py +242 -0
- smftools/hmm/calculate_distances.py +18 -0
- smftools/hmm/call_hmm_peaks.py +106 -0
- smftools/hmm/display_hmm.py +18 -0
- smftools/hmm/hmm_readwrite.py +16 -0
- smftools/hmm/nucleosome_hmm_refinement.py +104 -0
- smftools/hmm/train_hmm.py +78 -0
- smftools/informatics/__init__.py +14 -0
- smftools/informatics/archived/bam_conversion.py +59 -0
- smftools/informatics/archived/bam_direct.py +63 -0
- smftools/informatics/archived/basecalls_to_adata.py +71 -0
- smftools/informatics/archived/conversion_smf.py +132 -0
- smftools/informatics/archived/deaminase_smf.py +132 -0
- smftools/informatics/archived/direct_smf.py +137 -0
- smftools/informatics/archived/print_bam_query_seq.py +29 -0
- smftools/informatics/basecall_pod5s.py +80 -0
- smftools/informatics/fast5_to_pod5.py +24 -0
- smftools/informatics/helpers/__init__.py +73 -0
- smftools/informatics/helpers/align_and_sort_BAM.py +86 -0
- smftools/informatics/helpers/aligned_BAM_to_bed.py +85 -0
- smftools/informatics/helpers/archived/informatics.py +260 -0
- smftools/informatics/helpers/archived/load_adata.py +516 -0
- smftools/informatics/helpers/bam_qc.py +66 -0
- smftools/informatics/helpers/bed_to_bigwig.py +39 -0
- smftools/informatics/helpers/binarize_converted_base_identities.py +172 -0
- smftools/informatics/helpers/canoncall.py +34 -0
- smftools/informatics/helpers/complement_base_list.py +21 -0
- smftools/informatics/helpers/concatenate_fastqs_to_bam.py +378 -0
- smftools/informatics/helpers/converted_BAM_to_adata.py +245 -0
- smftools/informatics/helpers/converted_BAM_to_adata_II.py +505 -0
- smftools/informatics/helpers/count_aligned_reads.py +43 -0
- smftools/informatics/helpers/demux_and_index_BAM.py +52 -0
- smftools/informatics/helpers/discover_input_files.py +100 -0
- smftools/informatics/helpers/extract_base_identities.py +70 -0
- smftools/informatics/helpers/extract_mods.py +83 -0
- smftools/informatics/helpers/extract_read_features_from_bam.py +33 -0
- smftools/informatics/helpers/extract_read_lengths_from_bed.py +25 -0
- smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
- smftools/informatics/helpers/find_conversion_sites.py +51 -0
- smftools/informatics/helpers/generate_converted_FASTA.py +99 -0
- smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
- smftools/informatics/helpers/get_native_references.py +28 -0
- smftools/informatics/helpers/index_fasta.py +12 -0
- smftools/informatics/helpers/make_dirs.py +21 -0
- smftools/informatics/helpers/make_modbed.py +27 -0
- smftools/informatics/helpers/modQC.py +27 -0
- smftools/informatics/helpers/modcall.py +36 -0
- smftools/informatics/helpers/modkit_extract_to_adata.py +887 -0
- smftools/informatics/helpers/ohe_batching.py +76 -0
- smftools/informatics/helpers/ohe_layers_decode.py +32 -0
- smftools/informatics/helpers/one_hot_decode.py +27 -0
- smftools/informatics/helpers/one_hot_encode.py +57 -0
- smftools/informatics/helpers/plot_bed_histograms.py +269 -0
- smftools/informatics/helpers/run_multiqc.py +28 -0
- smftools/informatics/helpers/separate_bam_by_bc.py +43 -0
- smftools/informatics/helpers/split_and_index_BAM.py +32 -0
- smftools/informatics/readwrite.py +106 -0
- smftools/informatics/subsample_fasta_from_bed.py +47 -0
- smftools/informatics/subsample_pod5.py +104 -0
- smftools/load_adata.py +1346 -0
- smftools/machine_learning/__init__.py +12 -0
- smftools/machine_learning/data/__init__.py +2 -0
- smftools/machine_learning/data/anndata_data_module.py +234 -0
- smftools/machine_learning/data/preprocessing.py +6 -0
- smftools/machine_learning/evaluation/__init__.py +2 -0
- smftools/machine_learning/evaluation/eval_utils.py +31 -0
- smftools/machine_learning/evaluation/evaluators.py +223 -0
- smftools/machine_learning/inference/__init__.py +3 -0
- smftools/machine_learning/inference/inference_utils.py +27 -0
- smftools/machine_learning/inference/lightning_inference.py +68 -0
- smftools/machine_learning/inference/sklearn_inference.py +55 -0
- smftools/machine_learning/inference/sliding_window_inference.py +114 -0
- smftools/machine_learning/models/__init__.py +9 -0
- smftools/machine_learning/models/base.py +295 -0
- smftools/machine_learning/models/cnn.py +138 -0
- smftools/machine_learning/models/lightning_base.py +345 -0
- smftools/machine_learning/models/mlp.py +26 -0
- smftools/machine_learning/models/positional.py +18 -0
- smftools/machine_learning/models/rnn.py +17 -0
- smftools/machine_learning/models/sklearn_models.py +273 -0
- smftools/machine_learning/models/transformer.py +303 -0
- smftools/machine_learning/models/wrappers.py +20 -0
- smftools/machine_learning/training/__init__.py +2 -0
- smftools/machine_learning/training/train_lightning_model.py +135 -0
- smftools/machine_learning/training/train_sklearn_model.py +114 -0
- smftools/machine_learning/utils/__init__.py +2 -0
- smftools/machine_learning/utils/device.py +10 -0
- smftools/machine_learning/utils/grl.py +14 -0
- smftools/plotting/__init__.py +18 -0
- smftools/plotting/autocorrelation_plotting.py +611 -0
- smftools/plotting/classifiers.py +355 -0
- smftools/plotting/general_plotting.py +682 -0
- smftools/plotting/hmm_plotting.py +260 -0
- smftools/plotting/position_stats.py +462 -0
- smftools/plotting/qc_plotting.py +270 -0
- smftools/preprocessing/__init__.py +38 -0
- smftools/preprocessing/add_read_length_and_mapping_qc.py +129 -0
- smftools/preprocessing/append_base_context.py +122 -0
- smftools/preprocessing/append_binary_layer_by_base_context.py +143 -0
- smftools/preprocessing/archives/mark_duplicates.py +146 -0
- smftools/preprocessing/archives/preprocessing.py +614 -0
- smftools/preprocessing/archives/remove_duplicates.py +21 -0
- smftools/preprocessing/binarize_on_Youden.py +45 -0
- smftools/preprocessing/binary_layers_to_ohe.py +40 -0
- smftools/preprocessing/calculate_complexity.py +72 -0
- smftools/preprocessing/calculate_complexity_II.py +248 -0
- smftools/preprocessing/calculate_consensus.py +47 -0
- smftools/preprocessing/calculate_coverage.py +51 -0
- smftools/preprocessing/calculate_pairwise_differences.py +49 -0
- smftools/preprocessing/calculate_pairwise_hamming_distances.py +27 -0
- smftools/preprocessing/calculate_position_Youden.py +115 -0
- smftools/preprocessing/calculate_read_length_stats.py +79 -0
- smftools/preprocessing/calculate_read_modification_stats.py +101 -0
- smftools/preprocessing/clean_NaN.py +62 -0
- smftools/preprocessing/filter_adata_by_nan_proportion.py +31 -0
- smftools/preprocessing/filter_reads_on_length_quality_mapping.py +158 -0
- smftools/preprocessing/filter_reads_on_modification_thresholds.py +352 -0
- smftools/preprocessing/flag_duplicate_reads.py +1351 -0
- smftools/preprocessing/invert_adata.py +37 -0
- smftools/preprocessing/load_sample_sheet.py +53 -0
- smftools/preprocessing/make_dirs.py +21 -0
- smftools/preprocessing/min_non_diagonal.py +25 -0
- smftools/preprocessing/recipes.py +127 -0
- smftools/preprocessing/subsample_adata.py +58 -0
- smftools/readwrite.py +1004 -0
- smftools/tools/__init__.py +20 -0
- smftools/tools/archived/apply_hmm.py +202 -0
- smftools/tools/archived/classifiers.py +787 -0
- smftools/tools/archived/classify_methylated_features.py +66 -0
- smftools/tools/archived/classify_non_methylated_features.py +75 -0
- smftools/tools/archived/subset_adata_v1.py +32 -0
- smftools/tools/archived/subset_adata_v2.py +46 -0
- smftools/tools/calculate_umap.py +62 -0
- smftools/tools/cluster_adata_on_methylation.py +105 -0
- smftools/tools/general_tools.py +69 -0
- smftools/tools/position_stats.py +601 -0
- smftools/tools/read_stats.py +184 -0
- smftools/tools/spatial_autocorrelation.py +562 -0
- smftools/tools/subset_adata.py +28 -0
- {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/METADATA +9 -2
- smftools-0.2.1.dist-info/RECORD +161 -0
- smftools-0.2.1.dist-info/entry_points.txt +2 -0
- smftools-0.1.6.dist-info/RECORD +0 -4
- {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/WHEEL +0 -0
- {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
## invert_adata
|
|
2
|
+
|
|
3
|
+
def invert_adata(adata, uns_flag='adata_positions_inverted', force_redo=False):
|
|
4
|
+
"""
|
|
5
|
+
Inverts the AnnData object along the column (variable) axis.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
adata (AnnData): An AnnData object.
|
|
9
|
+
|
|
10
|
+
Returns:
|
|
11
|
+
AnnData: A new AnnData object with inverted column ordering.
|
|
12
|
+
"""
|
|
13
|
+
import numpy as np
|
|
14
|
+
import anndata as ad
|
|
15
|
+
|
|
16
|
+
# Only run if not already performed
|
|
17
|
+
already = bool(adata.uns.get(uns_flag, False))
|
|
18
|
+
if (already and not force_redo):
|
|
19
|
+
# QC already performed; nothing to do
|
|
20
|
+
return adata
|
|
21
|
+
|
|
22
|
+
print("Inverting AnnData along the column axis...")
|
|
23
|
+
|
|
24
|
+
# Reverse the order of columns (variables)
|
|
25
|
+
inverted_adata = adata[:, ::-1].copy()
|
|
26
|
+
|
|
27
|
+
# Reassign var_names with new order
|
|
28
|
+
inverted_adata.var_names = adata.var_names
|
|
29
|
+
|
|
30
|
+
# Optional: Store original coordinates for reference
|
|
31
|
+
inverted_adata.var["Original_var_names"] = adata.var_names[::-1]
|
|
32
|
+
|
|
33
|
+
# mark as done
|
|
34
|
+
inverted_adata.uns[uns_flag] = True
|
|
35
|
+
|
|
36
|
+
print("Inversion complete!")
|
|
37
|
+
return inverted_adata
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
def load_sample_sheet(adata,
|
|
2
|
+
sample_sheet_path,
|
|
3
|
+
mapping_key_column='obs_names',
|
|
4
|
+
as_category=True,
|
|
5
|
+
uns_flag='sample_sheet_loaded',
|
|
6
|
+
force_reload=True
|
|
7
|
+
):
|
|
8
|
+
"""
|
|
9
|
+
Loads a sample sheet CSV and maps metadata into the AnnData object as categorical columns.
|
|
10
|
+
|
|
11
|
+
Parameters:
|
|
12
|
+
adata (AnnData): The AnnData object to append sample information to.
|
|
13
|
+
sample_sheet_path (str): Path to the CSV file.
|
|
14
|
+
mapping_key_column (str): Column name in the CSV to map against adata.obs_names or an existing obs column.
|
|
15
|
+
as_category (bool): If True, added columns will be cast as pandas Categorical.
|
|
16
|
+
|
|
17
|
+
Returns:
|
|
18
|
+
AnnData: Updated AnnData object.
|
|
19
|
+
"""
|
|
20
|
+
import pandas as pd
|
|
21
|
+
|
|
22
|
+
# Only run if not already performed
|
|
23
|
+
already = bool(adata.uns.get(uns_flag, False))
|
|
24
|
+
if already and not force_reload:
|
|
25
|
+
# QC already performed; nothing to do
|
|
26
|
+
return
|
|
27
|
+
|
|
28
|
+
print('Loading sample sheet...')
|
|
29
|
+
df = pd.read_csv(sample_sheet_path)
|
|
30
|
+
df[mapping_key_column] = df[mapping_key_column].astype(str)
|
|
31
|
+
|
|
32
|
+
# If matching against obs_names directly
|
|
33
|
+
if mapping_key_column == 'obs_names':
|
|
34
|
+
key_series = adata.obs_names.astype(str)
|
|
35
|
+
else:
|
|
36
|
+
key_series = adata.obs[mapping_key_column].astype(str)
|
|
37
|
+
|
|
38
|
+
value_columns = [col for col in df.columns if col != mapping_key_column]
|
|
39
|
+
|
|
40
|
+
print(f'Appending metadata columns: {value_columns}')
|
|
41
|
+
df = df.set_index(mapping_key_column)
|
|
42
|
+
|
|
43
|
+
for col in value_columns:
|
|
44
|
+
mapped = key_series.map(df[col])
|
|
45
|
+
if as_category:
|
|
46
|
+
mapped = mapped.astype('category')
|
|
47
|
+
adata.obs[col] = mapped
|
|
48
|
+
|
|
49
|
+
# mark as done
|
|
50
|
+
adata.uns[uns_flag] = True
|
|
51
|
+
|
|
52
|
+
print('Sample sheet metadata successfully added as categories.' if as_category else 'Metadata added.')
|
|
53
|
+
return adata
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
## make_dirs
|
|
2
|
+
|
|
3
|
+
# General
|
|
4
|
+
def make_dirs(directories):
|
|
5
|
+
"""
|
|
6
|
+
Takes a list of file paths and makes new directories if the directory does not already exist.
|
|
7
|
+
|
|
8
|
+
Parameters:
|
|
9
|
+
directories (list): A list of directories to make
|
|
10
|
+
|
|
11
|
+
Returns:
|
|
12
|
+
None
|
|
13
|
+
"""
|
|
14
|
+
import os
|
|
15
|
+
|
|
16
|
+
for directory in directories:
|
|
17
|
+
if not os.path.isdir(directory):
|
|
18
|
+
os.mkdir(directory)
|
|
19
|
+
print(f"Directory '{directory}' created successfully.")
|
|
20
|
+
else:
|
|
21
|
+
print(f"Directory '{directory}' already exists.")
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
## min_non_diagonal
|
|
2
|
+
|
|
3
|
+
def min_non_diagonal(matrix):
|
|
4
|
+
"""
|
|
5
|
+
Takes a matrix and returns the smallest value from each row with the diagonal masked.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
matrix (ndarray): A 2D ndarray.
|
|
9
|
+
|
|
10
|
+
Returns:
|
|
11
|
+
min_values (list): A list of minimum values from each row of the matrix
|
|
12
|
+
"""
|
|
13
|
+
import numpy as np
|
|
14
|
+
|
|
15
|
+
n = matrix.shape[0]
|
|
16
|
+
min_values = []
|
|
17
|
+
for i in range(n):
|
|
18
|
+
# Mask to exclude the diagonal element
|
|
19
|
+
row_mask = np.ones(n, dtype=bool)
|
|
20
|
+
row_mask[i] = False
|
|
21
|
+
# Extract the row excluding the diagonal element
|
|
22
|
+
row = matrix[i, row_mask]
|
|
23
|
+
# Find the minimum value in the row
|
|
24
|
+
min_values.append(np.min(row))
|
|
25
|
+
return min_values
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
# recipes
|
|
2
|
+
|
|
3
|
+
def recipe_1_Kissiov_and_McKenna_2025(adata, sample_sheet_path, output_directory, mapping_key_column='Sample', reference_column = 'Reference', sample_names_col='Sample_names', invert=True):
|
|
4
|
+
"""
|
|
5
|
+
The first part of the preprocessing workflow applied to the smf.inform.pod_to_adata() output derived from Kissiov_and_McKenna_2025.
|
|
6
|
+
|
|
7
|
+
Performs the following tasks:
|
|
8
|
+
1) Loads a sample CSV to append metadata mappings to the adata object.
|
|
9
|
+
2) Appends a boolean indicating whether each position in var_names is within a given reference.
|
|
10
|
+
3) Appends the cytosine context to each position from each reference.
|
|
11
|
+
4) Calculate read level methylation statistics.
|
|
12
|
+
5) Calculates read length statistics (start position, end position, read length).
|
|
13
|
+
6) Optionally inverts the adata to flip the position coordinate orientation.
|
|
14
|
+
7) Adds new layers containing NaN replaced variants of adata.X (fill_closest, nan0_0minus1, nan1_12).
|
|
15
|
+
8) Returns a dictionary to pass the variable namespace to the parent scope.
|
|
16
|
+
|
|
17
|
+
Parameters:
|
|
18
|
+
adata (AnnData): The AnnData object to use as input.
|
|
19
|
+
sample_sheet_path (str): String representing the path to the sample sheet csv containing the sample metadata.
|
|
20
|
+
output_directory (str): String representing the path to the output directory for plots.
|
|
21
|
+
mapping_key_column (str): The column name to use as the mapping keys for applying the sample sheet metadata.
|
|
22
|
+
reference_column (str): The name of the reference column to use.
|
|
23
|
+
sample_names_col (str): The name of the sample name column to use.
|
|
24
|
+
invert (bool): Whether to invert the positional coordinates of the adata object.
|
|
25
|
+
|
|
26
|
+
Returns:
|
|
27
|
+
variables (dict): A dictionary of variables to append to the parent scope.
|
|
28
|
+
"""
|
|
29
|
+
import anndata as ad
|
|
30
|
+
import pandas as pd
|
|
31
|
+
import numpy as np
|
|
32
|
+
from .load_sample_sheet import load_sample_sheet
|
|
33
|
+
from .calculate_coverage import calculate_coverage
|
|
34
|
+
from .append_C_context import append_C_context
|
|
35
|
+
from .calculate_converted_read_methylation_stats import calculate_converted_read_methylation_stats
|
|
36
|
+
from .invert_adata import invert_adata
|
|
37
|
+
from .calculate_read_length_stats import calculate_read_length_stats
|
|
38
|
+
from .clean_NaN import clean_NaN
|
|
39
|
+
|
|
40
|
+
# Clean up some of the Reference metadata and save variable names that point to sets of values in the column.
|
|
41
|
+
adata.obs[reference_column] = adata.obs[reference_column].astype('category')
|
|
42
|
+
references = adata.obs[reference_column].cat.categories
|
|
43
|
+
split_references = [(reference, reference.split('_')[0][1:]) for reference in references]
|
|
44
|
+
reference_mapping = {k: v for k, v in split_references}
|
|
45
|
+
adata.obs[f'{reference_column}_short'] = adata.obs[reference_column].map(reference_mapping)
|
|
46
|
+
short_references = set(adata.obs[f'{reference_column}_short'])
|
|
47
|
+
binary_layers = list(adata.layers.keys())
|
|
48
|
+
|
|
49
|
+
# load sample sheet metadata
|
|
50
|
+
load_sample_sheet(adata, sample_sheet_path, mapping_key_column)
|
|
51
|
+
|
|
52
|
+
# hold sample names set
|
|
53
|
+
adata.obs[sample_names_col] = adata.obs[sample_names_col].astype('category')
|
|
54
|
+
sample_names = adata.obs[sample_names_col].cat.categories
|
|
55
|
+
|
|
56
|
+
# Add position level metadata
|
|
57
|
+
calculate_coverage(adata, obs_column=reference_column)
|
|
58
|
+
adata.var['SNP_position'] = (adata.var[f'N_{reference_column}_with_position'] > 0) & (adata.var[f'N_{reference_column}_with_position'] < len(references)).astype(bool)
|
|
59
|
+
|
|
60
|
+
# Append cytosine context to the reference positions based on the conversion strand.
|
|
61
|
+
append_C_context(adata, obs_column=reference_column, use_consensus=False)
|
|
62
|
+
|
|
63
|
+
# Calculate read level methylation statistics. Assess if GpC methylation level is above other_C methylation level as a QC.
|
|
64
|
+
calculate_converted_read_methylation_stats(adata, reference_column, sample_names_col)
|
|
65
|
+
|
|
66
|
+
# Calculate read length statistics
|
|
67
|
+
upper_bound, lower_bound = calculate_read_length_stats(adata, reference_column, sample_names_col)
|
|
68
|
+
|
|
69
|
+
# Invert the adata object (ie flip the strand orientation for visualization)
|
|
70
|
+
if invert:
|
|
71
|
+
adata = invert_adata(adata)
|
|
72
|
+
else:
|
|
73
|
+
pass
|
|
74
|
+
|
|
75
|
+
# NaN replacement strategies stored in additional layers. Having layer=None uses adata.X
|
|
76
|
+
clean_NaN(adata, layer=None)
|
|
77
|
+
|
|
78
|
+
variables = {
|
|
79
|
+
"short_references": short_references,
|
|
80
|
+
"binary_layers": binary_layers,
|
|
81
|
+
"sample_names": sample_names,
|
|
82
|
+
"upper_bound": upper_bound,
|
|
83
|
+
"lower_bound": lower_bound,
|
|
84
|
+
"references": references
|
|
85
|
+
}
|
|
86
|
+
return variables
|
|
87
|
+
|
|
88
|
+
def recipe_2_Kissiov_and_McKenna_2025(adata, output_directory, binary_layers, distance_thresholds={}, reference_column = 'Reference', sample_names_col='Sample_names'):
|
|
89
|
+
"""
|
|
90
|
+
The second part of the preprocessing workflow applied to the adata that has already been preprocessed by recipe_1_Kissiov_and_McKenna_2025.
|
|
91
|
+
|
|
92
|
+
Performs the following tasks:
|
|
93
|
+
1) Marks putative PCR duplicates using pairwise hamming distance metrics.
|
|
94
|
+
2) Performs a complexity analysis of the library based on the PCR duplicate detection rate.
|
|
95
|
+
3) Removes PCR duplicates from the adata.
|
|
96
|
+
4) Returns two adata object: one for the filtered adata and one for the duplicate adata.
|
|
97
|
+
|
|
98
|
+
Parameters:
|
|
99
|
+
adata (AnnData): The AnnData object to use as input.
|
|
100
|
+
output_directory (str): String representing the path to the output directory for plots.
|
|
101
|
+
binary_layers (list): A list of layers to used for the binary encoding of read sequences. Used for duplicate detection.
|
|
102
|
+
distance_thresholds (dict): A dictionary keyed by obs_column categories that points to a float corresponding to the distance threshold to apply. Default is an empty dict.
|
|
103
|
+
reference_column (str): The name of the reference column to use.
|
|
104
|
+
sample_names_col (str): The name of the sample name column to use.
|
|
105
|
+
|
|
106
|
+
Returns:
|
|
107
|
+
filtered_adata (AnnData): An AnnData object containing the filtered reads
|
|
108
|
+
duplicates (AnnData): An AnnData object containing the duplicate reads
|
|
109
|
+
"""
|
|
110
|
+
import anndata as ad
|
|
111
|
+
import pandas as pd
|
|
112
|
+
import numpy as np
|
|
113
|
+
from .mark_duplicates import mark_duplicates
|
|
114
|
+
from .calculate_complexity import calculate_complexity
|
|
115
|
+
from .remove_duplicates import remove_duplicates
|
|
116
|
+
|
|
117
|
+
# Add here a way to remove reads below a given read quality (based on nan content). Need to also add a way to pull from BAM files the read quality from each read
|
|
118
|
+
|
|
119
|
+
# Duplicate detection using pairwise hamming distance across reads
|
|
120
|
+
mark_duplicates(adata, binary_layers, obs_column=reference_column, sample_col=sample_names_col, distance_thresholds=distance_thresholds, method='N_masked_distances')
|
|
121
|
+
|
|
122
|
+
# Complexity analysis using the marked duplicates and the lander-watermann algorithm
|
|
123
|
+
calculate_complexity(adata, output_directory, obs_column=reference_column, sample_col=sample_names_col, plot=True, save_plot=False)
|
|
124
|
+
|
|
125
|
+
# Remove duplicate reads and store the duplicate reads in a new AnnData object named duplicates.
|
|
126
|
+
filtered_adata, duplicates = remove_duplicates(adata)
|
|
127
|
+
return filtered_adata, duplicates
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
def subsample_adata(adata, obs_columns=None, max_samples=2000, random_seed=42):
|
|
2
|
+
"""
|
|
3
|
+
Subsamples an AnnData object so that each unique combination of categories
|
|
4
|
+
in the given `obs_columns` has at most `max_samples` observations.
|
|
5
|
+
If `obs_columns` is None or empty, the function randomly subsamples the entire dataset.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
adata (AnnData): The AnnData object to subsample.
|
|
9
|
+
obs_columns (list of str, optional): List of observation column names to group by.
|
|
10
|
+
max_samples (int): The maximum number of observations per category combination.
|
|
11
|
+
random_seed (int): Random seed for reproducibility.
|
|
12
|
+
|
|
13
|
+
Returns:
|
|
14
|
+
AnnData: A new AnnData object with subsampled observations.
|
|
15
|
+
"""
|
|
16
|
+
import anndata as ad
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
np.random.seed(random_seed) # Ensure reproducibility
|
|
20
|
+
|
|
21
|
+
if not obs_columns: # If no obs columns are given, sample globally
|
|
22
|
+
if adata.shape[0] > max_samples:
|
|
23
|
+
sampled_indices = np.random.choice(adata.obs.index, max_samples, replace=False)
|
|
24
|
+
else:
|
|
25
|
+
sampled_indices = adata.obs.index # Keep all if fewer than max_samples
|
|
26
|
+
|
|
27
|
+
return adata[sampled_indices].copy()
|
|
28
|
+
|
|
29
|
+
sampled_indices = []
|
|
30
|
+
|
|
31
|
+
# Get unique category combinations from all specified obs columns
|
|
32
|
+
unique_combinations = adata.obs[obs_columns].drop_duplicates()
|
|
33
|
+
|
|
34
|
+
for _, row in unique_combinations.iterrows():
|
|
35
|
+
# Build filter condition dynamically for multiple columns
|
|
36
|
+
condition = (adata.obs[obs_columns] == row.values).all(axis=1)
|
|
37
|
+
|
|
38
|
+
# Get indices for the current category combination
|
|
39
|
+
subset_indices = adata.obs[condition].index.to_numpy()
|
|
40
|
+
|
|
41
|
+
# Subsample or take all
|
|
42
|
+
if len(subset_indices) > max_samples:
|
|
43
|
+
sampled = np.random.choice(subset_indices, max_samples, replace=False)
|
|
44
|
+
else:
|
|
45
|
+
sampled = subset_indices # Keep all if fewer than max_samples
|
|
46
|
+
|
|
47
|
+
sampled_indices.extend(sampled)
|
|
48
|
+
|
|
49
|
+
# ⚠ Handle backed mode detection
|
|
50
|
+
if adata.isbacked:
|
|
51
|
+
print("⚠ Detected backed mode. Subset will be loaded fully into memory.")
|
|
52
|
+
subset = adata[sampled_indices]
|
|
53
|
+
subset = subset.to_memory()
|
|
54
|
+
else:
|
|
55
|
+
subset = adata[sampled_indices]
|
|
56
|
+
|
|
57
|
+
# Create a new AnnData object with only the selected indices
|
|
58
|
+
return subset[sampled_indices].copy()
|