smftools 0.1.6__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (162) hide show
  1. smftools/__init__.py +34 -0
  2. smftools/_settings.py +20 -0
  3. smftools/_version.py +1 -0
  4. smftools/cli.py +184 -0
  5. smftools/config/__init__.py +1 -0
  6. smftools/config/conversion.yaml +33 -0
  7. smftools/config/deaminase.yaml +56 -0
  8. smftools/config/default.yaml +253 -0
  9. smftools/config/direct.yaml +17 -0
  10. smftools/config/experiment_config.py +1191 -0
  11. smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
  12. smftools/datasets/F1_sample_sheet.csv +5 -0
  13. smftools/datasets/__init__.py +9 -0
  14. smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
  15. smftools/datasets/datasets.py +28 -0
  16. smftools/hmm/HMM.py +1576 -0
  17. smftools/hmm/__init__.py +20 -0
  18. smftools/hmm/apply_hmm_batched.py +242 -0
  19. smftools/hmm/calculate_distances.py +18 -0
  20. smftools/hmm/call_hmm_peaks.py +106 -0
  21. smftools/hmm/display_hmm.py +18 -0
  22. smftools/hmm/hmm_readwrite.py +16 -0
  23. smftools/hmm/nucleosome_hmm_refinement.py +104 -0
  24. smftools/hmm/train_hmm.py +78 -0
  25. smftools/informatics/__init__.py +14 -0
  26. smftools/informatics/archived/bam_conversion.py +59 -0
  27. smftools/informatics/archived/bam_direct.py +63 -0
  28. smftools/informatics/archived/basecalls_to_adata.py +71 -0
  29. smftools/informatics/archived/conversion_smf.py +132 -0
  30. smftools/informatics/archived/deaminase_smf.py +132 -0
  31. smftools/informatics/archived/direct_smf.py +137 -0
  32. smftools/informatics/archived/print_bam_query_seq.py +29 -0
  33. smftools/informatics/basecall_pod5s.py +80 -0
  34. smftools/informatics/fast5_to_pod5.py +24 -0
  35. smftools/informatics/helpers/__init__.py +73 -0
  36. smftools/informatics/helpers/align_and_sort_BAM.py +86 -0
  37. smftools/informatics/helpers/aligned_BAM_to_bed.py +85 -0
  38. smftools/informatics/helpers/archived/informatics.py +260 -0
  39. smftools/informatics/helpers/archived/load_adata.py +516 -0
  40. smftools/informatics/helpers/bam_qc.py +66 -0
  41. smftools/informatics/helpers/bed_to_bigwig.py +39 -0
  42. smftools/informatics/helpers/binarize_converted_base_identities.py +172 -0
  43. smftools/informatics/helpers/canoncall.py +34 -0
  44. smftools/informatics/helpers/complement_base_list.py +21 -0
  45. smftools/informatics/helpers/concatenate_fastqs_to_bam.py +378 -0
  46. smftools/informatics/helpers/converted_BAM_to_adata.py +245 -0
  47. smftools/informatics/helpers/converted_BAM_to_adata_II.py +505 -0
  48. smftools/informatics/helpers/count_aligned_reads.py +43 -0
  49. smftools/informatics/helpers/demux_and_index_BAM.py +52 -0
  50. smftools/informatics/helpers/discover_input_files.py +100 -0
  51. smftools/informatics/helpers/extract_base_identities.py +70 -0
  52. smftools/informatics/helpers/extract_mods.py +83 -0
  53. smftools/informatics/helpers/extract_read_features_from_bam.py +33 -0
  54. smftools/informatics/helpers/extract_read_lengths_from_bed.py +25 -0
  55. smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
  56. smftools/informatics/helpers/find_conversion_sites.py +51 -0
  57. smftools/informatics/helpers/generate_converted_FASTA.py +99 -0
  58. smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
  59. smftools/informatics/helpers/get_native_references.py +28 -0
  60. smftools/informatics/helpers/index_fasta.py +12 -0
  61. smftools/informatics/helpers/make_dirs.py +21 -0
  62. smftools/informatics/helpers/make_modbed.py +27 -0
  63. smftools/informatics/helpers/modQC.py +27 -0
  64. smftools/informatics/helpers/modcall.py +36 -0
  65. smftools/informatics/helpers/modkit_extract_to_adata.py +887 -0
  66. smftools/informatics/helpers/ohe_batching.py +76 -0
  67. smftools/informatics/helpers/ohe_layers_decode.py +32 -0
  68. smftools/informatics/helpers/one_hot_decode.py +27 -0
  69. smftools/informatics/helpers/one_hot_encode.py +57 -0
  70. smftools/informatics/helpers/plot_bed_histograms.py +269 -0
  71. smftools/informatics/helpers/run_multiqc.py +28 -0
  72. smftools/informatics/helpers/separate_bam_by_bc.py +43 -0
  73. smftools/informatics/helpers/split_and_index_BAM.py +32 -0
  74. smftools/informatics/readwrite.py +106 -0
  75. smftools/informatics/subsample_fasta_from_bed.py +47 -0
  76. smftools/informatics/subsample_pod5.py +104 -0
  77. smftools/load_adata.py +1346 -0
  78. smftools/machine_learning/__init__.py +12 -0
  79. smftools/machine_learning/data/__init__.py +2 -0
  80. smftools/machine_learning/data/anndata_data_module.py +234 -0
  81. smftools/machine_learning/data/preprocessing.py +6 -0
  82. smftools/machine_learning/evaluation/__init__.py +2 -0
  83. smftools/machine_learning/evaluation/eval_utils.py +31 -0
  84. smftools/machine_learning/evaluation/evaluators.py +223 -0
  85. smftools/machine_learning/inference/__init__.py +3 -0
  86. smftools/machine_learning/inference/inference_utils.py +27 -0
  87. smftools/machine_learning/inference/lightning_inference.py +68 -0
  88. smftools/machine_learning/inference/sklearn_inference.py +55 -0
  89. smftools/machine_learning/inference/sliding_window_inference.py +114 -0
  90. smftools/machine_learning/models/__init__.py +9 -0
  91. smftools/machine_learning/models/base.py +295 -0
  92. smftools/machine_learning/models/cnn.py +138 -0
  93. smftools/machine_learning/models/lightning_base.py +345 -0
  94. smftools/machine_learning/models/mlp.py +26 -0
  95. smftools/machine_learning/models/positional.py +18 -0
  96. smftools/machine_learning/models/rnn.py +17 -0
  97. smftools/machine_learning/models/sklearn_models.py +273 -0
  98. smftools/machine_learning/models/transformer.py +303 -0
  99. smftools/machine_learning/models/wrappers.py +20 -0
  100. smftools/machine_learning/training/__init__.py +2 -0
  101. smftools/machine_learning/training/train_lightning_model.py +135 -0
  102. smftools/machine_learning/training/train_sklearn_model.py +114 -0
  103. smftools/machine_learning/utils/__init__.py +2 -0
  104. smftools/machine_learning/utils/device.py +10 -0
  105. smftools/machine_learning/utils/grl.py +14 -0
  106. smftools/plotting/__init__.py +18 -0
  107. smftools/plotting/autocorrelation_plotting.py +611 -0
  108. smftools/plotting/classifiers.py +355 -0
  109. smftools/plotting/general_plotting.py +682 -0
  110. smftools/plotting/hmm_plotting.py +260 -0
  111. smftools/plotting/position_stats.py +462 -0
  112. smftools/plotting/qc_plotting.py +270 -0
  113. smftools/preprocessing/__init__.py +38 -0
  114. smftools/preprocessing/add_read_length_and_mapping_qc.py +129 -0
  115. smftools/preprocessing/append_base_context.py +122 -0
  116. smftools/preprocessing/append_binary_layer_by_base_context.py +143 -0
  117. smftools/preprocessing/archives/mark_duplicates.py +146 -0
  118. smftools/preprocessing/archives/preprocessing.py +614 -0
  119. smftools/preprocessing/archives/remove_duplicates.py +21 -0
  120. smftools/preprocessing/binarize_on_Youden.py +45 -0
  121. smftools/preprocessing/binary_layers_to_ohe.py +40 -0
  122. smftools/preprocessing/calculate_complexity.py +72 -0
  123. smftools/preprocessing/calculate_complexity_II.py +248 -0
  124. smftools/preprocessing/calculate_consensus.py +47 -0
  125. smftools/preprocessing/calculate_coverage.py +51 -0
  126. smftools/preprocessing/calculate_pairwise_differences.py +49 -0
  127. smftools/preprocessing/calculate_pairwise_hamming_distances.py +27 -0
  128. smftools/preprocessing/calculate_position_Youden.py +115 -0
  129. smftools/preprocessing/calculate_read_length_stats.py +79 -0
  130. smftools/preprocessing/calculate_read_modification_stats.py +101 -0
  131. smftools/preprocessing/clean_NaN.py +62 -0
  132. smftools/preprocessing/filter_adata_by_nan_proportion.py +31 -0
  133. smftools/preprocessing/filter_reads_on_length_quality_mapping.py +158 -0
  134. smftools/preprocessing/filter_reads_on_modification_thresholds.py +352 -0
  135. smftools/preprocessing/flag_duplicate_reads.py +1351 -0
  136. smftools/preprocessing/invert_adata.py +37 -0
  137. smftools/preprocessing/load_sample_sheet.py +53 -0
  138. smftools/preprocessing/make_dirs.py +21 -0
  139. smftools/preprocessing/min_non_diagonal.py +25 -0
  140. smftools/preprocessing/recipes.py +127 -0
  141. smftools/preprocessing/subsample_adata.py +58 -0
  142. smftools/readwrite.py +1004 -0
  143. smftools/tools/__init__.py +20 -0
  144. smftools/tools/archived/apply_hmm.py +202 -0
  145. smftools/tools/archived/classifiers.py +787 -0
  146. smftools/tools/archived/classify_methylated_features.py +66 -0
  147. smftools/tools/archived/classify_non_methylated_features.py +75 -0
  148. smftools/tools/archived/subset_adata_v1.py +32 -0
  149. smftools/tools/archived/subset_adata_v2.py +46 -0
  150. smftools/tools/calculate_umap.py +62 -0
  151. smftools/tools/cluster_adata_on_methylation.py +105 -0
  152. smftools/tools/general_tools.py +69 -0
  153. smftools/tools/position_stats.py +601 -0
  154. smftools/tools/read_stats.py +184 -0
  155. smftools/tools/spatial_autocorrelation.py +562 -0
  156. smftools/tools/subset_adata.py +28 -0
  157. {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/METADATA +9 -2
  158. smftools-0.2.1.dist-info/RECORD +161 -0
  159. smftools-0.2.1.dist-info/entry_points.txt +2 -0
  160. smftools-0.1.6.dist-info/RECORD +0 -4
  161. {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/WHEEL +0 -0
  162. {smftools-0.1.6.dist-info → smftools-0.2.1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,887 @@
1
+ ## modkit_extract_to_adata
2
+
3
+ import concurrent.futures
4
+ import gc
5
+ from .count_aligned_reads import count_aligned_reads
6
+ import pandas as pd
7
+ from tqdm import tqdm
8
+ import numpy as np
9
+
10
+ def filter_bam_records(bam, mapping_threshold):
11
+ """Processes a single BAM file, counts reads, and determines records to analyze."""
12
+ aligned_reads_count, unaligned_reads_count, record_counts_dict = count_aligned_reads(bam)
13
+
14
+ total_reads = aligned_reads_count + unaligned_reads_count
15
+ percent_aligned = (aligned_reads_count * 100 / total_reads) if total_reads > 0 else 0
16
+ print(f'{percent_aligned:.2f}% of reads in {bam} aligned successfully')
17
+
18
+ records = []
19
+ for record, (count, percentage) in record_counts_dict.items():
20
+ print(f'{count} reads mapped to reference {record}. This is {percentage*100:.2f}% of all mapped reads in {bam}')
21
+ if percentage >= mapping_threshold:
22
+ records.append(record)
23
+
24
+ return set(records)
25
+
26
+ def parallel_filter_bams(bam_path_list, mapping_threshold):
27
+ """Parallel processing for multiple BAM files."""
28
+ records_to_analyze = set()
29
+
30
+ with concurrent.futures.ProcessPoolExecutor() as executor:
31
+ results = executor.map(filter_bam_records, bam_path_list, [mapping_threshold] * len(bam_path_list))
32
+
33
+ # Aggregate results
34
+ for result in results:
35
+ records_to_analyze.update(result)
36
+
37
+ print(f'Records to analyze: {records_to_analyze}')
38
+ return records_to_analyze
39
+
40
+ def process_tsv(tsv, records_to_analyze, reference_dict, sample_index):
41
+ """
42
+ Loads and filters a single TSV file based on chromosome and position criteria.
43
+ """
44
+ temp_df = pd.read_csv(tsv, sep='\t', header=0)
45
+ filtered_records = {}
46
+
47
+ for record in records_to_analyze:
48
+ if record not in reference_dict:
49
+ continue
50
+
51
+ ref_length = reference_dict[record][0]
52
+ filtered_df = temp_df[(temp_df['chrom'] == record) &
53
+ (temp_df['ref_position'] >= 0) &
54
+ (temp_df['ref_position'] < ref_length)]
55
+
56
+ if not filtered_df.empty:
57
+ filtered_records[record] = {sample_index: filtered_df}
58
+
59
+ return filtered_records
60
+
61
+ def parallel_load_tsvs(tsv_batch, records_to_analyze, reference_dict, batch, batch_size, threads=4):
62
+ """
63
+ Loads and filters TSV files in parallel.
64
+
65
+ Parameters:
66
+ tsv_batch (list): List of TSV file paths.
67
+ records_to_analyze (list): Chromosome records to analyze.
68
+ reference_dict (dict): Dictionary containing reference lengths.
69
+ batch (int): Current batch number.
70
+ batch_size (int): Total files in the batch.
71
+ threads (int): Number of parallel workers.
72
+
73
+ Returns:
74
+ dict: Processed `dict_total` dictionary.
75
+ """
76
+ dict_total = {record: {} for record in records_to_analyze}
77
+
78
+ with concurrent.futures.ProcessPoolExecutor(max_workers=threads) as executor:
79
+ futures = {
80
+ executor.submit(process_tsv, tsv, records_to_analyze, reference_dict, sample_index): sample_index
81
+ for sample_index, tsv in enumerate(tsv_batch)
82
+ }
83
+
84
+ for future in tqdm(concurrent.futures.as_completed(futures), desc=f'Processing batch {batch}', total=batch_size):
85
+ result = future.result()
86
+ for record, sample_data in result.items():
87
+ dict_total[record].update(sample_data)
88
+
89
+ return dict_total
90
+
91
+ def update_dict_to_skip(dict_to_skip, detected_modifications):
92
+ """
93
+ Updates the dict_to_skip set based on the detected modifications.
94
+
95
+ Parameters:
96
+ dict_to_skip (set): The initial set of dictionary indices to skip.
97
+ detected_modifications (list or set): The modifications (e.g. ['6mA', '5mC']) present.
98
+
99
+ Returns:
100
+ set: The updated dict_to_skip set.
101
+ """
102
+ # Define which indices correspond to modification-specific or strand-specific dictionaries
103
+ A_stranded_dicts = {2, 3} # m6A bottom and top strand dictionaries
104
+ C_stranded_dicts = {5, 6} # 5mC bottom and top strand dictionaries
105
+ combined_dicts = {7, 8} # Combined strand dictionaries
106
+
107
+ # If '6mA' is present, remove the A_stranded indices from the skip set
108
+ if '6mA' in detected_modifications:
109
+ dict_to_skip -= A_stranded_dicts
110
+ # If '5mC' is present, remove the C_stranded indices from the skip set
111
+ if '5mC' in detected_modifications:
112
+ dict_to_skip -= C_stranded_dicts
113
+ # If both modifications are present, remove the combined indices from the skip set
114
+ if '6mA' in detected_modifications and '5mC' in detected_modifications:
115
+ dict_to_skip -= combined_dicts
116
+
117
+ return dict_to_skip
118
+
119
+ def process_modifications_for_sample(args):
120
+ """
121
+ Processes a single (record, sample) pair to extract modification-specific data.
122
+
123
+ Parameters:
124
+ args: (record, sample_index, sample_df, mods, max_reference_length)
125
+
126
+ Returns:
127
+ (record, sample_index, result) where result is a dict with keys:
128
+ 'm6A', 'm6A_minus', 'm6A_plus', '5mC', '5mC_minus', '5mC_plus', and
129
+ optionally 'combined_minus' and 'combined_plus' (initialized as empty lists).
130
+ """
131
+ record, sample_index, sample_df, mods, max_reference_length = args
132
+ result = {}
133
+ if '6mA' in mods:
134
+ m6a_df = sample_df[sample_df['modified_primary_base'] == 'A']
135
+ result['m6A'] = m6a_df
136
+ result['m6A_minus'] = m6a_df[m6a_df['ref_strand'] == '-']
137
+ result['m6A_plus'] = m6a_df[m6a_df['ref_strand'] == '+']
138
+ m6a_df = None
139
+ gc.collect()
140
+ if '5mC' in mods:
141
+ m5c_df = sample_df[sample_df['modified_primary_base'] == 'C']
142
+ result['5mC'] = m5c_df
143
+ result['5mC_minus'] = m5c_df[m5c_df['ref_strand'] == '-']
144
+ result['5mC_plus'] = m5c_df[m5c_df['ref_strand'] == '+']
145
+ m5c_df = None
146
+ gc.collect()
147
+ if '6mA' in mods and '5mC' in mods:
148
+ result['combined_minus'] = []
149
+ result['combined_plus'] = []
150
+ return record, sample_index, result
151
+
152
+ def parallel_process_modifications(dict_total, mods, max_reference_length, threads=4):
153
+ """
154
+ Processes each (record, sample) pair in dict_total in parallel to extract modification-specific data.
155
+
156
+ Returns:
157
+ processed_results: Dict keyed by record, with sub-dict keyed by sample index and the processed results.
158
+ """
159
+ tasks = []
160
+ for record, sample_dict in dict_total.items():
161
+ for sample_index, sample_df in sample_dict.items():
162
+ tasks.append((record, sample_index, sample_df, mods, max_reference_length))
163
+ processed_results = {}
164
+ with concurrent.futures.ProcessPoolExecutor(max_workers=threads) as executor:
165
+ for record, sample_index, result in tqdm(
166
+ executor.map(process_modifications_for_sample, tasks),
167
+ total=len(tasks),
168
+ desc="Processing modifications"):
169
+ if record not in processed_results:
170
+ processed_results[record] = {}
171
+ processed_results[record][sample_index] = result
172
+ return processed_results
173
+
174
+ def merge_modification_results(processed_results, mods):
175
+ """
176
+ Merges individual sample results into global dictionaries.
177
+
178
+ Returns:
179
+ A tuple: (m6A_dict, m6A_minus, m6A_plus, c5m_dict, c5m_minus, c5m_plus, combined_minus, combined_plus)
180
+ """
181
+ m6A_dict = {}
182
+ m6A_minus = {}
183
+ m6A_plus = {}
184
+ c5m_dict = {}
185
+ c5m_minus = {}
186
+ c5m_plus = {}
187
+ combined_minus = {}
188
+ combined_plus = {}
189
+ for record, sample_results in processed_results.items():
190
+ for sample_index, res in sample_results.items():
191
+ if '6mA' in mods:
192
+ if record not in m6A_dict:
193
+ m6A_dict[record], m6A_minus[record], m6A_plus[record] = {}, {}, {}
194
+ m6A_dict[record][sample_index] = res.get('m6A', pd.DataFrame())
195
+ m6A_minus[record][sample_index] = res.get('m6A_minus', pd.DataFrame())
196
+ m6A_plus[record][sample_index] = res.get('m6A_plus', pd.DataFrame())
197
+ if '5mC' in mods:
198
+ if record not in c5m_dict:
199
+ c5m_dict[record], c5m_minus[record], c5m_plus[record] = {}, {}, {}
200
+ c5m_dict[record][sample_index] = res.get('5mC', pd.DataFrame())
201
+ c5m_minus[record][sample_index] = res.get('5mC_minus', pd.DataFrame())
202
+ c5m_plus[record][sample_index] = res.get('5mC_plus', pd.DataFrame())
203
+ if '6mA' in mods and '5mC' in mods:
204
+ if record not in combined_minus:
205
+ combined_minus[record], combined_plus[record] = {}, {}
206
+ combined_minus[record][sample_index] = res.get('combined_minus', [])
207
+ combined_plus[record][sample_index] = res.get('combined_plus', [])
208
+ return (m6A_dict, m6A_minus, m6A_plus,
209
+ c5m_dict, c5m_minus, c5m_plus,
210
+ combined_minus, combined_plus)
211
+
212
+ def process_stranded_methylation(args):
213
+ """
214
+ Processes a single (dict_index, record, sample) task.
215
+
216
+ For combined dictionaries (indices 7 or 8), it merges the corresponding A-stranded and C-stranded data.
217
+ For other dictionaries, it converts the DataFrame into a nested dictionary mapping read names to a
218
+ NumPy methylation array (of float type). Non-numeric values (e.g. '-') are coerced to NaN.
219
+
220
+ Parameters:
221
+ args: (dict_index, record, sample, dict_list, max_reference_length)
222
+
223
+ Returns:
224
+ (dict_index, record, sample, processed_data)
225
+ """
226
+ dict_index, record, sample, dict_list, max_reference_length = args
227
+ processed_data = {}
228
+
229
+ # For combined bottom strand (index 7)
230
+ if dict_index == 7:
231
+ temp_a = dict_list[2][record].get(sample, {}).copy()
232
+ temp_c = dict_list[5][record].get(sample, {}).copy()
233
+ processed_data = {}
234
+ for read in set(temp_a.keys()) | set(temp_c.keys()):
235
+ if read in temp_a:
236
+ # Convert using pd.to_numeric with errors='coerce'
237
+ value_a = pd.to_numeric(np.array(temp_a[read]), errors='coerce')
238
+ else:
239
+ value_a = None
240
+ if read in temp_c:
241
+ value_c = pd.to_numeric(np.array(temp_c[read]), errors='coerce')
242
+ else:
243
+ value_c = None
244
+ if value_a is not None and value_c is not None:
245
+ processed_data[read] = np.where(
246
+ np.isnan(value_a) & np.isnan(value_c),
247
+ np.nan,
248
+ np.nan_to_num(value_a) + np.nan_to_num(value_c)
249
+ )
250
+ elif value_a is not None:
251
+ processed_data[read] = value_a
252
+ elif value_c is not None:
253
+ processed_data[read] = value_c
254
+ del temp_a, temp_c
255
+
256
+ # For combined top strand (index 8)
257
+ elif dict_index == 8:
258
+ temp_a = dict_list[3][record].get(sample, {}).copy()
259
+ temp_c = dict_list[6][record].get(sample, {}).copy()
260
+ processed_data = {}
261
+ for read in set(temp_a.keys()) | set(temp_c.keys()):
262
+ if read in temp_a:
263
+ value_a = pd.to_numeric(np.array(temp_a[read]), errors='coerce')
264
+ else:
265
+ value_a = None
266
+ if read in temp_c:
267
+ value_c = pd.to_numeric(np.array(temp_c[read]), errors='coerce')
268
+ else:
269
+ value_c = None
270
+ if value_a is not None and value_c is not None:
271
+ processed_data[read] = np.where(
272
+ np.isnan(value_a) & np.isnan(value_c),
273
+ np.nan,
274
+ np.nan_to_num(value_a) + np.nan_to_num(value_c)
275
+ )
276
+ elif value_a is not None:
277
+ processed_data[read] = value_a
278
+ elif value_c is not None:
279
+ processed_data[read] = value_c
280
+ del temp_a, temp_c
281
+
282
+ # For all other dictionaries
283
+ else:
284
+ # current_data is a DataFrame
285
+ temp_df = dict_list[dict_index][record][sample]
286
+ processed_data = {}
287
+ # Extract columns and convert probabilities to float (coercing errors)
288
+ read_ids = temp_df['read_id'].values
289
+ positions = temp_df['ref_position'].values
290
+ call_codes = temp_df['call_code'].values
291
+ probabilities = pd.to_numeric(temp_df['call_prob'].values, errors='coerce')
292
+
293
+ modified_codes = {'a', 'h', 'm'}
294
+ canonical_codes = {'-'}
295
+
296
+ # Compute methylation probabilities (vectorized)
297
+ methylation_prob = np.full(probabilities.shape, np.nan, dtype=float)
298
+ methylation_prob[np.isin(call_codes, list(modified_codes))] = probabilities[np.isin(call_codes, list(modified_codes))]
299
+ methylation_prob[np.isin(call_codes, list(canonical_codes))] = 1 - probabilities[np.isin(call_codes, list(canonical_codes))]
300
+
301
+ # Preallocate storage for each unique read
302
+ unique_reads = np.unique(read_ids)
303
+ for read in unique_reads:
304
+ processed_data[read] = np.full(max_reference_length, np.nan, dtype=float)
305
+
306
+ # Assign values efficiently
307
+ for i in range(len(read_ids)):
308
+ read = read_ids[i]
309
+ pos = positions[i]
310
+ prob = methylation_prob[i]
311
+ processed_data[read][pos] = prob
312
+
313
+ gc.collect()
314
+ return dict_index, record, sample, processed_data
315
+
316
+ def parallel_extract_stranded_methylation(dict_list, dict_to_skip, max_reference_length, threads=4):
317
+ """
318
+ Processes all (dict_index, record, sample) tasks in dict_list (excluding indices in dict_to_skip) in parallel.
319
+
320
+ Returns:
321
+ Updated dict_list with processed (nested) dictionaries.
322
+ """
323
+ tasks = []
324
+ for dict_index, current_dict in enumerate(dict_list):
325
+ if dict_index not in dict_to_skip:
326
+ for record in current_dict.keys():
327
+ for sample in current_dict[record].keys():
328
+ tasks.append((dict_index, record, sample, dict_list, max_reference_length))
329
+
330
+ with concurrent.futures.ProcessPoolExecutor(max_workers=threads) as executor:
331
+ for dict_index, record, sample, processed_data in tqdm(
332
+ executor.map(process_stranded_methylation, tasks),
333
+ total=len(tasks),
334
+ desc="Extracting stranded methylation states"
335
+ ):
336
+ dict_list[dict_index][record][sample] = processed_data
337
+ return dict_list
338
+
339
+ def modkit_extract_to_adata(fasta, bam_dir, mapping_threshold, experiment_name, mods, batch_size, mod_tsv_dir, delete_batch_hdfs=False, threads=None):
340
+ """
341
+ Takes modkit extract outputs and organizes it into an adata object
342
+
343
+ Parameters:
344
+ fasta (str): File path to the reference genome to align to.
345
+ bam_dir (str): File path to the directory containing the aligned_sorted split modified BAM files
346
+ mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
347
+ experiment_name (str): A string to provide an experiment name to the output adata file.
348
+ mods (list): A list of strings of the modification types to use in the analysis.
349
+ batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
350
+ mod_tsv_dir (str): String representing the path to the mod TSV directory
351
+ delete_batch_hdfs (bool): Whether to delete the batch hdfs after writing out the final concatenated hdf. Default is False
352
+
353
+ Returns:
354
+ final_adata_path (str): Path to the final adata
355
+ """
356
+ ###################################################
357
+ # Package imports
358
+ from .. import readwrite
359
+ from .get_native_references import get_native_references
360
+ from .extract_base_identities import extract_base_identities
361
+ from .ohe_batching import ohe_batching
362
+ import pandas as pd
363
+ import anndata as ad
364
+ import os
365
+ import gc
366
+ import math
367
+ import numpy as np
368
+ from Bio.Seq import Seq
369
+ from tqdm import tqdm
370
+ import h5py
371
+ from .make_dirs import make_dirs
372
+ ###################################################
373
+
374
+ ################## Get input tsv and bam file names into a sorted list ################
375
+ # List all files in the directory
376
+ tsv_files = os.listdir(mod_tsv_dir)
377
+ bam_files = os.listdir(bam_dir)
378
+ # get current working directory
379
+ parent_dir = os.path.dirname(mod_tsv_dir)
380
+
381
+ # Make output dirs
382
+ h5_dir = os.path.join(parent_dir, 'h5ads')
383
+ tmp_dir = os.path.join(parent_dir, 'tmp')
384
+ make_dirs([h5_dir, tmp_dir])
385
+ existing_h5s = os.listdir(h5_dir)
386
+ existing_h5s = [h5 for h5 in existing_h5s if '.h5ad.gz' in h5]
387
+ final_hdf = f'{experiment_name}_final_experiment_hdf5.h5ad'
388
+ final_adata_path = os.path.join(h5_dir, final_hdf)
389
+ final_adata = None
390
+
391
+ if os.path.exists(f"{final_adata_path}.gz"):
392
+ print(f'{final_adata_path}.gz already exists. Using existing adata')
393
+ return final_adata, f"{final_adata_path}.gz"
394
+
395
+ elif os.path.exists(f"{final_adata_path}"):
396
+ print(f'{final_adata_path} already exists. Using existing adata')
397
+ return final_adata, final_adata_path
398
+
399
+ # Filter file names that contain the search string in their filename and keep them in a list
400
+ tsvs = [tsv for tsv in tsv_files if 'extract.tsv' in tsv and 'unclassified' not in tsv]
401
+ bams = [bam for bam in bam_files if '.bam' in bam and '.bai' not in bam and 'unclassified' not in bam]
402
+ # Sort file list by names and print the list of file names
403
+ tsvs.sort()
404
+ tsv_path_list = [os.path.join(mod_tsv_dir, tsv) for tsv in tsvs]
405
+ bams.sort()
406
+ bam_path_list = [os.path.join(bam_dir, bam) for bam in bams]
407
+ print(f'{len(tsvs)} sample tsv files found: {tsvs}')
408
+ print(f'{len(bams)} sample bams found: {bams}')
409
+ ##########################################################################################
410
+
411
+ ######### Get Record names that have over a passed threshold of mapped reads #############
412
+ # get all records that are above a certain mapping threshold in at least one sample bam
413
+ records_to_analyze = parallel_filter_bams(bam_path_list, mapping_threshold)
414
+
415
+ ##########################################################################################
416
+
417
+ ########### Determine the maximum record length to analyze in the dataset ################
418
+ # Get all references within the FASTA and indicate the length and identity of the record sequence
419
+ max_reference_length = 0
420
+ reference_dict = get_native_references(fasta) # returns a dict keyed by record name. Points to a tuple of (reference length, reference sequence)
421
+ # Get the max record length in the dataset.
422
+ for record in records_to_analyze:
423
+ if reference_dict[record][0] > max_reference_length:
424
+ max_reference_length = reference_dict[record][0]
425
+ print(f'{readwrite.time_string()}: Max reference length in dataset: {max_reference_length}')
426
+ batches = math.ceil(len(tsvs) / batch_size) # Number of batches to process
427
+ print('{0}: Processing input tsvs in {1} batches of {2} tsvs '.format(readwrite.time_string(), batches, batch_size))
428
+ ##########################################################################################
429
+
430
+ ##########################################################################################
431
+ # One hot encode read sequences and write them out into the tmp_dir as h5ad files.
432
+ # Save the file paths in the bam_record_ohe_files dict.
433
+ bam_record_ohe_files = {}
434
+ bam_record_save = os.path.join(tmp_dir, 'tmp_file_dict.h5ad')
435
+ fwd_mapped_reads = set()
436
+ rev_mapped_reads = set()
437
+ # If this step has already been performed, read in the tmp_dile_dict
438
+ if os.path.exists(bam_record_save):
439
+ bam_record_ohe_files = ad.read_h5ad(bam_record_save).uns
440
+ print('Found existing OHE reads, using these')
441
+ else:
442
+ # Iterate over split bams
443
+ for bami, bam in enumerate(bam_path_list):
444
+ # Iterate over references to process
445
+ for record in records_to_analyze:
446
+ current_reference_length = reference_dict[record][0]
447
+ positions = range(current_reference_length)
448
+ ref_seq = reference_dict[record][1]
449
+ # Extract the base identities of reads aligned to the record
450
+ fwd_base_identities, rev_base_identities, mismatch_counts_per_read, mismatch_trend_per_read = extract_base_identities(bam, record, positions, max_reference_length, ref_seq)
451
+ # Store read names of fwd and rev mapped reads
452
+ fwd_mapped_reads.update(fwd_base_identities.keys())
453
+ rev_mapped_reads.update(rev_base_identities.keys())
454
+ # One hot encode the sequence string of the reads
455
+ fwd_ohe_files = ohe_batching(fwd_base_identities, tmp_dir, record, f"{bami}_fwd",batch_size=100000, threads=threads)
456
+ rev_ohe_files = ohe_batching(rev_base_identities, tmp_dir, record, f"{bami}_rev",batch_size=100000, threads=threads)
457
+ bam_record_ohe_files[f'{bami}_{record}'] = fwd_ohe_files + rev_ohe_files
458
+ del fwd_base_identities, rev_base_identities
459
+ # Save out the ohe file paths
460
+ X = np.random.rand(1, 1)
461
+ tmp_ad = ad.AnnData(X=X, uns=bam_record_ohe_files)
462
+ tmp_ad.write_h5ad(bam_record_save)
463
+ ##########################################################################################
464
+
465
+ ##########################################################################################
466
+ # Iterate over records to analyze and return a dictionary keyed by the reference name that points to a tuple containing the top strand sequence and the complement
467
+ record_seq_dict = {}
468
+ for record in records_to_analyze:
469
+ current_reference_length = reference_dict[record][0]
470
+ delta_max_length = max_reference_length - current_reference_length
471
+ sequence = reference_dict[record][1] + 'N'*delta_max_length
472
+ complement = str(Seq(reference_dict[record][1]).complement()).upper() + 'N'*delta_max_length
473
+ record_seq_dict[record] = (sequence, complement)
474
+ ##########################################################################################
475
+
476
+ ###################################################
477
+ # Begin iterating over batches
478
+ for batch in range(batches):
479
+ print('{0}: Processing tsvs for batch {1} '.format(readwrite.time_string(), batch))
480
+ # For the final batch, just take the remaining tsv and bam files
481
+ if batch == batches - 1:
482
+ tsv_batch = tsv_path_list
483
+ bam_batch = bam_path_list
484
+ # For all other batches, take the next batch of tsvs and bams out of the file queue.
485
+ else:
486
+ tsv_batch = tsv_path_list[:batch_size]
487
+ bam_batch = bam_path_list[:batch_size]
488
+ tsv_path_list = tsv_path_list[batch_size:]
489
+ bam_path_list = bam_path_list[batch_size:]
490
+ print('{0}: tsvs in batch {1} '.format(readwrite.time_string(), tsv_batch))
491
+
492
+ batch_already_processed = sum([1 for h5 in existing_h5s if f'_{batch}_' in h5])
493
+ ###################################################
494
+ if batch_already_processed:
495
+ print(f'Batch {batch} has already been processed into h5ads. Skipping batch and using existing files')
496
+ else:
497
+ ###################################################
498
+ ### Add the tsvs as dataframes to a dictionary (dict_total) keyed by integer index. Also make modification specific dictionaries and strand specific dictionaries.
499
+ # # Initialize dictionaries and place them in a list
500
+ dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top = {},{},{},{},{},{},{},{},{}
501
+ dict_list = [dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top]
502
+ # Give names to represent each dictionary in the list
503
+ sample_types = ['total', 'm6A', 'm6A_bottom_strand', 'm6A_top_strand', '5mC', '5mC_bottom_strand', '5mC_top_strand', 'combined_bottom_strand', 'combined_top_strand']
504
+ # Give indices of dictionaries to skip for analysis and final dictionary saving.
505
+ dict_to_skip = [0, 1, 4]
506
+ combined_dicts = [7, 8]
507
+ A_stranded_dicts = [2, 3]
508
+ C_stranded_dicts = [5, 6]
509
+ dict_to_skip = dict_to_skip + combined_dicts + A_stranded_dicts + C_stranded_dicts
510
+ dict_to_skip = set(dict_to_skip)
511
+
512
+ # # Step 1):Load the dict_total dictionary with all of the batch tsv files as dataframes.
513
+ dict_total = parallel_load_tsvs(tsv_batch, records_to_analyze, reference_dict, batch, batch_size=len(tsv_batch), threads=threads)
514
+
515
+ # # Step 2: Extract modification-specific data (per (record,sample)) in parallel
516
+ # processed_mod_results = parallel_process_modifications(dict_total, mods, max_reference_length, threads=threads or 4)
517
+ # (m6A_dict, m6A_minus_strand, m6A_plus_strand,
518
+ # c5m_dict, c5m_minus_strand, c5m_plus_strand,
519
+ # combined_minus_strand, combined_plus_strand) = merge_modification_results(processed_mod_results, mods)
520
+
521
+ # # Create dict_list with the desired ordering:
522
+ # # 0: dict_total, 1: m6A, 2: m6A_minus, 3: m6A_plus, 4: 5mC, 5: 5mC_minus, 6: 5mC_plus, 7: combined_minus, 8: combined_plus
523
+ # dict_list = [dict_total, m6A_dict, m6A_minus_strand, m6A_plus_strand,
524
+ # c5m_dict, c5m_minus_strand, c5m_plus_strand,
525
+ # combined_minus_strand, combined_plus_strand]
526
+
527
+ # # Initialize dict_to_skip (default skip all mod-specific indices)
528
+ # dict_to_skip = set([0, 1, 4, 7, 8, 2, 3, 5, 6])
529
+ # # Update dict_to_skip based on modifications present in mods
530
+ # dict_to_skip = update_dict_to_skip(dict_to_skip, mods)
531
+
532
+ # # Step 3: Process stranded methylation data in parallel
533
+ # dict_list = parallel_extract_stranded_methylation(dict_list, dict_to_skip, max_reference_length, threads=threads or 4)
534
+
535
+ # Iterate over dict_total of all the tsv files and extract the modification specific and strand specific dataframes into dictionaries
536
+ for record in dict_total.keys():
537
+ for sample_index in dict_total[record].keys():
538
+ if '6mA' in mods:
539
+ # Remove Adenine stranded dicts from the dicts to skip set
540
+ dict_to_skip.difference_update(set(A_stranded_dicts))
541
+
542
+ if record not in dict_a.keys() and record not in dict_a_bottom.keys() and record not in dict_a_top.keys():
543
+ dict_a[record], dict_a_bottom[record], dict_a_top[record] = {}, {}, {}
544
+
545
+ # get a dictionary of dataframes that only contain methylated adenine positions
546
+ dict_a[record][sample_index] = dict_total[record][sample_index][dict_total[record][sample_index]['modified_primary_base'] == 'A']
547
+ print('{}: Successfully loaded a methyl-adenine dictionary for '.format(readwrite.time_string()) + str(sample_index))
548
+ # Stratify the adenine dictionary into two strand specific dictionaries.
549
+ dict_a_bottom[record][sample_index] = dict_a[record][sample_index][dict_a[record][sample_index]['ref_strand'] == '-']
550
+ print('{}: Successfully loaded a minus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(sample_index))
551
+ dict_a_top[record][sample_index] = dict_a[record][sample_index][dict_a[record][sample_index]['ref_strand'] == '+']
552
+ print('{}: Successfully loaded a plus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(sample_index))
553
+
554
+ # Reassign pointer for dict_a to None and delete the original value that it pointed to in order to decrease memory usage.
555
+ dict_a[record][sample_index] = None
556
+ gc.collect()
557
+
558
+ if '5mC' in mods:
559
+ # Remove Cytosine stranded dicts from the dicts to skip set
560
+ dict_to_skip.difference_update(set(C_stranded_dicts))
561
+
562
+ if record not in dict_c.keys() and record not in dict_c_bottom.keys() and record not in dict_c_top.keys():
563
+ dict_c[record], dict_c_bottom[record], dict_c_top[record] = {}, {}, {}
564
+
565
+ # get a dictionary of dataframes that only contain methylated cytosine positions
566
+ dict_c[record][sample_index] = dict_total[record][sample_index][dict_total[record][sample_index]['modified_primary_base'] == 'C']
567
+ print('{}: Successfully loaded a methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(sample_index))
568
+ # Stratify the cytosine dictionary into two strand specific dictionaries.
569
+ dict_c_bottom[record][sample_index] = dict_c[record][sample_index][dict_c[record][sample_index]['ref_strand'] == '-']
570
+ print('{}: Successfully loaded a minus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(sample_index))
571
+ dict_c_top[record][sample_index] = dict_c[record][sample_index][dict_c[record][sample_index]['ref_strand'] == '+']
572
+ print('{}: Successfully loaded a plus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(sample_index))
573
+ # Reassign pointer for dict_c to None and delete the original value that it pointed to in order to decrease memory usage.
574
+ dict_c[record][sample_index] = None
575
+ gc.collect()
576
+
577
+ if '6mA' in mods and '5mC' in mods:
578
+ # Remove combined stranded dicts from the dicts to skip set
579
+ dict_to_skip.difference_update(set(combined_dicts))
580
+ # Initialize the sample keys for the combined dictionaries
581
+
582
+ if record not in dict_combined_bottom.keys() and record not in dict_combined_top.keys():
583
+ dict_combined_bottom[record], dict_combined_top[record]= {}, {}
584
+
585
+ print('{}: Successfully created a minus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(sample_index))
586
+ dict_combined_bottom[record][sample_index] = []
587
+ print('{}: Successfully created a plus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(sample_index))
588
+ dict_combined_top[record][sample_index] = []
589
+
590
+ # Reassign pointer for dict_total to None and delete the original value that it pointed to in order to decrease memory usage.
591
+ dict_total[record][sample_index] = None
592
+ gc.collect()
593
+
594
+ # Iterate over the stranded modification dictionaries and replace the dataframes with a dictionary of read names pointing to a list of values from the dataframe
595
+ for dict_index, dict_type in enumerate(dict_list):
596
+ # Only iterate over stranded dictionaries
597
+ if dict_index not in dict_to_skip:
598
+ print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), sample_types[dict_index]))
599
+ for record in dict_type.keys():
600
+ # Get the dictionary for the modification type of interest from the reference mapping of interest
601
+ mod_strand_record_sample_dict = dict_type[record]
602
+ print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), record))
603
+ # For each sample in a stranded dictionary
604
+ n_samples = len(mod_strand_record_sample_dict.keys())
605
+ for sample in tqdm(mod_strand_record_sample_dict.keys(), desc=f'Extracting {sample_types[dict_index]} dictionary from record {record} for sample', total=n_samples):
606
+ # Load the combined bottom strand dictionary after all the individual dictionaries have been made for the sample
607
+ if dict_index == 7:
608
+ # Load the minus strand dictionaries for each sample into temporary variables
609
+ temp_a_dict = dict_list[2][record][sample].copy()
610
+ temp_c_dict = dict_list[5][record][sample].copy()
611
+ mod_strand_record_sample_dict[sample] = {}
612
+ # Iterate over the reads present in the merge of both dictionaries
613
+ for read in set(temp_a_dict) | set(temp_c_dict):
614
+ # Add the arrays element-wise if the read is present in both dictionaries
615
+ if read in temp_a_dict and read in temp_c_dict:
616
+ mod_strand_record_sample_dict[sample][read] = np.where(np.isnan(temp_a_dict[read]) & np.isnan(temp_c_dict[read]), np.nan, np.nan_to_num(temp_a_dict[read]) + np.nan_to_num(temp_c_dict[read]))
617
+ # If the read is present in only one dictionary, copy its value
618
+ elif read in temp_a_dict:
619
+ mod_strand_record_sample_dict[sample][read] = temp_a_dict[read]
620
+ elif read in temp_c_dict:
621
+ mod_strand_record_sample_dict[sample][read] = temp_c_dict[read]
622
+ del temp_a_dict, temp_c_dict
623
+ # Load the combined top strand dictionary after all the individual dictionaries have been made for the sample
624
+ elif dict_index == 8:
625
+ # Load the plus strand dictionaries for each sample into temporary variables
626
+ temp_a_dict = dict_list[3][record][sample].copy()
627
+ temp_c_dict = dict_list[6][record][sample].copy()
628
+ mod_strand_record_sample_dict[sample] = {}
629
+ # Iterate over the reads present in the merge of both dictionaries
630
+ for read in set(temp_a_dict) | set(temp_c_dict):
631
+ # Add the arrays element-wise if the read is present in both dictionaries
632
+ if read in temp_a_dict and read in temp_c_dict:
633
+ mod_strand_record_sample_dict[sample][read] = np.where(np.isnan(temp_a_dict[read]) & np.isnan(temp_c_dict[read]), np.nan, np.nan_to_num(temp_a_dict[read]) + np.nan_to_num(temp_c_dict[read]))
634
+ # If the read is present in only one dictionary, copy its value
635
+ elif read in temp_a_dict:
636
+ mod_strand_record_sample_dict[sample][read] = temp_a_dict[read]
637
+ elif read in temp_c_dict:
638
+ mod_strand_record_sample_dict[sample][read] = temp_c_dict[read]
639
+ del temp_a_dict, temp_c_dict
640
+ # For all other dictionaries
641
+ else:
642
+
643
+ # use temp_df to point to the dataframe held in mod_strand_record_sample_dict[sample]
644
+ temp_df = mod_strand_record_sample_dict[sample]
645
+ # reassign the dictionary pointer to a nested dictionary.
646
+ mod_strand_record_sample_dict[sample] = {}
647
+
648
+ # Get relevant columns as NumPy arrays
649
+ read_ids = temp_df['read_id'].values
650
+ positions = temp_df['ref_position'].values
651
+ call_codes = temp_df['call_code'].values
652
+ probabilities = temp_df['call_prob'].values
653
+
654
+ # Define valid call code categories
655
+ modified_codes = {'a', 'h', 'm'}
656
+ canonical_codes = {'-'}
657
+
658
+ # Vectorized methylation calculation with NaN for other codes
659
+ methylation_prob = np.full_like(probabilities, np.nan) # Default all to NaN
660
+ methylation_prob[np.isin(call_codes, list(modified_codes))] = probabilities[np.isin(call_codes, list(modified_codes))]
661
+ methylation_prob[np.isin(call_codes, list(canonical_codes))] = 1 - probabilities[np.isin(call_codes, list(canonical_codes))]
662
+
663
+ # Find unique reads
664
+ unique_reads = np.unique(read_ids)
665
+ # Preallocate storage for each read
666
+ for read in unique_reads:
667
+ mod_strand_record_sample_dict[sample][read] = np.full(max_reference_length, np.nan)
668
+
669
+ # Efficient NumPy indexing to assign values
670
+ for i in range(len(read_ids)):
671
+ read = read_ids[i]
672
+ pos = positions[i]
673
+ prob = methylation_prob[i]
674
+
675
+ # Assign methylation probability
676
+ mod_strand_record_sample_dict[sample][read][pos] = prob
677
+
678
+
679
+ # Save the sample files in the batch as gzipped hdf5 files
680
+ os.chdir(h5_dir)
681
+ print('{0}: Converting batch {1} dictionaries to anndata objects'.format(readwrite.time_string(), batch))
682
+ for dict_index, dict_type in enumerate(dict_list):
683
+ if dict_index not in dict_to_skip:
684
+ # Initialize an hdf5 file for the current modified strand
685
+ adata = None
686
+ print('{0}: Converting {1} dictionary to an anndata object'.format(readwrite.time_string(), sample_types[dict_index]))
687
+ for record in dict_type.keys():
688
+ # Get the dictionary for the modification type of interest from the reference mapping of interest
689
+ mod_strand_record_sample_dict = dict_type[record]
690
+ for sample in mod_strand_record_sample_dict.keys():
691
+ print('{0}: Converting {1} dictionary for sample {2} to an anndata object'.format(readwrite.time_string(), sample_types[dict_index], sample))
692
+ sample = int(sample)
693
+ final_sample_index = sample + (batch * batch_size)
694
+ print('{0}: Final sample index for sample: {1}'.format(readwrite.time_string(), final_sample_index))
695
+ print('{0}: Converting {1} dictionary for sample {2} to a dataframe'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
696
+ temp_df = pd.DataFrame.from_dict(mod_strand_record_sample_dict[sample], orient='index')
697
+ mod_strand_record_sample_dict[sample] = None # reassign pointer to facilitate memory usage
698
+ sorted_index = sorted(temp_df.index)
699
+ temp_df = temp_df.reindex(sorted_index)
700
+ X = temp_df.values
701
+ dataset, strand = sample_types[dict_index].split('_')[:2]
702
+
703
+ print('{0}: Loading {1} dataframe for sample {2} into a temp anndata object'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
704
+ temp_adata = ad.AnnData(X)
705
+ if temp_adata.shape[0] > 0:
706
+ print('{0}: Adding read names and position ids to {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
707
+ temp_adata.obs_names = temp_df.index
708
+ temp_adata.obs_names = temp_adata.obs_names.astype(str)
709
+ temp_adata.var_names = temp_df.columns
710
+ temp_adata.var_names = temp_adata.var_names.astype(str)
711
+ print('{0}: Adding {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
712
+ temp_adata.obs['Sample'] = [str(final_sample_index)] * len(temp_adata)
713
+ temp_adata.obs['Barcode'] = [str(final_sample_index)] * len(temp_adata)
714
+ temp_adata.obs['Reference'] = [f'{record}'] * len(temp_adata)
715
+ temp_adata.obs['Strand'] = [strand] * len(temp_adata)
716
+ temp_adata.obs['Dataset'] = [dataset] * len(temp_adata)
717
+ temp_adata.obs['Reference_dataset_strand'] = [f'{record}_{dataset}_{strand}'] * len(temp_adata)
718
+ temp_adata.obs['Reference_strand'] = [f'{record}_{strand}'] * len(temp_adata)
719
+
720
+ # Load in the one hot encoded reads from the current sample and record
721
+ one_hot_reads = {}
722
+ n_rows_OHE = 5
723
+ ohe_files = bam_record_ohe_files[f'{final_sample_index}_{record}']
724
+ print(f'Loading OHEs from {ohe_files}')
725
+ fwd_mapped_reads = set()
726
+ rev_mapped_reads = set()
727
+ for ohe_file in ohe_files:
728
+ tmp_ohe_dict = ad.read_h5ad(ohe_file).uns
729
+ one_hot_reads.update(tmp_ohe_dict)
730
+ if '_fwd_' in ohe_file:
731
+ fwd_mapped_reads.update(tmp_ohe_dict.keys())
732
+ elif '_rev_' in ohe_file:
733
+ rev_mapped_reads.update(tmp_ohe_dict.keys())
734
+ del tmp_ohe_dict
735
+
736
+ read_names = list(one_hot_reads.keys())
737
+
738
+ read_mapping_direction = []
739
+ for read_id in temp_adata.obs_names:
740
+ if read_id in fwd_mapped_reads:
741
+ read_mapping_direction.append('fwd')
742
+ elif read_id in rev_mapped_reads:
743
+ read_mapping_direction.append('rev')
744
+ else:
745
+ read_mapping_direction.append('unk')
746
+
747
+ temp_adata.obs['Read_mapping_direction'] = read_mapping_direction
748
+
749
+ del temp_df
750
+
751
+ # Initialize NumPy arrays
752
+ sequence_length = one_hot_reads[read_names[0]].reshape(n_rows_OHE, -1).shape[1]
753
+ df_A = np.zeros((len(sorted_index), sequence_length), dtype=int)
754
+ df_C = np.zeros((len(sorted_index), sequence_length), dtype=int)
755
+ df_G = np.zeros((len(sorted_index), sequence_length), dtype=int)
756
+ df_T = np.zeros((len(sorted_index), sequence_length), dtype=int)
757
+ df_N = np.zeros((len(sorted_index), sequence_length), dtype=int)
758
+
759
+ # Process one-hot data into dictionaries
760
+ dict_A, dict_C, dict_G, dict_T, dict_N = {}, {}, {}, {}, {}
761
+ for read_name, one_hot_array in one_hot_reads.items():
762
+ one_hot_array = one_hot_array.reshape(n_rows_OHE, -1)
763
+ dict_A[read_name] = one_hot_array[0, :]
764
+ dict_C[read_name] = one_hot_array[1, :]
765
+ dict_G[read_name] = one_hot_array[2, :]
766
+ dict_T[read_name] = one_hot_array[3, :]
767
+ dict_N[read_name] = one_hot_array[4, :]
768
+
769
+ del one_hot_reads
770
+ gc.collect()
771
+
772
+ # Fill the arrays
773
+ for j, read_name in tqdm(enumerate(sorted_index), desc='Loading dataframes of OHE reads', total=len(sorted_index)):
774
+ df_A[j, :] = dict_A[read_name]
775
+ df_C[j, :] = dict_C[read_name]
776
+ df_G[j, :] = dict_G[read_name]
777
+ df_T[j, :] = dict_T[read_name]
778
+ df_N[j, :] = dict_N[read_name]
779
+
780
+ del dict_A, dict_C, dict_G, dict_T, dict_N
781
+ gc.collect()
782
+
783
+ # Store the results in AnnData layers
784
+ ohe_df_map = {0: df_A, 1: df_C, 2: df_G, 3: df_T, 4: df_N}
785
+ for j, base in enumerate(['A', 'C', 'G', 'T', 'N']):
786
+ temp_adata.layers[f'{base}_binary_encoding'] = ohe_df_map[j]
787
+ ohe_df_map[j] = None # Reassign pointer for memory usage purposes
788
+
789
+ # If final adata object already has a sample loaded, concatenate the current sample into the existing adata object
790
+ if adata:
791
+ if temp_adata.shape[0] > 0:
792
+ print('{0}: Concatenating {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
793
+ adata = ad.concat([adata, temp_adata], join='outer', index_unique=None)
794
+ del temp_adata
795
+ else:
796
+ print(f"{sample} did not have any mapped reads on {record}_{dataset}_{strand}, omiting from final adata")
797
+ else:
798
+ if temp_adata.shape[0] > 0:
799
+ print('{0}: Initializing {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[dict_index], final_sample_index))
800
+ adata = temp_adata
801
+ else:
802
+ print(f"{sample} did not have any mapped reads on {record}_{dataset}_{strand}, omiting from final adata")
803
+
804
+ gc.collect()
805
+ else:
806
+ print(f"{sample} did not have any mapped reads on {record}_{dataset}_{strand}, omiting from final adata. Skipping sample.")
807
+
808
+ try:
809
+ print('{0}: Writing {1} anndata out as a hdf5 file'.format(readwrite.time_string(), sample_types[dict_index]))
810
+ adata.write_h5ad('{0}_{1}_{2}_SMF_binarized_sample_hdf5.h5ad.gz'.format(readwrite.date_string(), batch, sample_types[dict_index]), compression='gzip')
811
+ except:
812
+ print(f"Skipping writing anndata for sample")
813
+
814
+ # Delete the batch dictionaries from memory
815
+ del dict_list, adata
816
+ gc.collect()
817
+
818
+ # Iterate over all of the batched hdf5 files and concatenate them.
819
+ os.chdir(h5_dir)
820
+ files = os.listdir(h5_dir)
821
+ # Filter file names that contain the search string in their filename and keep them in a list
822
+ hdfs = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
823
+ combined_hdfs = [hdf for hdf in hdfs if "combined" in hdf]
824
+ if len(combined_hdfs) > 0:
825
+ hdfs = combined_hdfs
826
+ else:
827
+ pass
828
+ # Sort file list by names and print the list of file names
829
+ hdfs.sort()
830
+ print('{0} sample files found: {1}'.format(len(hdfs), hdfs))
831
+ hdf_paths = [os.path.join(h5_dir, hd5) for hd5 in hdfs]
832
+ final_adata = None
833
+ for hdf_index, hdf in enumerate(hdf_paths):
834
+ print('{0}: Reading in {1} hdf5 file'.format(readwrite.time_string(), hdfs[hdf_index]))
835
+ temp_adata = ad.read_h5ad(hdf)
836
+ if final_adata:
837
+ print('{0}: Concatenating final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdfs[hdf_index]))
838
+ final_adata = ad.concat([final_adata, temp_adata], join='outer', index_unique=None)
839
+ else:
840
+ print('{0}: Initializing final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdfs[hdf_index]))
841
+ final_adata = temp_adata
842
+ del temp_adata
843
+
844
+ # Set obs columns to type 'category'
845
+ for col in final_adata.obs.columns:
846
+ final_adata.obs[col] = final_adata.obs[col].astype('category')
847
+
848
+ ohe_bases = ['A', 'C', 'G', 'T'] # ignore N bases for consensus
849
+ ohe_layers = [f"{ohe_base}_binary_encoding" for ohe_base in ohe_bases]
850
+ for record in records_to_analyze:
851
+ # Add FASTA sequence to the object
852
+ sequence = record_seq_dict[record][0]
853
+ complement = record_seq_dict[record][1]
854
+ final_adata.var[f'{record}_top_strand_FASTA_base'] = list(sequence)
855
+ final_adata.var[f'{record}_bottom_strand_FASTA_base'] = list(complement)
856
+ final_adata.uns[f'{record}_FASTA_sequence'] = sequence
857
+ # Add consensus sequence of samples mapped to the record to the object
858
+ record_subset = final_adata[final_adata.obs['Reference'] == record]
859
+ for strand in record_subset.obs['Strand'].cat.categories:
860
+ strand_subset = record_subset[record_subset.obs['Strand'] == strand]
861
+ for mapping_dir in strand_subset.obs['Read_mapping_direction'].cat.categories:
862
+ mapping_dir_subset = strand_subset[strand_subset.obs['Read_mapping_direction'] == mapping_dir]
863
+ layer_map, layer_counts = {}, []
864
+ for i, layer in enumerate(ohe_layers):
865
+ layer_map[i] = layer.split('_')[0]
866
+ layer_counts.append(np.sum(mapping_dir_subset.layers[layer], axis=0))
867
+ count_array = np.array(layer_counts)
868
+ nucleotide_indexes = np.argmax(count_array, axis=0)
869
+ consensus_sequence_list = [layer_map[i] for i in nucleotide_indexes]
870
+ final_adata.var[f'{record}_{strand}_{mapping_dir}_consensus_sequence_from_all_samples'] = consensus_sequence_list
871
+
872
+ #final_adata.write_h5ad(final_adata_path)
873
+
874
+ # Delete the individual h5ad files and only keep the final concatenated file
875
+ if delete_batch_hdfs:
876
+ files = os.listdir(h5_dir)
877
+ hdfs_to_delete = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
878
+ hdf_paths_to_delete = [os.path.join(h5_dir, hdf) for hdf in hdfs_to_delete]
879
+ # Iterate over the files and delete them
880
+ for hdf in hdf_paths_to_delete:
881
+ try:
882
+ os.remove(hdf)
883
+ print(f"Deleted file: {hdf}")
884
+ except OSError as e:
885
+ print(f"Error deleting file {hdf}: {e}")
886
+
887
+ return final_adata, final_adata_path