smftools 0.1.1__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. smftools-0.1.6.dist-info/METADATA +127 -0
  2. smftools-0.1.6.dist-info/RECORD +4 -0
  3. smftools/__init__.py +0 -25
  4. smftools/_settings.py +0 -19
  5. smftools/_version.py +0 -1
  6. smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
  7. smftools/datasets/__init__.py +0 -9
  8. smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
  9. smftools/datasets/datasets.py +0 -27
  10. smftools/informatics/__init__.py +0 -12
  11. smftools/informatics/bam_conversion.py +0 -47
  12. smftools/informatics/bam_direct.py +0 -49
  13. smftools/informatics/basecalls_to_adata.py +0 -42
  14. smftools/informatics/fast5_to_pod5.py +0 -19
  15. smftools/informatics/helpers/LoadExperimentConfig.py +0 -74
  16. smftools/informatics/helpers/__init__.py +0 -42
  17. smftools/informatics/helpers/align_and_sort_BAM.py +0 -52
  18. smftools/informatics/helpers/archived/informatics.py +0 -260
  19. smftools/informatics/helpers/archived/load_adata.py +0 -516
  20. smftools/informatics/helpers/binarize_converted_base_identities.py +0 -31
  21. smftools/informatics/helpers/canoncall.py +0 -23
  22. smftools/informatics/helpers/converted_BAM_to_adata.py +0 -164
  23. smftools/informatics/helpers/count_aligned_reads.py +0 -39
  24. smftools/informatics/helpers/extract_base_identities.py +0 -43
  25. smftools/informatics/helpers/extract_mods.py +0 -51
  26. smftools/informatics/helpers/find_conversion_sites.py +0 -59
  27. smftools/informatics/helpers/generate_converted_FASTA.py +0 -79
  28. smftools/informatics/helpers/get_native_references.py +0 -28
  29. smftools/informatics/helpers/make_dirs.py +0 -21
  30. smftools/informatics/helpers/make_modbed.py +0 -27
  31. smftools/informatics/helpers/modQC.py +0 -27
  32. smftools/informatics/helpers/modcall.py +0 -26
  33. smftools/informatics/helpers/modkit_extract_to_adata.py +0 -367
  34. smftools/informatics/helpers/one_hot_encode.py +0 -19
  35. smftools/informatics/helpers/separate_bam_by_bc.py +0 -41
  36. smftools/informatics/helpers/split_and_index_BAM.py +0 -29
  37. smftools/informatics/pod5_conversion.py +0 -53
  38. smftools/informatics/pod5_direct.py +0 -55
  39. smftools/informatics/pod5_to_adata.py +0 -40
  40. smftools/informatics/readwrite.py +0 -106
  41. smftools/informatics/subsample_pod5.py +0 -48
  42. smftools/plotting/__init__.py +0 -0
  43. smftools/preprocessing/__init__.py +0 -29
  44. smftools/preprocessing/append_C_context.py +0 -46
  45. smftools/preprocessing/archives/preprocessing.py +0 -614
  46. smftools/preprocessing/binarize_on_Youden.py +0 -42
  47. smftools/preprocessing/binary_layers_to_ohe.py +0 -30
  48. smftools/preprocessing/calculate_complexity.py +0 -71
  49. smftools/preprocessing/calculate_converted_read_methylation_stats.py +0 -45
  50. smftools/preprocessing/calculate_coverage.py +0 -41
  51. smftools/preprocessing/calculate_pairwise_hamming_distances.py +0 -27
  52. smftools/preprocessing/calculate_position_Youden.py +0 -104
  53. smftools/preprocessing/calculate_read_length_stats.py +0 -32
  54. smftools/preprocessing/clean_NaN.py +0 -38
  55. smftools/preprocessing/filter_converted_reads_on_methylation.py +0 -27
  56. smftools/preprocessing/filter_reads_on_length.py +0 -39
  57. smftools/preprocessing/invert_adata.py +0 -22
  58. smftools/preprocessing/mark_duplicates.py +0 -119
  59. smftools/preprocessing/min_non_diagonal.py +0 -25
  60. smftools/preprocessing/remove_duplicates.py +0 -18
  61. smftools/readwrite.py +0 -106
  62. smftools/tools/__init__.py +0 -0
  63. smftools-0.1.1.dist-info/METADATA +0 -88
  64. smftools-0.1.1.dist-info/RECORD +0 -64
  65. {smftools-0.1.1.dist-info → smftools-0.1.6.dist-info}/WHEEL +0 -0
  66. {smftools-0.1.1.dist-info → smftools-0.1.6.dist-info}/licenses/LICENSE +0 -0
@@ -1,30 +0,0 @@
1
- ## binary_layers_to_ohe
2
-
3
- ## Conversion SMF Specific
4
- def binary_layers_to_ohe(adata, layers, stack='hstack'):
5
- """
6
- Parameters:
7
- adata (AnnData): Anndata object.
8
- layers (list): a list of strings. Each string represents a layer in the adata object. The layer should encode a binary matrix
9
- stack (str): Dimension to stack the one-hot-encoding. Options include 'hstack' and 'vstack'. Default is 'hstack', since this is more efficient.
10
-
11
- Returns:
12
- ohe_dict (dict): A dictionary keyed by obs_name that points to a stacked (hstack or vstack) one-hot encoding of the binary layers
13
- Input: An adata object and a list of layers containing a binary encoding.
14
- """
15
- import numpy as np
16
- import anndata as ad
17
- # Extract the layers
18
- layers = [adata.layers[layer_name] for layer_name in layers]
19
- n_reads = layers[0].shape[0]
20
- ohe_dict = {}
21
- for i in range(n_reads):
22
- read_ohe = []
23
- for layer in layers:
24
- read_ohe.append(layer[i])
25
- read_name = adata.obs_names[i]
26
- if stack == 'hstack':
27
- ohe_dict[read_name] = np.hstack(read_ohe)
28
- elif stack == 'vstack':
29
- ohe_dict[read_name] = np.vstack(read_ohe)
30
- return ohe_dict
@@ -1,71 +0,0 @@
1
- ## calculate_complexity
2
-
3
- def calculate_complexity(adata, obs_column='Reference', sample_col='Sample_names', plot=True, save_plot=False, output_directory=''):
4
- """
5
- A complexity analysis of the library.
6
-
7
- Parameters:
8
- adata (AnnData): An adata object with mark_duplicates already run.
9
- obs_column (str): String of the obs column to iterate over.
10
- sample_col (str): String of the sample column to iterate over.
11
- plot (bool): Whether to plot the complexity model.
12
- save_plot (bool): Whether to save the complexity model.
13
- output_directory (str): String representing the path to the output directory.
14
-
15
- Returns:
16
- None
17
-
18
- """
19
- import numpy as np
20
- import pandas as pd
21
- from scipy.optimize import curve_fit
22
-
23
- def lander_waterman(x, C0):
24
- return C0 * (1 - np.exp(-x / C0))
25
-
26
- def count_unique_reads(reads, depth):
27
- subsample = np.random.choice(reads, depth, replace=False)
28
- return len(np.unique(subsample))
29
-
30
- categories = adata.obs[obs_column].cat.categories
31
- sample_names = adata.obs[sample_col].cat.categories
32
-
33
- for cat in categories:
34
- for sample in sample_names:
35
- unique_reads, total_reads = adata.uns[f'Hamming_distance_clusters_within_{cat}_{sample}'][0:2]
36
- reads = np.concatenate((np.arange(unique_reads), np.random.choice(unique_reads, total_reads - unique_reads, replace=True)))
37
- # Subsampling depths
38
- subsampling_depths = [total_reads // (i+1) for i in range(10)]
39
- # Arrays to store results
40
- subsampled_total_reads = []
41
- subsampled_unique_reads = []
42
- # Perform subsampling
43
- for depth in subsampling_depths:
44
- unique_count = count_unique_reads(reads, depth)
45
- subsampled_total_reads.append(depth)
46
- subsampled_unique_reads.append(unique_count)
47
- # Fit the Lander-Waterman model to the data
48
- popt, _ = curve_fit(lander_waterman, subsampled_total_reads, subsampled_unique_reads)
49
- # Generate data for the complexity curve
50
- x_data = np.linspace(0, 5000, 100)
51
- y_data = lander_waterman(x_data, *popt)
52
- adata.uns[f'Library_complexity_{sample}_on_{cat}'] = popt[0]
53
- if plot:
54
- import matplotlib.pyplot as plt
55
- # Plot the complexity curve
56
- plt.figure(figsize=(6, 4))
57
- plt.plot(total_reads, unique_reads, 'o', label='Observed unique reads')
58
- plt.plot(x_data, y_data, '-', label=f'Lander-Waterman fit\nEstimated C0 = {popt[0]:.2f}')
59
- plt.xlabel('Total number of reads')
60
- plt.ylabel('Number of unique reads')
61
- title = f'Library Complexity Analysis for {sample} on {cat}'
62
- plt.title(title)
63
- plt.legend()
64
- plt.grid(True)
65
- if save_plot:
66
- date_string = date_string()
67
- save_name = output_directory + f'/{date_string}_{title}'
68
- plt.savefig(save_name, bbox_inches='tight', pad_inches=0.1)
69
- plt.close()
70
- else:
71
- plt.show()
@@ -1,45 +0,0 @@
1
- ## calculate_converted_read_methylation_stats
2
-
3
- ## Conversion SMF Specific
4
- # Read methylation QC
5
-
6
- def calculate_converted_read_methylation_stats(adata, obs_column='Reference'):
7
- """
8
- Adds methylation statistics for each read. Indicates whether the read GpC methylation exceeded other_C methylation (background false positives)
9
-
10
- Parameters:
11
- adata (AnnData): An AnnData object
12
- obs_column (str): observation category of interest
13
-
14
- Returns:
15
- None
16
- """
17
- import numpy as np
18
- import anndata as ad
19
- import pandas as pd
20
-
21
- site_types = ['GpC_site', 'CpG_site', 'ambiguous_GpC_site', 'ambiguous_CpG_site', 'other_C']
22
- categories = adata.obs[obs_column].cat.categories
23
- for site_type in site_types:
24
- adata.obs[f'{site_type}_row_methylation_sums'] = pd.Series(0, index=adata.obs_names, dtype=int)
25
- adata.obs[f'{site_type}_row_methylation_means'] = pd.Series(np.nan, index=adata.obs_names, dtype=float)
26
- adata.obs[f'number_valid_{site_type}_in_read'] = pd.Series(0, index=adata.obs_names, dtype=int)
27
- adata.obs[f'fraction_valid_{site_type}_in_range'] = pd.Series(np.nan, index=adata.obs_names, dtype=float)
28
- for cat in categories:
29
- cat_subset = adata[adata.obs[obs_column] == cat].copy()
30
- for site_type in site_types:
31
- print(f'Iterating over {cat}_{site_type}')
32
- observation_matrix = cat_subset.obsm[f'{cat}_{site_type}']
33
- number_valid_positions_in_read = np.nansum(~np.isnan(observation_matrix), axis=1)
34
- row_methylation_sums = np.nansum(observation_matrix, axis=1)
35
- number_valid_positions_in_read[number_valid_positions_in_read == 0] = 1
36
- fraction_valid_positions_in_range = number_valid_positions_in_read / np.max(number_valid_positions_in_read)
37
- row_methylation_means = np.divide(row_methylation_sums, number_valid_positions_in_read)
38
- temp_obs_data = pd.DataFrame({f'number_valid_{site_type}_in_read': number_valid_positions_in_read,
39
- f'fraction_valid_{site_type}_in_range': fraction_valid_positions_in_range,
40
- f'{site_type}_row_methylation_sums': row_methylation_sums,
41
- f'{site_type}_row_methylation_means': row_methylation_means}, index=cat_subset.obs.index)
42
- adata.obs.update(temp_obs_data)
43
- # Indicate whether the read-level GpC methylation rate exceeds the false methylation rate of the read
44
- pass_array = np.array(adata.obs[f'GpC_site_row_methylation_means'] > adata.obs[f'other_C_row_methylation_means'])
45
- adata.obs['GpC_above_other_C'] = pd.Series(pass_array, index=adata.obs.index, dtype=bool)
@@ -1,41 +0,0 @@
1
- ## calculate_coverage
2
-
3
- def calculate_coverage(adata, obs_column='Reference', position_nan_threshold=0.05):
4
- """
5
- Append position level metadata regarding whether the position is informative within the given observation category.
6
-
7
- Parameters:
8
- adata (AnnData): An AnnData object
9
- obs_column (str): Observation column value to subset on prior to calculating position statistics for that category.
10
- position_nan_threshold (float): A minimal threshold of coverage to call the position as valid.
11
-
12
- Returns:
13
- None
14
- """
15
- import numpy as np
16
- import anndata as ad
17
- import pandas as pd
18
-
19
- categories = adata.obs[obs_column].cat.categories
20
- n_categories_with_position = np.zeros(adata.shape[1])
21
- # Loop over categories
22
- for cat in categories:
23
- # Look at positional information for each reference
24
- temp_cat_adata = adata[adata.obs[obs_column] == cat]
25
- # Look at read coverage on the given category strand
26
- cat_valid_coverage = np.sum(~np.isnan(temp_cat_adata.X), axis=0)
27
- cat_invalid_coverage = np.sum(np.isnan(temp_cat_adata.X), axis=0)
28
- cat_valid_fraction = cat_valid_coverage / (cat_valid_coverage + cat_invalid_coverage)
29
- # Append metadata for category to the anndata object
30
- adata.var[f'{cat}_valid_fraction'] = pd.Series(cat_valid_fraction, index=adata.var.index)
31
- # Characterize if the position is in the given category or not
32
- conditions = [
33
- (adata.var[f'{cat}_valid_fraction'] >= position_nan_threshold),
34
- (adata.var[f'{cat}_valid_fraction'] < position_nan_threshold)
35
- ]
36
- choices = [True, False]
37
- adata.var[f'position_in_{cat}'] = np.select(conditions, choices, default=False)
38
- n_categories_with_position += np.array(adata.var[f'position_in_{cat}'])
39
-
40
- # Final array with the sum at each position of the number of categories covering that position
41
- adata.var[f'N_{obs_column}_with_position'] = n_categories_with_position.astype(int)
@@ -1,27 +0,0 @@
1
- ## calculate_pairwise_hamming_distances
2
-
3
- ## Conversion SMF Specific
4
- def calculate_pairwise_hamming_distances(arrays):
5
- """
6
- Calculate the pairwise Hamming distances for a list of h-stacked ndarrays.
7
-
8
- Parameters:
9
- arrays (str): A list of ndarrays.
10
-
11
- Returns:
12
- distance_matrix (ndarray): a 2D array containing the pairwise Hamming distances between all arrays.
13
-
14
- """
15
- import numpy as np
16
- import tqdm
17
- from scipy.spatial.distance import hamming
18
- num_arrays = len(arrays)
19
- # Initialize an empty distance matrix
20
- distance_matrix = np.zeros((num_arrays, num_arrays))
21
- # Calculate pairwise distances with progress bar
22
- for i in tqdm(range(num_arrays), desc="Calculating Hamming Distances"):
23
- for j in range(i + 1, num_arrays):
24
- distance = hamming(arrays[i], arrays[j])
25
- distance_matrix[i, j] = distance
26
- distance_matrix[j, i] = distance
27
- return distance_matrix
@@ -1,104 +0,0 @@
1
- ## calculate_position_Youden
2
-
3
- ## Calculating and applying position level thresholds for methylation calls to binarize the SMF data
4
- def calculate_position_Youden(adata, positive_control_sample, negative_control_sample, J_threshold=0.4, obs_column='Reference', save=False, output_directory=''):
5
- """
6
- Adds new variable metadata to each position indicating whether the position provides reliable SMF methylation calls. Also outputs plots of the positional ROC curves.
7
-
8
- Parameters:
9
- adata (AnnData): An AnnData object.
10
- positive_control_sample (str): string representing the sample name corresponding to the Plus MTase control sample.
11
- negative_control_sample (str): string representing the sample name corresponding to the Minus MTase control sample.
12
- J_threshold (float): A float indicating the J-statistic used to indicate whether a position passes QC for methylation calls.
13
- obs_column (str): The category to iterate over.
14
- save (bool): Whether to save the ROC plots.
15
- output_directory (str): String representing the path to the output directory to output the ROC curves.
16
-
17
- Returns:
18
- None
19
- """
20
- import numpy as np
21
- import pandas as pd
22
- import anndata as ad
23
- import matplotlib.pyplot as plt
24
- from sklearn.metrics import roc_curve, roc_auc_score
25
-
26
- control_samples = [positive_control_sample, negative_control_sample]
27
- categories = adata.obs[obs_column].cat.categories
28
- # Iterate over each category in the specified obs_column
29
- for cat in categories:
30
- # Subset to keep only reads associated with the category
31
- cat_subset = adata[adata.obs[obs_column] == cat].copy()
32
- # Iterate over positive and negative control samples
33
- for control in control_samples:
34
- # Initialize a dictionary for the given control sample. This will be keyed by dataset and position to point to a tuple of coordinate position and an array of methylation probabilities
35
- adata.uns[f'{cat}_position_methylation_dict_{control}'] = {}
36
- # get the current control subset on the given category
37
- filtered_obs = cat_subset.obs[cat_subset.obs['Sample_names'].str.contains(control, na=False, regex=True)]
38
- control_subset = cat_subset[filtered_obs.index].copy()
39
- # Iterate through every position in the control subset
40
- for position in range(control_subset.shape[1]):
41
- # Get the coordinate name associated with that position
42
- coordinate = control_subset.var_names[position]
43
- # Get the array of methlyation probabilities for each read in the subset at that position
44
- position_data = control_subset.X[:, position]
45
- # Get the indexes of everywhere that is not a nan value
46
- nan_mask = ~np.isnan(position_data)
47
- # Keep only the methlyation data that has real values
48
- position_data = position_data[nan_mask]
49
- # Get the position data coverage
50
- position_coverage = len(position_data)
51
- # Get fraction coverage
52
- fraction_coverage = position_coverage / control_subset.shape[0]
53
- # Save the position and the position methylation data for the control subset
54
- adata.uns[f'{cat}_position_methylation_dict_{control}'][f'{position}'] = (position, position_data, fraction_coverage)
55
-
56
- for cat in categories:
57
- fig, ax = plt.subplots(figsize=(6, 4))
58
- plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
59
- plt.xlabel('False Positive Rate')
60
- plt.ylabel('True Positive Rate')
61
- ax.spines['right'].set_visible(False)
62
- ax.spines['top'].set_visible(False)
63
- n_passed_positions = 0
64
- n_total_positions = 0
65
- # Initialize a list that will hold the positional thresholds for the category
66
- probability_thresholding_list = [(np.nan, np.nan)] * adata.shape[1]
67
- for i, key in enumerate(adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'].keys()):
68
- position = int(adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][0])
69
- positive_position_array = adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][1]
70
- fraction_coverage = adata.uns[f'{cat}_position_methylation_dict_{positive_control_sample}'][key][2]
71
- if fraction_coverage > 0.2:
72
- try:
73
- negative_position_array = adata.uns[f'{cat}_position_methylation_dict_{negative_control_sample}'][key][1]
74
- # Combine the negative and positive control data
75
- data = np.concatenate([negative_position_array, positive_position_array])
76
- labels = np.array([0] * len(negative_position_array) + [1] * len(positive_position_array))
77
- # Calculate the ROC curve
78
- fpr, tpr, thresholds = roc_curve(labels, data)
79
- # Calculate Youden's J statistic
80
- J = tpr - fpr
81
- optimal_idx = np.argmax(J)
82
- optimal_threshold = thresholds[optimal_idx]
83
- max_J = np.max(J)
84
- data_tuple = (optimal_threshold, max_J)
85
- probability_thresholding_list[position] = data_tuple
86
- n_total_positions += 1
87
- if max_J > J_threshold:
88
- n_passed_positions += 1
89
- plt.plot(fpr, tpr, label='ROC curve')
90
- except:
91
- probability_thresholding_list[position] = (0.8, np.nan)
92
- title = f'ROC Curve for {n_passed_positions} positions with J-stat greater than {J_threshold}\n out of {n_total_positions} total positions on {cat}'
93
- plt.title(title)
94
- date_string = date_string()
95
- save_name = output_directory + f'/{date_string} {title}'
96
- if save:
97
- plt.savefig(save_name)
98
- plt.close()
99
- else:
100
- plt.show()
101
-
102
- adata.var[f'{cat}_position_methylation_thresholding_Youden_stats'] = probability_thresholding_list
103
- J_max_list = [probability_thresholding_list[i][1] for i in range(adata.shape[1])]
104
- adata.var[f'{cat}_position_passed_QC'] = [True if i > J_threshold else False for i in J_max_list]
@@ -1,32 +0,0 @@
1
- ## calculate_read_length_stats
2
-
3
- # Read length QC
4
- def calculate_read_length_stats(adata):
5
- """
6
- Append first valid position in a read and last valid position in the read. From this determine and append the read length.
7
-
8
- Parameters:
9
- adata (AnnData): An adata object
10
-
11
- Returns:
12
- upper_bound (int): last valid position in the dataset
13
- lower_bound (int): first valid position in the dataset
14
- """
15
- import numpy as np
16
- import anndata as ad
17
- import pandas as pd
18
- ## Add basic observation-level (read-level) metadata to the object: first valid position in a read and last valid position in the read. From this determine the read length. Save two new variable which hold the first and last valid positions in the entire dataset
19
-
20
- # Add some basic observation-level (read-level) metadata to the anndata object
21
- read_first_valid_position = np.array([int(adata.var_names[i]) for i in np.argmax(~np.isnan(adata.X), axis=1)])
22
- read_last_valid_position = np.array([int(adata.var_names[i]) for i in (adata.X.shape[1] - 1 - np.argmax(~np.isnan(adata.X[:, ::-1]), axis=1))])
23
- read_length = read_last_valid_position - read_first_valid_position + np.ones(len(read_first_valid_position))
24
-
25
- adata.obs['first_valid_position'] = pd.Series(read_first_valid_position, index=adata.obs.index, dtype=int)
26
- adata.obs['last_valid_position'] = pd.Series(read_last_valid_position, index=adata.obs.index, dtype=int)
27
- adata.obs['read_length'] = pd.Series(read_length, index=adata.obs.index, dtype=int)
28
-
29
- # Define variables to hold the first and last valid position in the dataset
30
- upper_bound = int(np.nanmax(adata.obs['last_valid_position']))
31
- lower_bound = int(np.nanmin(adata.obs['first_valid_position']))
32
- return upper_bound, lower_bound
@@ -1,38 +0,0 @@
1
- ## clean_NaN
2
- from ..readwrite import adata_to_df
3
-
4
- # NaN handling
5
- def clean_NaN(adata, layer=None):
6
- """
7
- Append layers to adata that contain NaN cleaning strategies.
8
-
9
- Parameters:
10
- adata (AnnData): an adata object
11
- layer (str): string representing the layer to fill NaN values in
12
-
13
- Returns:
14
- None
15
- """
16
- import numpy as np
17
- import anndata as ad
18
- import pandas as pd
19
- # Fill NaN with closest SMF value
20
- df = adata_to_df(adata, layer=layer)
21
- df = df.ffill(axis=1).bfill(axis=1)
22
- adata.layers['fill_nans_closest'] = df.values
23
-
24
- # Replace NaN values with 0, and 0 with minus 1
25
- old_value, new_value = [0, -1]
26
- df = adata_to_df(adata, layer=layer)
27
- df = df.replace(old_value, new_value)
28
- old_value, new_value = [np.nan, 0]
29
- df = df.replace(old_value, new_value)
30
- adata.layers['nan0_0minus1'] = df.values
31
-
32
- # Replace NaN values with 1, and 1 with 2
33
- old_value, new_value = [1, 2]
34
- df = adata_to_df(adata, layer=layer)
35
- df = df.replace(old_value, new_value)
36
- old_value, new_value = [np.nan, 1]
37
- df = df.replace(old_value, new_value)
38
- adata.layers['nan1_12'] = df.values
@@ -1,27 +0,0 @@
1
- ## filter_converted_reads_on_methylation
2
-
3
- ## Conversion SMF Specific
4
- # Read methylation QC
5
- def filter_converted_reads_on_methylation(adata, valid_SMF_site_threshold=0.8, min_SMF_threshold=0.025):
6
- """
7
- Filter adata object using minimum thresholds for valid SMF site fraction in read, as well as minimum methylation content in read.
8
-
9
- Parameters:
10
- adata (AnnData): An adata object.
11
- valid_SMF_site_threshold (float): A minimum proportion of valid SMF sites that must be present in the read. Default is 0.8
12
- min_SMF_threshold (float): A minimum read methylation level. Default is 0.025
13
- Returns:
14
- None
15
- """
16
- import numpy as np
17
- import anndata as ad
18
- import pandas as pd
19
-
20
- if valid_SMF_site_threshold:
21
- # Keep reads that have over a given valid GpC site content
22
- adata = adata[adata.obs['fraction_valid_GpC_site_in_range'] > valid_SMF_site_threshold].copy()
23
- if min_SMF_threshold:
24
- # Keep reads with SMF methylation over background methylation.
25
- adata = adata[adata.obs['GpC_above_other_C'] == True].copy()
26
- # Keep reads over a defined methylation threshold
27
- adata = adata[adata.obs['GpC_site_row_methylation_means'] > min_SMF_threshold].copy()
@@ -1,39 +0,0 @@
1
- ## filter_reads_on_length
2
-
3
- def filter_reads_on_length(adata, filter_on_coordinates=False, min_read_length=2700):
4
- """
5
- Filters the adata object to keep a defined coordinate window, as well as reads that are over a minimum threshold in length.
6
-
7
- Parameters:
8
- adata (AnnData): An adata object.
9
- filter_on_coordinates (bool | list): If False, skips filtering. Otherwise, provide a list containing integers representing the lower and upper bound coordinates to filter on. Default is False.
10
- min_read_length (int): The minimum read length to keep in the filtered dataset. Default is 2700.
11
-
12
- Returns:
13
- None
14
- Input: Adata object. a list of lower and upper bound (set to False or None if not wanted), and a minimum read length integer.
15
-
16
- """
17
- import numpy as np
18
- import anndata as ad
19
- import pandas as pd
20
- if filter_on_coordinates:
21
- lower_bound, upper_bound = filter_on_coordinates
22
- # Extract the position information from the adata object as an np array
23
- var_names_arr = adata.var_names.astype(int).to_numpy()
24
- # Find the upper bound coordinate that is closest to the specified value
25
- closest_end_index = np.argmin(np.abs(var_names_arr - upper_bound))
26
- upper_bound = int(adata.var_names[closest_end_index])
27
- # Find the lower bound coordinate that is closest to the specified value
28
- closest_start_index = np.argmin(np.abs(var_names_arr - lower_bound))
29
- lower_bound = int(adata.var_names[closest_start_index])
30
- # Get a list of positional indexes that encompass the lower and upper bounds of the dataset
31
- position_list = list(range(lower_bound, upper_bound + 1))
32
- position_list = [str(pos) for pos in position_list]
33
- position_set = set(position_list)
34
- print(f'Subsetting adata to keep data between coordinates {lower_bound} and {upper_bound}')
35
- adata = adata[:, adata.var_names.isin(position_set)].copy()
36
-
37
- if min_read_length:
38
- print(f'Subsetting adata to keep reads longer than {min_read_length}')
39
- adata = adata[adata.obs['read_length'] > min_read_length].copy()
@@ -1,22 +0,0 @@
1
- ## invert_adata
2
-
3
- # Optional inversion of the adata
4
- def invert_adata(adata):
5
- """
6
- Inverts the adata object along the variable axis
7
-
8
- Parameters:
9
- adata (AnnData): An adata object.
10
-
11
- Returns:
12
- None
13
- """
14
- import numpy as np
15
- import anndata as ad
16
- # Reassign var_names with new names
17
- old_var_names = adata.var_names.astype(int).to_numpy()
18
- new_var_names = np.sort(old_var_names)[::-1].astype(str)
19
- adata.var['Original_positional_coordinate'] = old_var_names.astype(str)
20
- adata.var_names = new_var_names
21
- # Sort the AnnData object based on the old var_names
22
- adata = adata[:, old_var_names.astype(str)]
@@ -1,119 +0,0 @@
1
- ## mark_duplicates
2
-
3
- def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_names'):
4
- """
5
- Marks duplicates in the adata object.
6
-
7
- Parameters:
8
- adata (AnnData): An adata object.
9
- layers (list): A list of strings representing the layers to use.
10
- obs_column (str): A string representing the obs column name to first subset on. Default is 'Reference'.
11
- sample_col (str):L A string representing the obs column name to second subset on. Default is 'Sample_names'.
12
-
13
- Returns:
14
- None
15
- """
16
-
17
- import numpy as np
18
- import pandas as pd
19
- import matplotlib.pyplot as plt
20
- from scipy.signal import find_peaks
21
- import networkx as nx
22
- from .binary_layers_to_ohe import binary_layers_to_ohe
23
- from .calculate_pairwise_hamming_distances import calculate_pairwise_hamming_distances
24
- from .min_non_diagonal import min_non_diagonal
25
-
26
- categories = adata.obs[obs_column].cat.categories
27
- sample_names = adata.obs[sample_col].cat.categories
28
-
29
- # Calculate the pairwise Hamming distances within each reference/sample set. Determine distance thresholds for each reference/sample pair
30
- adata.obs['Nearest_neighbor_Hamming_distance'] = pd.Series(np.nan, index=adata.obs_names, dtype=float)
31
- for cat in categories:
32
- cat_subset = adata[adata.obs[obs_column] == cat].copy()
33
- for sample in sample_names:
34
- sample_subset = cat_subset[cat_subset.obs[sample_col] == sample].copy()
35
- # Encode sequencing reads as a one-hot-encodings
36
- adata.uns[f'{cat}_{sample}_read_OHE_dict'] = binary_layers_to_ohe(sample_subset, layers, stack='hstack')
37
- # Unpack the read names and one hot encodings into lists
38
- read_names = []
39
- ohe_list = []
40
- for read_name, ohe in adata.uns[f'{cat}_{sample}_read_OHE_dict'].items():
41
- read_names.append(read_name)
42
- ohe_list.append(ohe)
43
- # Calculate the pairwise hamming distances
44
- print(f'Calculating hamming distances for {sample} on {cat} allele')
45
- distance_matrix = calculate_pairwise_hamming_distances(ohe_list)
46
- n_reads = distance_matrix.shape[0]
47
- # Load the hamming matrix into a dataframe with index and column names as the read_names
48
- distance_df = pd.DataFrame(distance_matrix, index=read_names, columns=read_names)
49
- # Save the distance dataframe into an unstructured component of the adata object
50
- adata.uns[f'Pairwise_Hamming_distance_within_{cat}_{sample}'] = distance_df
51
- # Calculate the minimum non-self distance for every read in the reference and sample
52
- min_distance_values = min_non_diagonal(distance_matrix)
53
- min_distance_df = pd.DataFrame({'Nearest_neighbor_Hamming_distance': min_distance_values}, index=read_names)
54
- adata.obs.update(min_distance_df)
55
- # Generate a histogram of minimum non-self distances for each read
56
- min_distance_bins = plt.hist(min_distance_values, bins=n_reads//4)
57
- # Normalize the max value in any histogram bin to 1
58
- normalized_min_distance_counts = min_distance_bins[0] / np.max(min_distance_bins[0])
59
- # Extract the bin index of peak centers in the histogram
60
- peak_centers, _ = find_peaks(normalized_min_distance_counts, prominence=0.2, distance=5)
61
- first_peak_index = peak_centers[0]
62
- offset_index = first_peak_index-1
63
- # Use the distance corresponding to the first peak as the threshold distance in graph construction
64
- first_peak_distance = min_distance_bins[1][first_peak_index]
65
- offset_distance = min_distance_bins[1][offset_index]
66
- adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}'] = offset_distance
67
-
68
- ## Detect likely duplicate reads and mark them in the adata object.
69
- adata.obs['Marked_duplicate'] = pd.Series(False, index=adata.obs_names, dtype=bool)
70
- adata.obs['Unique_in_final_read_set'] = pd.Series(False, index=adata.obs_names, dtype=bool)
71
- adata.obs[f'Hamming_distance_cluster_within_{obs_column}_and_sample'] = pd.Series(-1, index=adata.obs_names, dtype=int)
72
-
73
- for cat in categories:
74
- for sample in sample_names:
75
- distance_df = adata.uns[f'Pairwise_Hamming_distance_within_{cat}_{sample}']
76
- read_names = distance_df.index
77
- distance_matrix = distance_df.values
78
- n_reads = distance_matrix.shape[0]
79
- distance_threshold = adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}']
80
- # Initialize the read distance graph
81
- G = nx.Graph()
82
- # Add each read as a node to the graph
83
- G.add_nodes_from(range(n_reads))
84
- # Add edges based on the threshold
85
- for i in range(n_reads):
86
- for j in range(i + 1, n_reads):
87
- if distance_matrix[i, j] <= distance_threshold:
88
- G.add_edge(i, j)
89
- # Determine distinct clusters using connected components
90
- clusters = list(nx.connected_components(G))
91
- clusters = [list(cluster) for cluster in clusters]
92
- # Get the number of clusters
93
- cluster_count = len(clusters)
94
- adata.uns[f'Hamming_distance_clusters_within_{cat}_{sample}'] = [cluster_count, n_reads, cluster_count / n_reads, clusters]
95
- # Update the adata object
96
- read_cluster_map = {}
97
- read_duplicate_map = {}
98
- read_keep_map = {}
99
- for i, cluster in enumerate(clusters):
100
- for j, read_index in enumerate(cluster):
101
- read_name = read_names[read_index]
102
- read_cluster_map[read_name] = i
103
- if len(cluster) > 1:
104
- read_duplicate_map[read_name] = True
105
- if j == 0:
106
- read_keep_map[read_name] = True
107
- else:
108
- read_keep_map[read_name] = False
109
- elif len(cluster) == 1:
110
- read_duplicate_map[read_name] = False
111
- read_keep_map[read_name] = True
112
- cluster_df = pd.DataFrame.from_dict(read_cluster_map, orient='index', columns=[f'Hamming_distance_cluster_within_{obs_column}_and_sample'], dtype=int)
113
- duplicate_df = pd.DataFrame.from_dict(read_duplicate_map, orient='index', columns=['Marked_duplicate'], dtype=bool)
114
- keep_df = pd.DataFrame.from_dict(read_keep_map, orient='index', columns=['Unique_in_final_read_set'], dtype=bool)
115
- df_combined = pd.concat([cluster_df, duplicate_df, keep_df], axis=1)
116
- adata.obs.update(df_combined)
117
- adata.obs['Marked_duplicate'] = adata.obs['Marked_duplicate'].astype(bool)
118
- adata.obs['Unique_in_final_read_set'] = adata.obs['Unique_in_final_read_set'].astype(bool)
119
- print(f'Hamming clusters for {sample} on {cat}\nThreshold: {first_peak_distance}\nNumber clusters: {cluster_count}\nNumber reads: {n_reads}\nFraction unique: {cluster_count / n_reads}')
@@ -1,25 +0,0 @@
1
- ## min_non_diagonal
2
-
3
- def min_non_diagonal(matrix):
4
- """
5
- Takes a matrix and returns the smallest value from each row with the diagonal masked.
6
-
7
- Parameters:
8
- matrix (ndarray): A 2D ndarray.
9
-
10
- Returns:
11
- min_values (list): A list of minimum values from each row of the matrix
12
- """
13
- import numpy as np
14
-
15
- n = matrix.shape[0]
16
- min_values = []
17
- for i in range(n):
18
- # Mask to exclude the diagonal element
19
- row_mask = np.ones(n, dtype=bool)
20
- row_mask[i] = False
21
- # Extract the row excluding the diagonal element
22
- row = matrix[i, row_mask]
23
- # Find the minimum value in the row
24
- min_values.append(np.min(row))
25
- return min_values
@@ -1,18 +0,0 @@
1
- # remove_duplicates
2
-
3
- def remove_duplicates(adata):
4
- """
5
- Remove duplicates from the adata object
6
-
7
- Parameters:
8
- adata (Anndata): An adata object.
9
-
10
- Returns:
11
- None
12
- """
13
- import anndata as ad
14
-
15
- initial_size = adata.shape[0]
16
- adata = adata[adata.obs['Unique_in_final_read_set'] == True].copy()
17
- final_size = adata.shape[0]
18
- print(f'Removed {initial_size-final_size} reads from the dataset')