smftools 0.1.1__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools-0.1.6.dist-info/METADATA +127 -0
- smftools-0.1.6.dist-info/RECORD +4 -0
- smftools/__init__.py +0 -25
- smftools/_settings.py +0 -19
- smftools/_version.py +0 -1
- smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
- smftools/datasets/__init__.py +0 -9
- smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
- smftools/datasets/datasets.py +0 -27
- smftools/informatics/__init__.py +0 -12
- smftools/informatics/bam_conversion.py +0 -47
- smftools/informatics/bam_direct.py +0 -49
- smftools/informatics/basecalls_to_adata.py +0 -42
- smftools/informatics/fast5_to_pod5.py +0 -19
- smftools/informatics/helpers/LoadExperimentConfig.py +0 -74
- smftools/informatics/helpers/__init__.py +0 -42
- smftools/informatics/helpers/align_and_sort_BAM.py +0 -52
- smftools/informatics/helpers/archived/informatics.py +0 -260
- smftools/informatics/helpers/archived/load_adata.py +0 -516
- smftools/informatics/helpers/binarize_converted_base_identities.py +0 -31
- smftools/informatics/helpers/canoncall.py +0 -23
- smftools/informatics/helpers/converted_BAM_to_adata.py +0 -164
- smftools/informatics/helpers/count_aligned_reads.py +0 -39
- smftools/informatics/helpers/extract_base_identities.py +0 -43
- smftools/informatics/helpers/extract_mods.py +0 -51
- smftools/informatics/helpers/find_conversion_sites.py +0 -59
- smftools/informatics/helpers/generate_converted_FASTA.py +0 -79
- smftools/informatics/helpers/get_native_references.py +0 -28
- smftools/informatics/helpers/make_dirs.py +0 -21
- smftools/informatics/helpers/make_modbed.py +0 -27
- smftools/informatics/helpers/modQC.py +0 -27
- smftools/informatics/helpers/modcall.py +0 -26
- smftools/informatics/helpers/modkit_extract_to_adata.py +0 -367
- smftools/informatics/helpers/one_hot_encode.py +0 -19
- smftools/informatics/helpers/separate_bam_by_bc.py +0 -41
- smftools/informatics/helpers/split_and_index_BAM.py +0 -29
- smftools/informatics/pod5_conversion.py +0 -53
- smftools/informatics/pod5_direct.py +0 -55
- smftools/informatics/pod5_to_adata.py +0 -40
- smftools/informatics/readwrite.py +0 -106
- smftools/informatics/subsample_pod5.py +0 -48
- smftools/plotting/__init__.py +0 -0
- smftools/preprocessing/__init__.py +0 -29
- smftools/preprocessing/append_C_context.py +0 -46
- smftools/preprocessing/archives/preprocessing.py +0 -614
- smftools/preprocessing/binarize_on_Youden.py +0 -42
- smftools/preprocessing/binary_layers_to_ohe.py +0 -30
- smftools/preprocessing/calculate_complexity.py +0 -71
- smftools/preprocessing/calculate_converted_read_methylation_stats.py +0 -45
- smftools/preprocessing/calculate_coverage.py +0 -41
- smftools/preprocessing/calculate_pairwise_hamming_distances.py +0 -27
- smftools/preprocessing/calculate_position_Youden.py +0 -104
- smftools/preprocessing/calculate_read_length_stats.py +0 -32
- smftools/preprocessing/clean_NaN.py +0 -38
- smftools/preprocessing/filter_converted_reads_on_methylation.py +0 -27
- smftools/preprocessing/filter_reads_on_length.py +0 -39
- smftools/preprocessing/invert_adata.py +0 -22
- smftools/preprocessing/mark_duplicates.py +0 -119
- smftools/preprocessing/min_non_diagonal.py +0 -25
- smftools/preprocessing/remove_duplicates.py +0 -18
- smftools/readwrite.py +0 -106
- smftools/tools/__init__.py +0 -0
- smftools-0.1.1.dist-info/METADATA +0 -88
- smftools-0.1.1.dist-info/RECORD +0 -64
- {smftools-0.1.1.dist-info → smftools-0.1.6.dist-info}/WHEEL +0 -0
- {smftools-0.1.1.dist-info → smftools-0.1.6.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,367 +0,0 @@
|
|
|
1
|
-
## modkit_extract_to_adata
|
|
2
|
-
|
|
3
|
-
def modkit_extract_to_adata(fasta, bam, mapping_threshold, experiment_name, mods, batch_size):
|
|
4
|
-
"""
|
|
5
|
-
Takes modkit extract outputs and organizes it into an adata object
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
fasta (str): File path to the reference genome to align to.
|
|
9
|
-
bam (str): File path to the aligned_sorted non-split modified BAM file
|
|
10
|
-
mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
|
|
11
|
-
experiment_name (str): A string to provide an experiment name to the output adata file.
|
|
12
|
-
mods (list): A list of strings of the modification types to use in the analysis.
|
|
13
|
-
batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
|
|
14
|
-
|
|
15
|
-
Returns:
|
|
16
|
-
None
|
|
17
|
-
"""
|
|
18
|
-
from .. import readwrite
|
|
19
|
-
from .get_native_references import get_native_references
|
|
20
|
-
from .count_aligned_reads import count_aligned_reads
|
|
21
|
-
from .extract_base_identities import extract_base_identities
|
|
22
|
-
from .one_hot_encode import one_hot_encode
|
|
23
|
-
import pandas as pd
|
|
24
|
-
import anndata as ad
|
|
25
|
-
import os
|
|
26
|
-
import gc
|
|
27
|
-
import math
|
|
28
|
-
import numpy as np
|
|
29
|
-
###################################################
|
|
30
|
-
### Get input tsv file names into a sorted list ###
|
|
31
|
-
# List all files in the directory
|
|
32
|
-
files = os.listdir(os.getcwd())
|
|
33
|
-
# get current working directory
|
|
34
|
-
cwd = os.getcwd()
|
|
35
|
-
# Filter file names that contain the search string in their filename and keep them in a list
|
|
36
|
-
tsvs = [tsv for tsv in files if 'extract.tsv' in tsv]
|
|
37
|
-
# Sort file list by names and print the list of file names
|
|
38
|
-
tsvs.sort()
|
|
39
|
-
print(f'{len(tsvs)} sample tsv files found: {tsvs}')
|
|
40
|
-
print(f'sample bam file found: {bam}')
|
|
41
|
-
|
|
42
|
-
# Get all references within the FASTA and indicate the length and identity of the record sequence
|
|
43
|
-
max_reference_length = 0
|
|
44
|
-
reference_dict = get_native_references(fasta)
|
|
45
|
-
for record in reference_dict.keys():
|
|
46
|
-
if reference_dict[record][0] > max_reference_length:
|
|
47
|
-
max_reference_length = reference_dict[record][0]
|
|
48
|
-
|
|
49
|
-
print(f'{readwrite.time_string()}: Max reference length in dataset: {max_reference_length}')
|
|
50
|
-
batches = math.ceil(len(tsvs) / batch_size) # Number of batches to process
|
|
51
|
-
print('{0}: Processing input tsvs in {1} batches of {2} tsvs '.format(readwrite.time_string(), batches, batch_size))
|
|
52
|
-
|
|
53
|
-
# look at aligned read proportions in the bam
|
|
54
|
-
aligned_reads_count, unaligned_reads_count, record_counts = count_aligned_reads(bam)
|
|
55
|
-
print('{} percent of reads in bam aligned successfully'.format(aligned_reads_count*100 / (aligned_reads_count+unaligned_reads_count)))
|
|
56
|
-
records_to_analyze = []
|
|
57
|
-
# Iterate over references and decide which to use in the analysis based on the mapping_threshold
|
|
58
|
-
for record in record_counts:
|
|
59
|
-
print('{0} reads mapped to reference record {1}. This is {2} percent of all mapped reads'.format(record_counts[record][0], record, record_counts[record][1]*100))
|
|
60
|
-
if record_counts[record][1] >= mapping_threshold:
|
|
61
|
-
records_to_analyze.append(record)
|
|
62
|
-
print(f'Records to analyze: {records_to_analyze}')
|
|
63
|
-
# Iterate over records to analyze and return a dictionary keyed by the reference name that points to another dictionary keyed by read names that map to that reference. This internal dictionary points to a one-hot encoding of the mapped read
|
|
64
|
-
record_seq_dict = {}
|
|
65
|
-
for record in records_to_analyze:
|
|
66
|
-
current_reference_length = reference_dict[record][0]
|
|
67
|
-
delta_max_length = max_reference_length - current_reference_length
|
|
68
|
-
sequence = reference_dict[record][1] + 'N'*delta_max_length
|
|
69
|
-
# Get a dictionary of positional base identities keyed by read id
|
|
70
|
-
positions = range(current_reference_length)
|
|
71
|
-
base_identities = extract_base_identities(bam, record, positions, max_reference_length)
|
|
72
|
-
# One hot encode the sequence string of the reads
|
|
73
|
-
one_hot_reads = {read_name: one_hot_encode(seq) for read_name, seq in base_identities.items()}
|
|
74
|
-
record_seq_dict[record] = (one_hot_reads, sequence)
|
|
75
|
-
|
|
76
|
-
###################################################
|
|
77
|
-
|
|
78
|
-
###################################################
|
|
79
|
-
# Begin iterating over batches
|
|
80
|
-
for batch in range(batches):
|
|
81
|
-
print('{0}: Processing tsvs for batch {1} '.format(readwrite.time_string(), batch))
|
|
82
|
-
# For the final batch, just take the remaining tsv files
|
|
83
|
-
if batch == batches - 1:
|
|
84
|
-
tsv_batch = tsvs
|
|
85
|
-
# For all other batches, take the next batch of tsvs out of the file queue.
|
|
86
|
-
else:
|
|
87
|
-
tsv_batch = tsvs[:batch_size]
|
|
88
|
-
tsvs = tsvs[batch_size:]
|
|
89
|
-
print('{0}: tsvs in batch {1} '.format(readwrite.time_string(), tsv_batch))
|
|
90
|
-
###################################################
|
|
91
|
-
|
|
92
|
-
###################################################
|
|
93
|
-
### Add the tsvs as dataframes to a dictionary (dict_total) keyed by integer index. Also make modification specific dictionaries and strand specific dictionaries.
|
|
94
|
-
# Initialize dictionaries and place them in a list
|
|
95
|
-
dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top = {},{},{},{},{},{},{},{},{}
|
|
96
|
-
dict_list = [dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top]
|
|
97
|
-
|
|
98
|
-
# Give names to represent each dictionary in the list
|
|
99
|
-
sample_types = ['total', 'm6A', 'm6A_bottom_strand', 'm6A_top_strand', '5mC', '5mC_bottom_strand', '5mC_top_strand', 'combined_bottom_strand', 'combined_top_strand']
|
|
100
|
-
|
|
101
|
-
# Give indices of dictionaries to skip for analysis and final dictionary saving.
|
|
102
|
-
dict_to_skip = [0, 1, 4]
|
|
103
|
-
combined_dicts = [7, 8]
|
|
104
|
-
A_stranded_dicts = [2, 3]
|
|
105
|
-
C_stranded_dicts = [5, 6]
|
|
106
|
-
dict_to_skip = dict_to_skip + combined_dicts + A_stranded_dicts + C_stranded_dicts
|
|
107
|
-
dict_to_skip = set(dict_to_skip)
|
|
108
|
-
|
|
109
|
-
# Load the dict_total dictionary with all of the tsv files as dataframes.
|
|
110
|
-
for i, tsv in enumerate(tsv_batch):
|
|
111
|
-
print('{0}: Loading sample tsv {1} into dataframe'.format(readwrite.time_string(), tsv))
|
|
112
|
-
temp_df = pd.read_csv(tsv, sep='\t', header=0)
|
|
113
|
-
for record in records_to_analyze:
|
|
114
|
-
if record not in dict_total.keys():
|
|
115
|
-
dict_total[record] = {}
|
|
116
|
-
# Only keep the reads aligned to the chromosomes of interest
|
|
117
|
-
print('{0}: Filtering sample dataframe to keep chromosome of interest'.format(readwrite.time_string()))
|
|
118
|
-
dict_total[record][i] = temp_df[temp_df['chrom'] == record]
|
|
119
|
-
# Only keep the read positions that fall within the region of interest
|
|
120
|
-
print('{0}: Filtering sample dataframe to keep positions falling within region of interest'.format(readwrite.time_string()))
|
|
121
|
-
current_reference_length = reference_dict[record][0]
|
|
122
|
-
dict_total[record][i] = dict_total[record][i][(current_reference_length > dict_total[record][i]['ref_position']) & (dict_total[record][i]['ref_position']>= 0)]
|
|
123
|
-
|
|
124
|
-
# Iterate over dict_total of all the tsv files and extract the modification specific and strand specific dataframes into dictionaries
|
|
125
|
-
for record in dict_total.keys():
|
|
126
|
-
for i in dict_total[record].keys():
|
|
127
|
-
if '6mA' in mods:
|
|
128
|
-
# Remove Adenine stranded dicts from the dicts to skip set
|
|
129
|
-
dict_to_skip.difference_update(A_stranded_dicts)
|
|
130
|
-
|
|
131
|
-
if record not in dict_a.keys() and record not in dict_a_bottom.keys() and record not in dict_a_top.keys():
|
|
132
|
-
dict_a[record], dict_a_bottom[record], dict_a_top[record] = {}, {}, {}
|
|
133
|
-
|
|
134
|
-
# get a dictionary of dataframes that only contain methylated adenine positions
|
|
135
|
-
dict_a[record][i] = dict_total[record][i][dict_total[record][i]['modified_primary_base'] == 'A']
|
|
136
|
-
print('{}: Successfully created a methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
137
|
-
# Stratify the adenine dictionary into two strand specific dictionaries.
|
|
138
|
-
dict_a_bottom[record][i] = dict_a[record][i][dict_a[record][i]['ref_strand'] == '-']
|
|
139
|
-
print('{}: Successfully created a minus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
140
|
-
dict_a_top[record][i] = dict_a[record][i][dict_a[record][i]['ref_strand'] == '+']
|
|
141
|
-
print('{}: Successfully created a plus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
142
|
-
|
|
143
|
-
if '5mC' in mods:
|
|
144
|
-
# Remove Cytosine stranded dicts from the dicts to skip set
|
|
145
|
-
dict_to_skip.difference_update(C_stranded_dicts)
|
|
146
|
-
|
|
147
|
-
if record not in dict_c.keys() and record not in dict_c_bottom.keys() and record not in dict_c_top.keys():
|
|
148
|
-
dict_c[record], dict_c_bottom[record], dict_c_top[record] = {}, {}, {}
|
|
149
|
-
|
|
150
|
-
# get a dictionary of dataframes that only contain methylated cytosine positions
|
|
151
|
-
dict_c[record][i] = dict_total[record][i][dict_total[record][i]['modified_primary_base'] == 'C']
|
|
152
|
-
print('{}: Successfully created a methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
153
|
-
# Stratify the cytosine dictionary into two strand specific dictionaries.
|
|
154
|
-
dict_c_bottom[record][i] = dict_c[record][i][dict_c[record][i]['ref_strand'] == '-']
|
|
155
|
-
print('{}: Successfully created a minus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
156
|
-
dict_c_top[record][i] = dict_c[record][i][dict_c[record][i]['ref_strand'] == '+']
|
|
157
|
-
print('{}: Successfully created a plus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
158
|
-
# In the strand specific dictionaries, only keep positions that are informative for GpC SMF
|
|
159
|
-
|
|
160
|
-
if '6mA' in mods and '5mC' in mods:
|
|
161
|
-
# Remove combined stranded dicts from the dicts to skip set
|
|
162
|
-
dict_to_skip.difference_update(combined_dicts)
|
|
163
|
-
# Initialize the sample keys for the combined dictionaries
|
|
164
|
-
|
|
165
|
-
if record not in dict_combined_bottom.keys() and record not in dict_combined_top.keys():
|
|
166
|
-
dict_combined_bottom[record], dict_combined_top[record]= {}, {}
|
|
167
|
-
|
|
168
|
-
print('{}: Successfully created a minus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(i))
|
|
169
|
-
dict_combined_bottom[record][i] = []
|
|
170
|
-
print('{}: Successfully created a plus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(i))
|
|
171
|
-
dict_combined_top[record][i] = []
|
|
172
|
-
|
|
173
|
-
# Iterate over the stranded modification dictionaries and replace the dataframes with a dictionary of read names pointing to a list of values from the dataframe
|
|
174
|
-
for i, dict_type in enumerate(dict_list):
|
|
175
|
-
# Only iterate over stranded dictionaries
|
|
176
|
-
if i not in dict_to_skip:
|
|
177
|
-
print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), sample_types[i]))
|
|
178
|
-
for record in dict_type.keys():
|
|
179
|
-
# Get the dictionary for the modification type of interest from the reference mapping of interest
|
|
180
|
-
dict = dict_type[record]
|
|
181
|
-
print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), record))
|
|
182
|
-
# For each sample in a stranded dictionary
|
|
183
|
-
for sample in dict.keys():
|
|
184
|
-
print('{0}: Extracting {1} dictionary from record {2} for sample {3}'.format(readwrite.time_string(), sample_types[i], record, sample))
|
|
185
|
-
# Load the combined bottom strand dictionary after all the individual dictionaries have been made for the sample
|
|
186
|
-
if i == 7:
|
|
187
|
-
# Load the minus strand dictionaries for each sample into temporary variables
|
|
188
|
-
temp_a_dict = dict_list[2][record][sample].copy()
|
|
189
|
-
temp_c_dict = dict_list[5][record][sample].copy()
|
|
190
|
-
dict[sample] = {}
|
|
191
|
-
# Iterate over the reads present in the merge of both dictionaries
|
|
192
|
-
for read in set(temp_a_dict) | set(temp_c_dict):
|
|
193
|
-
# Add the arrays element-wise if the read is present in both dictionaries
|
|
194
|
-
if read in temp_a_dict and read in temp_c_dict:
|
|
195
|
-
dict[sample][read] = np.nansum([temp_a_dict[read], temp_c_dict[read]], axis=0)
|
|
196
|
-
# If the read is present in only one dictionary, copy its value
|
|
197
|
-
elif read in temp_a_dict:
|
|
198
|
-
dict[sample][read] = temp_a_dict[read]
|
|
199
|
-
else:
|
|
200
|
-
dict[sample][read] = temp_c_dict[read]
|
|
201
|
-
# Load the combined top strand dictionary after all the individual dictionaries have been made for the sample
|
|
202
|
-
elif i == 8:
|
|
203
|
-
# Load the plus strand dictionaries for each sample into temporary variables
|
|
204
|
-
temp_a_dict = dict_list[3][record][sample].copy()
|
|
205
|
-
temp_c_dict = dict_list[6][record][sample].copy()
|
|
206
|
-
dict[sample] = {}
|
|
207
|
-
# Iterate over the reads present in the merge of both dictionaries
|
|
208
|
-
for read in set(temp_a_dict) | set(temp_c_dict):
|
|
209
|
-
# Add the arrays element-wise if the read is present in both dictionaries
|
|
210
|
-
if read in temp_a_dict and read in temp_c_dict:
|
|
211
|
-
dict[sample][read] = np.nansum([temp_a_dict[read], temp_c_dict[read]], axis=0)
|
|
212
|
-
# If the read is present in only one dictionary, copy its value
|
|
213
|
-
elif read in temp_a_dict:
|
|
214
|
-
dict[sample][read] = temp_a_dict[read]
|
|
215
|
-
else:
|
|
216
|
-
dict[sample][read] = temp_c_dict[read]
|
|
217
|
-
# For all other dictionaries
|
|
218
|
-
else:
|
|
219
|
-
# extract the dataframe from the dictionary into a temporary variable
|
|
220
|
-
temp_df = dict[sample]
|
|
221
|
-
# reassign the dictionary pointer to a nested dictionary.
|
|
222
|
-
dict[sample] = {}
|
|
223
|
-
# # Iterate through rows in the temp DataFrame
|
|
224
|
-
for index, row in temp_df.iterrows():
|
|
225
|
-
read = row['read_id'] # read name
|
|
226
|
-
position = row['ref_position'] # positional coordinate
|
|
227
|
-
probability = row['call_prob'] # Get the probability of the given call
|
|
228
|
-
# if the call_code is modified change methylated value to the probability of methylation
|
|
229
|
-
if (row['call_code'] in ['a', 'h', 'm']):
|
|
230
|
-
methylated = probability
|
|
231
|
-
# If the call code is canonical, change the methylated value to 1 - the probability of canonical
|
|
232
|
-
elif (row['call_code'] in ['-']):
|
|
233
|
-
methylated = 1 - probability
|
|
234
|
-
|
|
235
|
-
# If the current read is not in the dictionary yet, initalize the dictionary with a nan filled numpy array of proper size.
|
|
236
|
-
if read not in dict[sample]:
|
|
237
|
-
dict[sample][read] = np.full(max_reference_length, np.nan)
|
|
238
|
-
else:
|
|
239
|
-
pass
|
|
240
|
-
# add the positional methylation state to the numpy array
|
|
241
|
-
dict[sample][read][position-1] = methylated
|
|
242
|
-
|
|
243
|
-
# Save the sample files in the batch as gzipped hdf5 files
|
|
244
|
-
print('{0}: Converting batch {1} dictionaries to anndata objects'.format(readwrite.time_string(), batch))
|
|
245
|
-
for i, dict_type in enumerate(dict_list):
|
|
246
|
-
if i not in dict_to_skip:
|
|
247
|
-
# Initialize an hdf5 file for the current modified strand
|
|
248
|
-
adata = None
|
|
249
|
-
print('{0}: Converting {1} dictionary to an anndata object'.format(readwrite.time_string(), sample_types[i]))
|
|
250
|
-
for record in dict_type.keys():
|
|
251
|
-
# Get the dictionary for the modification type of interest from the reference mapping of interest
|
|
252
|
-
dict = dict_type[record]
|
|
253
|
-
for sample in dict.keys():
|
|
254
|
-
print('{0}: Converting {1} dictionary for sample {2} to an anndata object'.format(readwrite.time_string(), sample_types[i], sample))
|
|
255
|
-
sample = int(sample)
|
|
256
|
-
final_sample_index = sample + (batch * batch_size)
|
|
257
|
-
print('{0}: Final sample index for sample: {1}'.format(readwrite.time_string(), final_sample_index))
|
|
258
|
-
print('{0}: Converting {1} dictionary for sample {2} to a dataframe'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
259
|
-
temp_df = pd.DataFrame.from_dict(dict[sample], orient='index')
|
|
260
|
-
sorted_index = sorted(temp_df.index)
|
|
261
|
-
temp_df = temp_df.reindex(sorted_index)
|
|
262
|
-
X = temp_df.values
|
|
263
|
-
one_hot_encodings = record_seq_dict[record][0]
|
|
264
|
-
read_names = list(one_hot_encodings.keys())
|
|
265
|
-
sequence_length = one_hot_encodings[read_names[0]].shape[0]
|
|
266
|
-
dict_A, dict_C, dict_G, dict_T, dict_N = {}, {}, {}, {}, {}
|
|
267
|
-
# Loop through each read name and its corresponding one-hot array
|
|
268
|
-
print('{0}: Extracting one hot encodings into dictionaries'.format(readwrite.time_string()))
|
|
269
|
-
for read_name, one_hot_array in one_hot_encodings.items():
|
|
270
|
-
dict_A[read_name] = one_hot_array[:, 0]
|
|
271
|
-
dict_C[read_name] = one_hot_array[:, 1]
|
|
272
|
-
dict_G[read_name] = one_hot_array[:, 2]
|
|
273
|
-
dict_T[read_name] = one_hot_array[:, 3]
|
|
274
|
-
dict_N[read_name] = one_hot_array[:, 4]
|
|
275
|
-
# Load dfs with data from the dictionaries
|
|
276
|
-
print('{0}: Loading dataframes from one hot encoded dictionaries'.format(readwrite.time_string()))
|
|
277
|
-
df_A = pd.DataFrame.from_dict(dict_A, orient='index').reindex(sorted_index)
|
|
278
|
-
df_C = pd.DataFrame.from_dict(dict_C, orient='index').reindex(sorted_index)
|
|
279
|
-
df_G = pd.DataFrame.from_dict(dict_G, orient='index').reindex(sorted_index)
|
|
280
|
-
df_T = pd.DataFrame.from_dict(dict_T, orient='index').reindex(sorted_index)
|
|
281
|
-
df_N = pd.DataFrame.from_dict(dict_N, orient='index').reindex(sorted_index)
|
|
282
|
-
|
|
283
|
-
ohe_df_map = {0: df_A, 1: df_C, 2: df_G, 3: df_T, 4: df_N}
|
|
284
|
-
|
|
285
|
-
print('{0}: Loading {1} dataframe for sample {2} into a temp anndata object'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
286
|
-
temp_adata = ad.AnnData(X, dtype=X.dtype)
|
|
287
|
-
print('{0}: Adding read names and position ids to {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
288
|
-
temp_adata.obs_names = temp_df.index
|
|
289
|
-
temp_adata.obs_names = temp_adata.obs_names.astype(str)
|
|
290
|
-
temp_adata.var_names = temp_df.columns
|
|
291
|
-
temp_adata.var_names = temp_adata.var_names.astype(str)
|
|
292
|
-
print('{0}: Adding final sample id to {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
293
|
-
temp_adata.obs['Sample'] = [str(final_sample_index)] * len(temp_adata)
|
|
294
|
-
dataset, strand = sample_types[i].split('_')[:2]
|
|
295
|
-
temp_adata.obs['Strand'] = [strand] * len(temp_adata)
|
|
296
|
-
temp_adata.obs['Dataset'] = [dataset] * len(temp_adata)
|
|
297
|
-
temp_adata.obs['Reference'] = [f'{record}_{dataset}_{strand}'] * len(temp_adata)
|
|
298
|
-
temp_adata.obs['Reference_chromosome'] = [f'{record}'] * len(temp_adata)
|
|
299
|
-
|
|
300
|
-
for j, base in enumerate(['A', 'C', 'G', 'T', 'N']):
|
|
301
|
-
temp_adata.layers[f'{base}_binary_encoding'] = ohe_df_map[j].values
|
|
302
|
-
|
|
303
|
-
# If final adata object already has a sample loaded, concatenate the current sample into the existing adata object
|
|
304
|
-
if adata:
|
|
305
|
-
print('{0}: Concatenating {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
306
|
-
adata = ad.concat([adata, temp_adata], join='outer', index_unique=None)
|
|
307
|
-
else:
|
|
308
|
-
print('{0}: Initializing {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
309
|
-
adata = temp_adata
|
|
310
|
-
|
|
311
|
-
print('{0}: Writing {1} anndata out as a gzipped hdf5 file'.format(readwrite.time_string(), sample_types[i]))
|
|
312
|
-
adata.write_h5ad('{0}_{1}_{2}_SMF_binarized_sample_hdf5.h5ad.gz'.format(readwrite.date_string(), batch, sample_types[i]), compression='gzip')
|
|
313
|
-
|
|
314
|
-
# Delete the batch dictionaries from memory
|
|
315
|
-
del dict_list
|
|
316
|
-
gc.collect()
|
|
317
|
-
|
|
318
|
-
# Iterate over all of the batched hdf5 files and concatenate them.
|
|
319
|
-
files = os.listdir(os.getcwd())
|
|
320
|
-
# Name the final output file
|
|
321
|
-
final_hdf = '{0}_{1}_final_experiment_hdf5.h5ad.gz'.format(readwrite.date_string(), experiment_name)
|
|
322
|
-
# Filter file names that contain the search string in their filename and keep them in a list
|
|
323
|
-
hdfs = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
|
|
324
|
-
# Sort file list by names and print the list of file names
|
|
325
|
-
hdfs.sort()
|
|
326
|
-
print('{0} sample files found: {1}'.format(len(hdfs), hdfs))
|
|
327
|
-
final_adata = None
|
|
328
|
-
for hdf in hdfs:
|
|
329
|
-
print('{0}: Reading in {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
330
|
-
temp_adata = ad.read_h5ad(hdf)
|
|
331
|
-
if final_adata:
|
|
332
|
-
print('{0}: Concatenating final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
333
|
-
final_adata = ad.concat([final_adata, temp_adata], join='outer', index_unique=None)
|
|
334
|
-
else:
|
|
335
|
-
print('{0}: Initializing final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
336
|
-
final_adata = temp_adata
|
|
337
|
-
print('{0}: Writing final concatenated hdf5 file'.format(readwrite.time_string()))
|
|
338
|
-
|
|
339
|
-
for record in records_to_analyze:
|
|
340
|
-
# Add FASTA sequence to the object
|
|
341
|
-
sequence = record_seq_dict[record][1]
|
|
342
|
-
final_adata.uns[f'{record}_FASTA_sequence'] = sequence
|
|
343
|
-
final_adata.var[f'{record}_FASTA_sequence_base'] = list(sequence)
|
|
344
|
-
|
|
345
|
-
# Add consensus sequence of samples mapped to the record to the object
|
|
346
|
-
record_subset = final_adata[final_adata.obs['Reference_chromosome'] == record].copy()
|
|
347
|
-
layer_map, layer_counts = {}, []
|
|
348
|
-
for i, layer in enumerate(record_subset.layers):
|
|
349
|
-
layer_map[i] = layer.split('_')[0]
|
|
350
|
-
layer_counts.append(np.sum(record_subset.layers[layer], axis=0))
|
|
351
|
-
count_array = np.array(layer_counts)
|
|
352
|
-
nucleotide_indexes = np.argmax(count_array, axis=0)
|
|
353
|
-
consensus_sequence_list = [layer_map[i] for i in nucleotide_indexes]
|
|
354
|
-
final_adata.var[f'{record}_consensus_across_samples'] = consensus_sequence_list
|
|
355
|
-
|
|
356
|
-
final_adata.write_h5ad(final_hdf, compression='gzip')
|
|
357
|
-
|
|
358
|
-
# Delete the individual h5ad files and only keep the final concatenated file
|
|
359
|
-
files = os.listdir(os.getcwd())
|
|
360
|
-
hdfs_to_delete = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
|
|
361
|
-
# Iterate over the files and delete them
|
|
362
|
-
for hdf in hdfs_to_delete:
|
|
363
|
-
try:
|
|
364
|
-
os.remove(hdf)
|
|
365
|
-
print(f"Deleted file: {hdf}")
|
|
366
|
-
except OSError as e:
|
|
367
|
-
print(f"Error deleting file {hdf}: {e}")
|
|
@@ -1,19 +0,0 @@
|
|
|
1
|
-
# one_hot_encode
|
|
2
|
-
|
|
3
|
-
# String encodings
|
|
4
|
-
def one_hot_encode(sequence):
|
|
5
|
-
"""
|
|
6
|
-
One hot encodes a sequence string.
|
|
7
|
-
Parameters:
|
|
8
|
-
sequence (str): A DNA sequence string.
|
|
9
|
-
|
|
10
|
-
Returns:
|
|
11
|
-
one_hot_matrix (ndarray): A numpy ndarray holding a vstacked one hot encoding of the input sequence string.
|
|
12
|
-
"""
|
|
13
|
-
import numpy as np
|
|
14
|
-
|
|
15
|
-
mapping = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'N': 4}
|
|
16
|
-
one_hot_matrix = np.zeros((len(sequence), 5), dtype=int)
|
|
17
|
-
for i, nucleotide in enumerate(sequence):
|
|
18
|
-
one_hot_matrix[i, mapping[nucleotide]] = 1
|
|
19
|
-
return one_hot_matrix
|
|
@@ -1,41 +0,0 @@
|
|
|
1
|
-
## separate_bam_by_bc
|
|
2
|
-
|
|
3
|
-
# General
|
|
4
|
-
def separate_bam_by_bc(input_bam, output_prefix, bam_suffix):
|
|
5
|
-
"""
|
|
6
|
-
Separates an input BAM file on the BC SAM tag values.
|
|
7
|
-
|
|
8
|
-
Parameters:
|
|
9
|
-
input_bam (str): File path to the BAM file to split.
|
|
10
|
-
output_prefix (str): A prefix to append to the output BAM.
|
|
11
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
12
|
-
|
|
13
|
-
Returns:
|
|
14
|
-
None
|
|
15
|
-
Writes out split BAM files.
|
|
16
|
-
"""
|
|
17
|
-
import pysam
|
|
18
|
-
import os
|
|
19
|
-
|
|
20
|
-
bam_base = os.path.basename(input_bam)
|
|
21
|
-
bam_base_minus_suffix = bam_base.split(bam_suffix)[0]
|
|
22
|
-
|
|
23
|
-
# Open the input BAM file for reading
|
|
24
|
-
with pysam.AlignmentFile(input_bam, "rb") as bam:
|
|
25
|
-
# Create a dictionary to store output BAM files
|
|
26
|
-
output_files = {}
|
|
27
|
-
# Iterate over each read in the BAM file
|
|
28
|
-
for read in bam:
|
|
29
|
-
try:
|
|
30
|
-
# Get the barcode tag value
|
|
31
|
-
bc_tag = read.get_tag("BC", with_value_type=True)[0].split('barcode')[1]
|
|
32
|
-
# Open the output BAM file corresponding to the barcode
|
|
33
|
-
if bc_tag not in output_files:
|
|
34
|
-
output_files[bc_tag] = pysam.AlignmentFile(f"{output_prefix}_{bam_base_minus_suffix}_{bc_tag}{bam_suffix}", "wb", header=bam.header)
|
|
35
|
-
# Write the read to the corresponding output BAM file
|
|
36
|
-
output_files[bc_tag].write(read)
|
|
37
|
-
except KeyError:
|
|
38
|
-
print(f"BC tag not present for read: {read.query_name}")
|
|
39
|
-
# Close all output BAM files
|
|
40
|
-
for output_file in output_files.values():
|
|
41
|
-
output_file.close()
|
|
@@ -1,29 +0,0 @@
|
|
|
1
|
-
## split_and_index_BAM
|
|
2
|
-
|
|
3
|
-
def split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix):
|
|
4
|
-
"""
|
|
5
|
-
A wrapper function for splitting BAMS and indexing them.
|
|
6
|
-
Parameters:
|
|
7
|
-
aligned_sorted_BAM (str): A string representing the file path of the aligned_sorted BAM file.
|
|
8
|
-
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
9
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
10
|
-
|
|
11
|
-
Returns:
|
|
12
|
-
None
|
|
13
|
-
Splits an input BAM file on barcode value and makes a BAM index file.
|
|
14
|
-
"""
|
|
15
|
-
from .. import readwrite
|
|
16
|
-
import os
|
|
17
|
-
import subprocess
|
|
18
|
-
import glob
|
|
19
|
-
from .separate_bam_by_bc import separate_bam_by_bc
|
|
20
|
-
|
|
21
|
-
os.chdir(split_dir)
|
|
22
|
-
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
23
|
-
file_prefix = readwrite.date_string()
|
|
24
|
-
separate_bam_by_bc(aligned_sorted_output, file_prefix, bam_suffix)
|
|
25
|
-
# Make a BAM index file for the BAMs in that directory
|
|
26
|
-
bam_pattern = '*' + bam_suffix
|
|
27
|
-
bam_files = glob.glob(os.path.join(split_dir, bam_pattern))
|
|
28
|
-
for input_file in bam_files:
|
|
29
|
-
subprocess.run(["samtools", "index", input_file])
|
|
@@ -1,53 +0,0 @@
|
|
|
1
|
-
## pod5_conversion
|
|
2
|
-
|
|
3
|
-
def pod5_conversion(fasta, output_directory, conversion_types, strands, model, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix):
|
|
4
|
-
"""
|
|
5
|
-
Converts a POD5 file from a nanopore conversion SMF experiment to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
fasta (str): File path to the reference genome to align to.
|
|
9
|
-
output_directory (str): A file path to the directory to output all the analyses.
|
|
10
|
-
conversion_type (list): A list of strings of the conversion types to use in the analysis.
|
|
11
|
-
strands (list): A list of converstion strands to use in the experiment.
|
|
12
|
-
model (str): a string representing the file path to the dorado basecalling model.
|
|
13
|
-
pod5_dir (str): a string representing the file path to the experiment directory containing the POD5 files.
|
|
14
|
-
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
15
|
-
barcode_kit (str): A string representing the barcoding kit used in the experiment.
|
|
16
|
-
mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
|
|
17
|
-
experiment_name (str): A string to provide an experiment name to the output adata file.
|
|
18
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
19
|
-
|
|
20
|
-
Returns:
|
|
21
|
-
None
|
|
22
|
-
"""
|
|
23
|
-
from .helpers import align_and_sort_BAM, canoncall, converted_BAM_to_adata, generate_converted_FASTA, split_and_index_BAM
|
|
24
|
-
import os
|
|
25
|
-
model_basename = os.path.basename(model)
|
|
26
|
-
model_basename = model_basename.replace('.', '_')
|
|
27
|
-
bam=f"{output_directory}/{model_basename}_canonical_basecalls"
|
|
28
|
-
aligned_BAM=f"{bam}_aligned"
|
|
29
|
-
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
30
|
-
|
|
31
|
-
os.chdir(output_directory)
|
|
32
|
-
|
|
33
|
-
# 1) Convert FASTA file
|
|
34
|
-
fasta_basename = os.path.basename(fasta)
|
|
35
|
-
converted_FASTA_basename = fasta_basename.split('.fa')[0]+'_converted.fasta'
|
|
36
|
-
converted_FASTA = os.path.join(output_directory, converted_FASTA_basename)
|
|
37
|
-
if os.path.exists(converted_FASTA):
|
|
38
|
-
print(converted_FASTA + ' already exists. Using existing converted FASTA.')
|
|
39
|
-
else:
|
|
40
|
-
generate_converted_FASTA(fasta, conversion_types, strands, converted_FASTA)
|
|
41
|
-
|
|
42
|
-
# 2) Basecall from the input POD5 to generate a singular output BAM
|
|
43
|
-
canoncall(model, pod5_dir, barcode_kit, bam, bam_suffix)
|
|
44
|
-
|
|
45
|
-
# 3) Align the BAM to the converted reference FASTA and sort the bam on positional coordinates. Also make an index and a bed file of mapped reads
|
|
46
|
-
input_BAM = bam + bam_suffix
|
|
47
|
-
align_and_sort_BAM(converted_FASTA, input_BAM, bam_suffix, output_directory)
|
|
48
|
-
|
|
49
|
-
### 4) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory###
|
|
50
|
-
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
51
|
-
|
|
52
|
-
# 5) Take the converted BAM and load it into an adata object.
|
|
53
|
-
converted_BAM_to_adata(converted_FASTA, split_dir, mapping_threshold, experiment_name, conversion_types, bam_suffix)
|
|
@@ -1,55 +0,0 @@
|
|
|
1
|
-
## pod5_direct
|
|
2
|
-
|
|
3
|
-
def pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size):
|
|
4
|
-
"""
|
|
5
|
-
Converts a POD5 file from a nanopore native SMF experiment to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
fasta (str): File path to the reference genome to align to.
|
|
9
|
-
output_directory (str): A file path to the directory to output all the analyses.
|
|
10
|
-
mod_list (list): A list of strings of the modification types to use in the analysis.
|
|
11
|
-
model (str): a string representing the file path to the dorado basecalling model.
|
|
12
|
-
thresholds (list): A list of floats to pass for call thresholds.
|
|
13
|
-
pod5_dir (str): a string representing the file path to the experiment directory containing the POD5 files.
|
|
14
|
-
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
15
|
-
barcode_kit (str): A string representing the barcoding kit used in the experiment.
|
|
16
|
-
mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
|
|
17
|
-
experiment_name (str): A string to provide an experiment name to the output adata file.
|
|
18
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
19
|
-
batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
|
|
20
|
-
|
|
21
|
-
Returns:
|
|
22
|
-
None
|
|
23
|
-
"""
|
|
24
|
-
from .helpers import align_and_sort_BAM, extract_mods, make_modbed, modcall, modkit_extract_to_adata, modQC, split_and_index_BAM, make_dirs
|
|
25
|
-
import os
|
|
26
|
-
model_basename = os.path.basename(model)
|
|
27
|
-
model_basename = model_basename.replace('.', '_')
|
|
28
|
-
mod_string = "_".join(mod_list)
|
|
29
|
-
bam=f"{output_directory}/{model_basename}_{mod_string}_calls"
|
|
30
|
-
aligned_BAM=f"{bam}_aligned"
|
|
31
|
-
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
32
|
-
mod_bed_dir=f"{output_directory}/split_mod_beds"
|
|
33
|
-
mod_tsv_dir=f"{output_directory}/split_mod_tsvs"
|
|
34
|
-
|
|
35
|
-
make_dirs([mod_bed_dir, mod_tsv_dir])
|
|
36
|
-
|
|
37
|
-
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
38
|
-
mod_map = {'6mA': '6mA', '5mC_5hmC': '5mC'}
|
|
39
|
-
mods = [mod_map[mod] for mod in mod_list]
|
|
40
|
-
|
|
41
|
-
os.chdir(output_directory)
|
|
42
|
-
|
|
43
|
-
# 1) Basecall using dorado
|
|
44
|
-
modcall(model, pod5_dir, barcode_kit, mod_list, bam, bam_suffix)
|
|
45
|
-
# 2) Align the BAM to the reference FASTA. Also make an index and a bed file of mapped reads
|
|
46
|
-
input_BAM = bam + bam_suffix
|
|
47
|
-
align_and_sort_BAM(fasta, input_BAM, bam_suffix, output_directory)
|
|
48
|
-
# 3) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory
|
|
49
|
-
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
50
|
-
# 4) Using nanopore modkit to work with modified BAM files ###
|
|
51
|
-
modQC(aligned_sorted_output, thresholds) # get QC metrics for mod calls
|
|
52
|
-
make_modbed(aligned_sorted_output, thresholds, mod_bed_dir) # Generate bed files of position methylation summaries for every sample
|
|
53
|
-
extract_mods(thresholds, mod_tsv_dir, split_dir, bam_suffix) # Extract methylations calls for split BAM files into split TSV files
|
|
54
|
-
#5 Load the modification data from TSVs into an adata object
|
|
55
|
-
modkit_extract_to_adata(fasta, aligned_sorted_output, mapping_threshold, experiment_name, mods, batch_size)
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
## pod5_to_adata
|
|
2
|
-
|
|
3
|
-
def pod5_to_adata(config_path):
|
|
4
|
-
"""
|
|
5
|
-
High-level function to call for converting raw sequencing data to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
config_path (str): A string representing the file path to the experiment configuration csv file.
|
|
9
|
-
|
|
10
|
-
Returns:
|
|
11
|
-
None
|
|
12
|
-
"""
|
|
13
|
-
from .helpers import LoadExperimentConfig, make_dirs
|
|
14
|
-
import os
|
|
15
|
-
bam_suffix = '.bam' # If different, change from here.
|
|
16
|
-
split_dir = 'split_BAMs' # If different, change from here.
|
|
17
|
-
strands = ['bottom', 'top'] # If different, change from here. Having both listed generally doesn't slow things down too much.
|
|
18
|
-
conversions = ['unconverted'] # The name to use for the unconverted files. If different, change from here.
|
|
19
|
-
|
|
20
|
-
# Load experiment config parameters into global variables
|
|
21
|
-
experiment_config = LoadExperimentConfig(config_path)
|
|
22
|
-
var_dict = experiment_config.var_dict
|
|
23
|
-
for key, value in var_dict.items():
|
|
24
|
-
globals()[key] = value
|
|
25
|
-
|
|
26
|
-
conversions += conversion_types
|
|
27
|
-
|
|
28
|
-
split_path = os.path.join(output_directory, split_dir)
|
|
29
|
-
make_dirs([output_directory, split_path])
|
|
30
|
-
os.chdir(output_directory)
|
|
31
|
-
|
|
32
|
-
if smf_modality == 'conversion':
|
|
33
|
-
from .pod5_conversion import pod5_conversion
|
|
34
|
-
pod5_conversion(fasta, output_directory, conversions, strands, model, pod5_dir, split_path, barcode_kit, mapping_threshold, experiment_name, bam_suffix)
|
|
35
|
-
elif smf_modality == 'direct':
|
|
36
|
-
from .pod5_direct import pod5_direct
|
|
37
|
-
thresholds = [filter_threshold, m6A_threshold, m5C_threshold, hm5C_threshold]
|
|
38
|
-
pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_path, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size)
|
|
39
|
-
else:
|
|
40
|
-
print("Error")
|