smftools 0.1.0__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. smftools/__init__.py +0 -2
  2. smftools/_settings.py +3 -2
  3. smftools/_version.py +1 -0
  4. smftools/datasets/F1_sample_sheet.csv +5 -0
  5. smftools/datasets/datasets.py +14 -11
  6. smftools/informatics/__init__.py +10 -7
  7. smftools/informatics/archived/bam_conversion.py +59 -0
  8. smftools/informatics/archived/bam_direct.py +63 -0
  9. smftools/informatics/archived/basecalls_to_adata.py +71 -0
  10. smftools/informatics/conversion_smf.py +79 -0
  11. smftools/informatics/direct_smf.py +89 -0
  12. smftools/informatics/fast5_to_pod5.py +21 -0
  13. smftools/informatics/helpers/LoadExperimentConfig.py +74 -0
  14. smftools/informatics/helpers/__init__.py +22 -4
  15. smftools/informatics/helpers/align_and_sort_BAM.py +48 -0
  16. smftools/informatics/helpers/aligned_BAM_to_bed.py +73 -0
  17. smftools/informatics/helpers/bed_to_bigwig.py +39 -0
  18. smftools/informatics/helpers/binarize_converted_base_identities.py +11 -4
  19. smftools/informatics/helpers/canoncall.py +14 -1
  20. smftools/informatics/helpers/complement_base_list.py +21 -0
  21. smftools/informatics/helpers/concatenate_fastqs_to_bam.py +54 -0
  22. smftools/informatics/helpers/converted_BAM_to_adata.py +183 -97
  23. smftools/informatics/helpers/count_aligned_reads.py +25 -14
  24. smftools/informatics/helpers/extract_base_identities.py +44 -23
  25. smftools/informatics/helpers/extract_mods.py +17 -5
  26. smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
  27. smftools/informatics/helpers/find_conversion_sites.py +24 -16
  28. smftools/informatics/helpers/generate_converted_FASTA.py +60 -21
  29. smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
  30. smftools/informatics/helpers/get_native_references.py +10 -7
  31. smftools/informatics/helpers/index_fasta.py +12 -0
  32. smftools/informatics/helpers/make_dirs.py +9 -3
  33. smftools/informatics/helpers/make_modbed.py +10 -4
  34. smftools/informatics/helpers/modQC.py +10 -2
  35. smftools/informatics/helpers/modcall.py +16 -2
  36. smftools/informatics/helpers/modkit_extract_to_adata.py +486 -323
  37. smftools/informatics/helpers/ohe_batching.py +52 -0
  38. smftools/informatics/helpers/one_hot_encode.py +15 -8
  39. smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +52 -0
  40. smftools/informatics/helpers/separate_bam_by_bc.py +20 -5
  41. smftools/informatics/helpers/split_and_index_BAM.py +31 -11
  42. smftools/informatics/load_adata.py +127 -0
  43. smftools/informatics/readwrite.py +13 -16
  44. smftools/informatics/subsample_fasta_from_bed.py +47 -0
  45. smftools/informatics/subsample_pod5.py +104 -0
  46. smftools/preprocessing/__init__.py +6 -7
  47. smftools/preprocessing/append_C_context.py +52 -22
  48. smftools/preprocessing/binarize_on_Youden.py +8 -4
  49. smftools/preprocessing/binary_layers_to_ohe.py +9 -4
  50. smftools/preprocessing/calculate_complexity.py +26 -14
  51. smftools/preprocessing/calculate_consensus.py +47 -0
  52. smftools/preprocessing/calculate_converted_read_methylation_stats.py +69 -11
  53. smftools/preprocessing/calculate_coverage.py +14 -8
  54. smftools/preprocessing/calculate_pairwise_hamming_distances.py +11 -6
  55. smftools/preprocessing/calculate_position_Youden.py +21 -12
  56. smftools/preprocessing/calculate_read_length_stats.py +67 -8
  57. smftools/preprocessing/clean_NaN.py +13 -6
  58. smftools/preprocessing/filter_converted_reads_on_methylation.py +15 -6
  59. smftools/preprocessing/filter_reads_on_length.py +16 -6
  60. smftools/preprocessing/invert_adata.py +10 -5
  61. smftools/preprocessing/load_sample_sheet.py +24 -0
  62. smftools/preprocessing/make_dirs.py +21 -0
  63. smftools/preprocessing/mark_duplicates.py +54 -30
  64. smftools/preprocessing/min_non_diagonal.py +9 -4
  65. smftools/preprocessing/recipes.py +125 -0
  66. smftools/preprocessing/remove_duplicates.py +15 -6
  67. smftools/readwrite.py +13 -16
  68. smftools/tools/apply_HMM.py +1 -0
  69. smftools/tools/cluster.py +0 -0
  70. smftools/tools/read_HMM.py +1 -0
  71. smftools/tools/subset_adata.py +32 -0
  72. smftools/tools/train_HMM.py +43 -0
  73. smftools-0.1.3.dist-info/METADATA +94 -0
  74. smftools-0.1.3.dist-info/RECORD +84 -0
  75. smftools/informatics/helpers/align_BAM.py +0 -49
  76. smftools/informatics/helpers/load_experiment_config.py +0 -17
  77. smftools/informatics/pod5_conversion.py +0 -26
  78. smftools/informatics/pod5_direct.py +0 -29
  79. smftools/informatics/pod5_to_adata.py +0 -17
  80. smftools-0.1.0.dist-info/METADATA +0 -75
  81. smftools-0.1.0.dist-info/RECORD +0 -58
  82. /smftools/informatics/helpers/{informatics.py → archived/informatics.py} +0 -0
  83. /smftools/informatics/helpers/{load_adata.py → archived/load_adata.py} +0 -0
  84. /smftools/preprocessing/{preprocessing.py → archives/preprocessing.py} +0 -0
  85. {smftools-0.1.0.dist-info → smftools-0.1.3.dist-info}/WHEEL +0 -0
  86. {smftools-0.1.0.dist-info → smftools-0.1.3.dist-info}/licenses/LICENSE +0 -0
@@ -1,14 +1,22 @@
1
1
  ## filter_reads_on_length
2
- import numpy as np
3
- import anndata as ad
4
- import pandas as pd
5
2
 
6
3
  def filter_reads_on_length(adata, filter_on_coordinates=False, min_read_length=2700):
7
4
  """
5
+ Filters the adata object to keep a defined coordinate window, as well as reads that are over a minimum threshold in length.
6
+
7
+ Parameters:
8
+ adata (AnnData): An adata object.
9
+ filter_on_coordinates (bool | list): If False, skips filtering. Otherwise, provide a list containing integers representing the lower and upper bound coordinates to filter on. Default is False.
10
+ min_read_length (int): The minimum read length to keep in the filtered dataset. Default is 2700.
11
+
12
+ Returns:
13
+ adata (AnnData): The filtered adata object
8
14
  Input: Adata object. a list of lower and upper bound (set to False or None if not wanted), and a minimum read length integer.
9
- Output: Susbets the adata object to keep a defined coordinate window, as well as reads that are over a minimum threshold in length
15
+
10
16
  """
11
-
17
+ import numpy as np
18
+ import anndata as ad
19
+ import pandas as pd
12
20
  if filter_on_coordinates:
13
21
  lower_bound, upper_bound = filter_on_coordinates
14
22
  # Extract the position information from the adata object as an np array
@@ -28,4 +36,6 @@ def filter_reads_on_length(adata, filter_on_coordinates=False, min_read_length=2
28
36
 
29
37
  if min_read_length:
30
38
  print(f'Subsetting adata to keep reads longer than {min_read_length}')
31
- adata = adata[adata.obs['read_length'] > min_read_length].copy()
39
+ adata = adata[adata.obs['read_length'] > min_read_length].copy()
40
+
41
+ return adata
@@ -1,14 +1,19 @@
1
1
  ## invert_adata
2
- import numpy as np
3
- import anndata as ad
4
- import pandas as pd
5
2
 
6
3
  # Optional inversion of the adata
7
4
  def invert_adata(adata):
8
5
  """
9
- Input: An adata object
10
- Output: Inverts the adata object along the variable axis
6
+ Inverts the adata object along the variable axis
7
+
8
+ Parameters:
9
+ adata (AnnData): An adata object.
10
+
11
+ Returns:
12
+ None
11
13
  """
14
+ import numpy as np
15
+ import anndata as ad
16
+ print('Inverting adata')
12
17
  # Reassign var_names with new names
13
18
  old_var_names = adata.var_names.astype(int).to_numpy()
14
19
  new_var_names = np.sort(old_var_names)[::-1].astype(str)
@@ -0,0 +1,24 @@
1
+ # load_sample_sheet
2
+
3
+ def load_sample_sheet(adata, sample_sheet_path, mapping_key_column):
4
+ """
5
+ Loads a sample sheet csv and uses one of the columns to map sample information into the AnnData object.
6
+
7
+ Parameters:
8
+ adata (AnnData): The Anndata object to append sample information to.
9
+ sample_sheet_path (str):
10
+ mapping_key_column (str):
11
+
12
+ Returns:
13
+ None
14
+ """
15
+ import pandas as pd
16
+ import anndata as ad
17
+ df = pd.read_csv(sample_sheet_path)
18
+ key_column = mapping_key_column
19
+ df[key_column] = df[key_column].astype(str)
20
+ value_columns = [column for column in df.columns if column != key_column]
21
+ mapping_dict = df.set_index(key_column)[value_columns].to_dict(orient='index')
22
+ for column in value_columns:
23
+ column_map = {key: value[column] for key, value in mapping_dict.items()}
24
+ adata.obs[column] = adata.obs[key_column].map(column_map)
@@ -0,0 +1,21 @@
1
+ ## make_dirs
2
+
3
+ # General
4
+ def make_dirs(directories):
5
+ """
6
+ Takes a list of file paths and makes new directories if the directory does not already exist.
7
+
8
+ Parameters:
9
+ directories (list): A list of directories to make
10
+
11
+ Returns:
12
+ None
13
+ """
14
+ import os
15
+
16
+ for directory in directories:
17
+ if not os.path.isdir(directory):
18
+ os.mkdir(directory)
19
+ print(f"Directory '{directory}' created successfully.")
20
+ else:
21
+ print(f"Directory '{directory}' already exists.")
@@ -1,19 +1,29 @@
1
1
  ## mark_duplicates
2
- import numpy as np
3
- import pandas as pd
4
- import matplotlib.pyplot as plt
5
- from scipy.signal import find_peaks
6
- import networkx as nx
7
- from .binary_layers_to_ohe import binary_layers_to_ohe
8
- from .calculate_pairwise_hamming_distances import calculate_pairwise_hamming_distances
9
- from .min_non_diagonal import min_non_diagonal
10
2
 
11
-
12
- def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_names'):
3
+ def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_names', hamming_distance_thresholds={}):
13
4
  """
14
- Input: adata object, list of binary layers, column names to use.
15
- Output: Marks duplicates in the adata object
5
+ Marks duplicates in the adata object.
6
+
7
+ Parameters:
8
+ adata (AnnData): An adata object.
9
+ layers (list): A list of strings representing the layers to use.
10
+ obs_column (str): A string representing the obs column name to first subset on. Default is 'Reference'.
11
+ sample_col (str):L A string representing the obs column name to second subset on. Default is 'Sample_names'.
12
+ hamming_distance_thresholds (dict): A dictionary keyed by obs_column categories that points to a float corresponding to the distance threshold to apply. Default is an empty dict.
13
+
14
+ Returns:
15
+ None
16
16
  """
17
+
18
+ import numpy as np
19
+ import pandas as pd
20
+ import matplotlib.pyplot as plt
21
+ from scipy.signal import find_peaks
22
+ import networkx as nx
23
+ from .binary_layers_to_ohe import binary_layers_to_ohe
24
+ from .calculate_pairwise_hamming_distances import calculate_pairwise_hamming_distances
25
+ from .min_non_diagonal import min_non_diagonal
26
+
17
27
  categories = adata.obs[obs_column].cat.categories
18
28
  sample_names = adata.obs[sample_col].cat.categories
19
29
 
@@ -39,22 +49,32 @@ def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_na
39
49
  distance_df = pd.DataFrame(distance_matrix, index=read_names, columns=read_names)
40
50
  # Save the distance dataframe into an unstructured component of the adata object
41
51
  adata.uns[f'Pairwise_Hamming_distance_within_{cat}_{sample}'] = distance_df
42
- # Calculate the minimum non-self distance for every read in the reference and sample
43
- min_distance_values = min_non_diagonal(distance_matrix)
44
- min_distance_df = pd.DataFrame({'Nearest_neighbor_Hamming_distance': min_distance_values}, index=read_names)
45
- adata.obs.update(min_distance_df)
46
- # Generate a histogram of minimum non-self distances for each read
47
- min_distance_bins = plt.hist(min_distance_values, bins=n_reads//4)
48
- # Normalize the max value in any histogram bin to 1
49
- normalized_min_distance_counts = min_distance_bins[0] / np.max(min_distance_bins[0])
50
- # Extract the bin index of peak centers in the histogram
51
- peak_centers, _ = find_peaks(normalized_min_distance_counts, prominence=0.2, distance=5)
52
- first_peak_index = peak_centers[0]
53
- offset_index = first_peak_index-1
54
- # Use the distance corresponding to the first peak as the threshold distance in graph construction
55
- first_peak_distance = min_distance_bins[1][first_peak_index]
56
- offset_distance = min_distance_bins[1][offset_index]
57
- adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}'] = offset_distance
52
+ if n_reads > 1:
53
+ # Calculate the minimum non-self distance for every read in the reference and sample
54
+ min_distance_values = min_non_diagonal(distance_matrix)
55
+ min_distance_df = pd.DataFrame({'Nearest_neighbor_Hamming_distance': min_distance_values}, index=read_names)
56
+ adata.obs.update(min_distance_df)
57
+ # Generate a histogram of minimum non-self distances for each read
58
+ if n_reads > 3:
59
+ n_bins = n_reads // 4
60
+ else:
61
+ n_bins = 1
62
+ min_distance_bins = plt.hist(min_distance_values, bins=n_bins)
63
+ if cat in hamming_distance_thresholds:
64
+ adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}'] = hamming_distance_thresholds[cat]
65
+ else: # eventually this should be written to use known PCR duplicate controls for thresholding.
66
+ # Normalize the max value in any histogram bin to 1
67
+ normalized_min_distance_counts = min_distance_bins[0] / np.max(min_distance_bins[0])
68
+ # Extract the bin index of peak centers in the histogram
69
+ peak_centers, _ = find_peaks(normalized_min_distance_counts, prominence=0.2, distance=5)
70
+ first_peak_index = peak_centers[0]
71
+ offset_index = first_peak_index-1
72
+ # Use the distance corresponding to the first peak as the threshold distance in graph construction
73
+ first_peak_distance = min_distance_bins[1][first_peak_index]
74
+ offset_distance = min_distance_bins[1][offset_index]
75
+ adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}'] = offset_distance
76
+ else:
77
+ adata.uns[f'Hamming_distance_threshold_for_{cat}_{sample}'] = 0
58
78
 
59
79
  ## Detect likely duplicate reads and mark them in the adata object.
60
80
  adata.obs['Marked_duplicate'] = pd.Series(False, index=adata.obs_names, dtype=bool)
@@ -82,7 +102,11 @@ def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_na
82
102
  clusters = [list(cluster) for cluster in clusters]
83
103
  # Get the number of clusters
84
104
  cluster_count = len(clusters)
85
- adata.uns[f'Hamming_distance_clusters_within_{cat}_{sample}'] = [cluster_count, n_reads, cluster_count / n_reads, clusters]
105
+ if n_reads > 0:
106
+ fraction_unique = cluster_count / n_reads
107
+ else:
108
+ fraction_unique = 0
109
+ adata.uns[f'Hamming_distance_clusters_within_{cat}_{sample}'] = [cluster_count, n_reads, fraction_unique, clusters]
86
110
  # Update the adata object
87
111
  read_cluster_map = {}
88
112
  read_duplicate_map = {}
@@ -107,4 +131,4 @@ def mark_duplicates(adata, layers, obs_column='Reference', sample_col='Sample_na
107
131
  adata.obs.update(df_combined)
108
132
  adata.obs['Marked_duplicate'] = adata.obs['Marked_duplicate'].astype(bool)
109
133
  adata.obs['Unique_in_final_read_set'] = adata.obs['Unique_in_final_read_set'].astype(bool)
110
- print(f'Hamming clusters for {sample} on {cat}\nThreshold: {first_peak_distance}\nNumber clusters: {cluster_count}\nNumber reads: {n_reads}\nFraction unique: {cluster_count / n_reads}')
134
+ print(f'Hamming clusters for {sample} on {cat}\nThreshold: {distance_threshold}\nNumber clusters: {cluster_count}\nNumber reads: {n_reads}\nFraction unique: {fraction_unique}')
@@ -1,12 +1,17 @@
1
1
  ## min_non_diagonal
2
- import numpy as np
3
2
 
4
3
  def min_non_diagonal(matrix):
5
4
  """
6
- Takes a matrix and returns the smallest value from each row with the diagonal masked
7
- Input: A data matrix
8
- Output: A list of minimum values from each row of the matrix
5
+ Takes a matrix and returns the smallest value from each row with the diagonal masked.
6
+
7
+ Parameters:
8
+ matrix (ndarray): A 2D ndarray.
9
+
10
+ Returns:
11
+ min_values (list): A list of minimum values from each row of the matrix
9
12
  """
13
+ import numpy as np
14
+
10
15
  n = matrix.shape[0]
11
16
  min_values = []
12
17
  for i in range(n):
@@ -0,0 +1,125 @@
1
+ # recipes
2
+
3
+ def recipe_1_Kissiov_and_McKenna_2025(adata, sample_sheet_path, output_directory, mapping_key_column='Sample', reference_column = 'Reference', sample_names_col='Sample_names', invert=False):
4
+ """
5
+ The first part of the preprocessing workflow applied to the smf.inform.pod_to_adata() output derived from Kissiov_and_McKenna_2025.
6
+
7
+ Performs the following tasks:
8
+ 1) Loads a sample CSV to append metadata mappings to the adata object.
9
+ 2) Appends a boolean indicating whether each position in var_names is within a given reference.
10
+ 3) Appends the cytosine context to each position from each reference.
11
+ 4) Calculate read level methylation statistics.
12
+ 5) Optionally inverts the adata to flip the position coordinate orientation.
13
+ 6) Calculates read length statistics (start position, end position, read length)
14
+ 7) Returns a dictionary to pass the variable namespace to the parent scope.
15
+
16
+ Parameters:
17
+ adata (AnnData): The AnnData object to use as input.
18
+ sample_sheet_path (str): String representing the path to the sample sheet csv containing the sample metadata.
19
+ output_directory (str): String representing the path to the output directory for plots.
20
+ mapping_key_column (str): The column name to use as the mapping keys for applying the sample sheet metadata.
21
+ reference_column (str): The name of the reference column to use.
22
+ sample_names_col (str): The name of the sample name column to use.
23
+ invert (bool): Whether to invert the positional coordinates of the adata object.
24
+
25
+ Returns:
26
+ variables (dict): A dictionary of variables to append to the parent scope.
27
+ """
28
+ import anndata as ad
29
+ import pandas as pd
30
+ import numpy as np
31
+ from .load_sample_sheet import load_sample_sheet
32
+ from .calculate_coverage import calculate_coverage
33
+ from .append_C_context import append_C_context
34
+ from .calculate_converted_read_methylation_stats import calculate_converted_read_methylation_stats
35
+ from .invert_adata import invert_adata
36
+ from .calculate_read_length_stats import calculate_read_length_stats
37
+
38
+ # Clean up some of the Reference metadata and save variable names that point to sets of values in the column.
39
+ adata.obs[reference_column] = adata.obs[reference_column].astype('category')
40
+ references = adata.obs[reference_column].cat.categories
41
+ split_references = [(reference, reference.split('_')[0][1:]) for reference in references]
42
+ reference_mapping = {k: v for k, v in split_references}
43
+ adata.obs[f'{reference_column}_short'] = adata.obs[reference_column].map(reference_mapping)
44
+ short_references = set(adata.obs[f'{reference_column}_short'])
45
+ binary_layers = adata.layers.keys()
46
+
47
+ # load sample sheet metadata
48
+ load_sample_sheet(adata, sample_sheet_path, mapping_key_column)
49
+
50
+ # hold sample names set
51
+ adata.obs[sample_names_col] = adata.obs[sample_names_col].astype('category')
52
+ sample_names = adata.obs[sample_names_col].cat.categories
53
+
54
+ # Add position level metadata
55
+ calculate_coverage(adata, obs_column=reference_column)
56
+ adata.var['SNP_position'] = (adata.var[f'N_{reference_column}_with_position'] > 0) & (adata.var[f'N_{reference_column}_with_position'] < len(references)).astype(bool)
57
+
58
+ # Append cytosine context to the reference positions based on the conversion strand.
59
+ append_C_context(adata, obs_column=reference_column, use_consensus=False)
60
+
61
+ # Calculate read level methylation statistics. Assess if GpC methylation level is above other_C methylation level as a QC.
62
+ calculate_converted_read_methylation_stats(adata, reference_column, sample_names_col, output_directory, show_methylation_histogram=False, save_methylation_histogram=False)
63
+
64
+ # Invert the adata object (ie flip the strand orientation for visualization)
65
+ if invert:
66
+ invert_adata(adata)
67
+ else:
68
+ pass
69
+
70
+ # Calculate read length statistics, with options to display or save the read length histograms
71
+ upper_bound, lower_bound = calculate_read_length_stats(adata, reference_column, sample_names_col, output_directory, show_read_length_histogram=False, save_read_length_histogram=False)
72
+
73
+ variables = {
74
+ "short_references": short_references,
75
+ "binary_layers": binary_layers,
76
+ "sample_names": sample_names,
77
+ "upper_bound": upper_bound,
78
+ "lower_bound": lower_bound,
79
+ "references": references
80
+ }
81
+ return variables
82
+
83
+ def recipe_2_Kissiov_and_McKenna_2025(adata, output_directory, binary_layers, hamming_distance_thresholds={}, reference_column = 'Reference', sample_names_col='Sample_names'):
84
+ """
85
+ The second part of the preprocessing workflow applied to the adata that has already been preprocessed by recipe_1_Kissiov_and_McKenna_2025.
86
+
87
+ Performs the following tasks:
88
+ 1) Adds new layers containing NaN replaced variants of adata.X (fill_closest, nan0_0minus1, nan1_12).
89
+ 2) Marks putative PCR duplicates using pairwise hamming distance metrics.
90
+ 3) Performs a complexity analysis of the library based on the PCR duplicate detection rate.
91
+ 4) Removes PCR duplicates from the adata.
92
+ 5) Returns two adata object: one for the filtered adata and one for the duplicate adata.
93
+
94
+ Parameters:
95
+ adata (AnnData): The AnnData object to use as input.
96
+ output_directory (str): String representing the path to the output directory for plots.
97
+ binary_layers (list): A list of layers to used for the binary encoding of read sequences. Used for duplicate detection.
98
+ hamming_distance_thresholds (dict): A dictionary keyed by obs_column categories that points to a float corresponding to the distance threshold to apply. Default is an empty dict.
99
+ reference_column (str): The name of the reference column to use.
100
+ sample_names_col (str): The name of the sample name column to use.
101
+
102
+ Returns:
103
+ filtered_adata (AnnData): An AnnData object containing the filtered reads
104
+ duplicates (AnnData): An AnnData object containing the duplicate reads
105
+ """
106
+ import anndata as ad
107
+ import pandas as pd
108
+ import numpy as np
109
+ from .clean_NaN import clean_NaN
110
+ from .mark_duplicates import mark_duplicates
111
+ from .calculate_complexity import calculate_complexity
112
+ from .remove_duplicates import remove_duplicates
113
+
114
+ # NaN replacement strategies stored in additional layers. Having layer=None uses adata.X
115
+ clean_NaN(adata, layer=None)
116
+
117
+ # Duplicate detection using pairwise hamming distance across reads
118
+ mark_duplicates(adata, binary_layers, obs_column=reference_column, sample_col=sample_names_col, hamming_distance_thresholds=hamming_distance_thresholds)
119
+
120
+ # Complexity analysis using the marked duplicates and the lander-watermann algorithm
121
+ calculate_complexity(adata, output_directory, obs_column=reference_column, sample_col=sample_names_col, plot=True, save_plot=False)
122
+
123
+ # Remove duplicate reads and store the duplicate reads in a new AnnData object named duplicates.
124
+ filtered_adata, duplicates = remove_duplicates(adata)
125
+ return filtered_adata, duplicates
@@ -1,12 +1,21 @@
1
1
  # remove_duplicates
2
- import anndata as ad
3
2
 
4
3
  def remove_duplicates(adata):
5
4
  """
6
- Input: adata object with marked duplicates
7
- Output: Remove duplicates from the adata object
5
+ Remove duplicates from the adata object
6
+
7
+ Parameters:
8
+ adata (Anndata): An adata object.
9
+
10
+ Returns:
11
+ filtered_adata (AnnData): An AnnData object of the filtered reads
12
+ duplicates (AnnData): An AnnData object of the duplicate reads
8
13
  """
14
+ import anndata as ad
15
+
9
16
  initial_size = adata.shape[0]
10
- adata = adata[adata.obs['Unique_in_final_read_set'] == True].copy()
11
- final_size = adata.shape[0]
12
- print(f'Removed {initial_size-final_size} reads from the dataset')
17
+ filtered_adata = adata[adata.obs['Unique_in_final_read_set'] == True].copy()
18
+ final_size = filtered_adata.shape[0]
19
+ print(f'Removed {initial_size-final_size} reads from the dataset')
20
+ duplicates = adata[adata.obs['Unique_in_final_read_set'] == False].copy()
21
+ return filtered_adata, duplicates
smftools/readwrite.py CHANGED
@@ -1,27 +1,12 @@
1
1
  ## readwrite ##
2
2
 
3
- # Basic I/O
4
- import os
5
- # Datetime
6
- from datetime import datetime
7
- # Data structures and basic operations
8
- import math
9
- import numpy as np
10
- import pandas as pd
11
- import anndata as ad
12
- import scipy.sparse as sp
13
-
14
- # Runtime warnings
15
- import warnings
16
- warnings.filterwarnings('ignore', category=UserWarning, module='anndata')
17
- warnings.filterwarnings('ignore', category=FutureWarning, module='anndata')
18
-
19
3
  ######################################################################################################
20
4
  ## Datetime functionality
21
5
  def date_string():
22
6
  """
23
7
  Each time this is called, it returns the current date string
24
8
  """
9
+ from datetime import datetime
25
10
  current_date = datetime.now()
26
11
  date_string = current_date.strftime("%Y%m%d")
27
12
  date_string = date_string[2:]
@@ -31,6 +16,7 @@ def time_string():
31
16
  """
32
17
  Each time this is called, it returns the current time string
33
18
  """
19
+ from datetime import datetime
34
20
  current_time = datetime.now()
35
21
  return current_time.strftime("%H:%M:%S")
36
22
  ######################################################################################################
@@ -42,6 +28,9 @@ def adata_to_df(adata, layer=None):
42
28
  Input: An adata object with a specified layer.
43
29
  Output: A dataframe for the specific layer.
44
30
  """
31
+ import pandas as pd
32
+ import anndata as ad
33
+
45
34
  # Extract the data matrix from the given layer
46
35
  if layer:
47
36
  data_matrix = adata.layers[layer]
@@ -60,6 +49,7 @@ def save_matrix(matrix, save_name):
60
49
  Input: A numpy matrix and a save_name
61
50
  Output: A txt file representation of the data matrix
62
51
  """
52
+ import numpy as np
63
53
  np.savetxt(f'{save_name}.txt', matrix)
64
54
 
65
55
  def concatenate_h5ads(output_file, file_suffix='h5ad.gz', delete_inputs=True):
@@ -67,6 +57,13 @@ def concatenate_h5ads(output_file, file_suffix='h5ad.gz', delete_inputs=True):
67
57
  Concatenate all h5ad files in a directory and delete them after the final adata is written out.
68
58
  Input: an output file path relative to the directory in which the function is called
69
59
  """
60
+ import os
61
+ import anndata as ad
62
+ # Runtime warnings
63
+ import warnings
64
+ warnings.filterwarnings('ignore', category=UserWarning, module='anndata')
65
+ warnings.filterwarnings('ignore', category=FutureWarning, module='anndata')
66
+
70
67
  # List all files in the directory
71
68
  files = os.listdir(os.getcwd())
72
69
  # get current working directory
@@ -0,0 +1 @@
1
+ # apply_HMM
File without changes
@@ -0,0 +1 @@
1
+ # read_HMM
@@ -0,0 +1,32 @@
1
+ # subset_adata
2
+
3
+ def subset_adata(adata, obs_columns):
4
+ """
5
+ Subsets an AnnData object based on categorical values in specified `.obs` columns.
6
+
7
+ Parameters:
8
+ adata (AnnData): The AnnData object to subset.
9
+ obs_columns (list of str): List of `.obs` column names to subset by. The order matters.
10
+
11
+ Returns:
12
+ dict: A dictionary where keys are tuples of category values and values are corresponding AnnData subsets.
13
+ """
14
+
15
+ def subset_recursive(adata_subset, columns):
16
+ if not columns:
17
+ return {(): adata_subset}
18
+
19
+ current_column = columns[0]
20
+ categories = adata_subset.obs[current_column].cat.categories
21
+
22
+ subsets = {}
23
+ for cat in categories:
24
+ subset = adata_subset[adata_subset.obs[current_column] == cat]
25
+ subsets.update(subset_recursive(subset, columns[1:]))
26
+
27
+ return subsets
28
+
29
+ # Start the recursive subset process
30
+ subsets_dict = subset_recursive(adata, obs_columns)
31
+
32
+ return subsets_dict
@@ -0,0 +1,43 @@
1
+ # train_HMM
2
+
3
+ def train_HMM(adata, model_name='trained_HMM', save_hmm=False):
4
+ """
5
+
6
+ Parameters:
7
+ adata (AnnData): Input AnnData object
8
+ model_name (str): Name of the model
9
+ save_hmm (bool): Whether to save the model
10
+
11
+ """
12
+ import numpy as np
13
+ import anndata as ad
14
+ from pomegranate.distributions import Categorical
15
+ from pomegranate.hmm import DenseHMM
16
+
17
+ bound = Categorical([[0.95, 0.05]])
18
+ unbound = Categorical([[0.05, 0.95]])
19
+
20
+ edges = [[0.9, 0.1], [0.1, 0.9]]
21
+ starts = [0.5, 0.5]
22
+ ends = [0.5, 0.5]
23
+
24
+ model = DenseHMM([bound, unbound], edges=edges, starts=starts, ends=ends, max_iter=5, verbose=True)
25
+
26
+ # define training sets and labels
27
+ # Determine the number of reads to sample
28
+ n_sample = round(0.7 * adata.X.shape[0])
29
+ # Generate random indices
30
+ np.random.seed(0)
31
+ random_indices = np.random.choice(adata.shape[0], size=n_sample, replace=False)
32
+ # Subset the AnnData object using the random indices
33
+ training_adata_subsampled = adata[random_indices, :]
34
+ training_sequences = training_adata_subsampled.X
35
+
36
+ # Train the HMM without labeled data
37
+ model.fit(training_sequences, algorithm='baum-welch')
38
+
39
+ if save_hmm:
40
+ # Save the model to a file
41
+ model_json = model.to_json()
42
+ with open(f'{model_name}.json', 'w') as f:
43
+ f.write(model_json)
@@ -0,0 +1,94 @@
1
+ Metadata-Version: 2.3
2
+ Name: smftools
3
+ Version: 0.1.3
4
+ Summary: Single Molecule Footprinting Analysis in Python.
5
+ Project-URL: Source, https://github.com/jkmckenna/smftools
6
+ Project-URL: Documentation, https://smftools.readthedocs.io/
7
+ Author: Joseph McKenna
8
+ Maintainer-email: Joseph McKenna <jkmckenna@berkeley.edu>
9
+ License-Expression: MIT
10
+ License-File: LICENSE
11
+ Keywords: anndata,chromatin-accessibility,machine-learning,nanopore,protein-dna-binding,single-locus,single-molecule-footprinting
12
+ Classifier: Development Status :: 2 - Pre-Alpha
13
+ Classifier: Environment :: Console
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Intended Audience :: Science/Research
16
+ Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Natural Language :: English
18
+ Classifier: Operating System :: MacOS :: MacOS X
19
+ Classifier: Programming Language :: Python :: 3
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
25
+ Classifier: Topic :: Scientific/Engineering :: Visualization
26
+ Requires-Python: >=3.9
27
+ Requires-Dist: anndata>=0.10.0
28
+ Requires-Dist: biopython>=1.79
29
+ Requires-Dist: cython>=0.29.28
30
+ Requires-Dist: networkx>=3.2
31
+ Requires-Dist: numpy<2,>=1.22.0
32
+ Requires-Dist: pandas>=1.4.2
33
+ Requires-Dist: pod5>=0.1.21
34
+ Requires-Dist: pomegranate>1.0.0
35
+ Requires-Dist: pyfaidx>=0.8.0
36
+ Requires-Dist: pysam>=0.19.1
37
+ Requires-Dist: scanpy>=1.9
38
+ Requires-Dist: scikit-learn>=1.0.2
39
+ Requires-Dist: scipy>=1.7.3
40
+ Requires-Dist: seaborn>=0.11
41
+ Requires-Dist: torch>=1.9.0
42
+ Requires-Dist: tqdm
43
+ Provides-Extra: docs
44
+ Requires-Dist: ipython>=7.20; extra == 'docs'
45
+ Requires-Dist: matplotlib!=3.6.1; extra == 'docs'
46
+ Requires-Dist: myst-nb>=1; extra == 'docs'
47
+ Requires-Dist: myst-parser>=2; extra == 'docs'
48
+ Requires-Dist: nbsphinx>=0.9; extra == 'docs'
49
+ Requires-Dist: readthedocs-sphinx-search; extra == 'docs'
50
+ Requires-Dist: setuptools; extra == 'docs'
51
+ Requires-Dist: sphinx-autodoc-typehints>=1.25.2; extra == 'docs'
52
+ Requires-Dist: sphinx-book-theme>=1.1.0; extra == 'docs'
53
+ Requires-Dist: sphinx-copybutton; extra == 'docs'
54
+ Requires-Dist: sphinx-design; extra == 'docs'
55
+ Requires-Dist: sphinx>=7; extra == 'docs'
56
+ Requires-Dist: sphinxcontrib-bibtex; extra == 'docs'
57
+ Requires-Dist: sphinxext-opengraph; extra == 'docs'
58
+ Provides-Extra: tests
59
+ Requires-Dist: pytest; extra == 'tests'
60
+ Requires-Dist: pytest-cov; extra == 'tests'
61
+ Description-Content-Type: text/markdown
62
+
63
+ [![PyPI](https://img.shields.io/pypi/v/smftools.svg)](https://pypi.org/project/smftools)
64
+ [![Docs](https://readthedocs.org/projects/smftools/badge/?version=latest)](https://smftools.readthedocs.io/en/latest/?badge=latest)
65
+
66
+ # smftools
67
+ A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, analysis, and visualization.
68
+
69
+ ## Philosophy
70
+ While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to at least 1 million X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
71
+
72
+ ## Dependencies
73
+ The following CLI tools need to be installed and configured before using the informatics (smftools.inform) module of smftools:
74
+ 1) [Dorado](https://github.com/nanoporetech/dorado) -> For standard/modified basecalling and alignment. Can be attained by downloading and configuring nanopore MinKnow software.
75
+ 2) [Samtools](https://github.com/samtools/samtools) -> For working with SAM/BAM files
76
+ 3) [Minimap2](https://github.com/lh3/minimap2) -> The aligner used by Dorado
77
+ 4) [Modkit](https://github.com/nanoporetech/modkit) -> Extracting summary statistics and read level methylation calls from modified BAM files
78
+ 5) [Bedtools](https://github.com/arq5x/bedtools2) -> For generating Bedgraphs from BAM alignment files.
79
+ 6) [BedGraphToBigWig](https://genome.ucsc.edu/goldenPath/help/bigWig.html) -> For converting BedGraphs to BigWig files for IGV sessions.
80
+
81
+ ## Modules
82
+ ### Informatics: Processes raw Nanopore/Illumina data from SMF experiments into an AnnData object.
83
+ ![](docs/source/_static/smftools_informatics_diagram.png)
84
+ ### Preprocessing: Appends QC metrics to the AnnData object and perfroms filtering.
85
+ ![](docs/source/_static/smftools_preprocessing_diagram.png)
86
+ - Tools: Appends various analyses to the AnnData object.
87
+ - Plotting: Visualization of analyses stored within the AnnData object.
88
+
89
+ ## Announcements
90
+ ### 09/09/24 - The pre-alpha phase package ([smftools-0.1.1](https://pypi.org/project/smftools/))
91
+ The informatics module has been bumped to alpha-phase status. This module can deal with POD5s and unaligned BAMS from nanopore conversion and direct SMF experiments, as well as FASTQs from Illumina conversion SMF experiments. Primary output from this module is an AnnData object containing all relevant SMF data, which is compatible with all downstream smftools modules. The other modules are still in pre-alpha phase. Preprocessing, Tools, and Plotting modules should be promoted to alpha-phase within the next month or so.
92
+
93
+ ### 08/30/24 - The pre-alpha phase package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
94
+ Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for standard use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!