smftools 0.1.0__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. smftools/__init__.py +0 -2
  2. smftools/_settings.py +3 -2
  3. smftools/_version.py +1 -0
  4. smftools/datasets/F1_sample_sheet.csv +5 -0
  5. smftools/datasets/datasets.py +14 -11
  6. smftools/informatics/__init__.py +10 -7
  7. smftools/informatics/archived/bam_conversion.py +59 -0
  8. smftools/informatics/archived/bam_direct.py +63 -0
  9. smftools/informatics/archived/basecalls_to_adata.py +71 -0
  10. smftools/informatics/conversion_smf.py +79 -0
  11. smftools/informatics/direct_smf.py +89 -0
  12. smftools/informatics/fast5_to_pod5.py +21 -0
  13. smftools/informatics/helpers/LoadExperimentConfig.py +74 -0
  14. smftools/informatics/helpers/__init__.py +22 -4
  15. smftools/informatics/helpers/align_and_sort_BAM.py +48 -0
  16. smftools/informatics/helpers/aligned_BAM_to_bed.py +73 -0
  17. smftools/informatics/helpers/bed_to_bigwig.py +39 -0
  18. smftools/informatics/helpers/binarize_converted_base_identities.py +11 -4
  19. smftools/informatics/helpers/canoncall.py +14 -1
  20. smftools/informatics/helpers/complement_base_list.py +21 -0
  21. smftools/informatics/helpers/concatenate_fastqs_to_bam.py +54 -0
  22. smftools/informatics/helpers/converted_BAM_to_adata.py +183 -97
  23. smftools/informatics/helpers/count_aligned_reads.py +25 -14
  24. smftools/informatics/helpers/extract_base_identities.py +44 -23
  25. smftools/informatics/helpers/extract_mods.py +17 -5
  26. smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
  27. smftools/informatics/helpers/find_conversion_sites.py +24 -16
  28. smftools/informatics/helpers/generate_converted_FASTA.py +60 -21
  29. smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
  30. smftools/informatics/helpers/get_native_references.py +10 -7
  31. smftools/informatics/helpers/index_fasta.py +12 -0
  32. smftools/informatics/helpers/make_dirs.py +9 -3
  33. smftools/informatics/helpers/make_modbed.py +10 -4
  34. smftools/informatics/helpers/modQC.py +10 -2
  35. smftools/informatics/helpers/modcall.py +16 -2
  36. smftools/informatics/helpers/modkit_extract_to_adata.py +486 -323
  37. smftools/informatics/helpers/ohe_batching.py +52 -0
  38. smftools/informatics/helpers/one_hot_encode.py +15 -8
  39. smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +52 -0
  40. smftools/informatics/helpers/separate_bam_by_bc.py +20 -5
  41. smftools/informatics/helpers/split_and_index_BAM.py +31 -11
  42. smftools/informatics/load_adata.py +127 -0
  43. smftools/informatics/readwrite.py +13 -16
  44. smftools/informatics/subsample_fasta_from_bed.py +47 -0
  45. smftools/informatics/subsample_pod5.py +104 -0
  46. smftools/preprocessing/__init__.py +6 -7
  47. smftools/preprocessing/append_C_context.py +52 -22
  48. smftools/preprocessing/binarize_on_Youden.py +8 -4
  49. smftools/preprocessing/binary_layers_to_ohe.py +9 -4
  50. smftools/preprocessing/calculate_complexity.py +26 -14
  51. smftools/preprocessing/calculate_consensus.py +47 -0
  52. smftools/preprocessing/calculate_converted_read_methylation_stats.py +69 -11
  53. smftools/preprocessing/calculate_coverage.py +14 -8
  54. smftools/preprocessing/calculate_pairwise_hamming_distances.py +11 -6
  55. smftools/preprocessing/calculate_position_Youden.py +21 -12
  56. smftools/preprocessing/calculate_read_length_stats.py +67 -8
  57. smftools/preprocessing/clean_NaN.py +13 -6
  58. smftools/preprocessing/filter_converted_reads_on_methylation.py +15 -6
  59. smftools/preprocessing/filter_reads_on_length.py +16 -6
  60. smftools/preprocessing/invert_adata.py +10 -5
  61. smftools/preprocessing/load_sample_sheet.py +24 -0
  62. smftools/preprocessing/make_dirs.py +21 -0
  63. smftools/preprocessing/mark_duplicates.py +54 -30
  64. smftools/preprocessing/min_non_diagonal.py +9 -4
  65. smftools/preprocessing/recipes.py +125 -0
  66. smftools/preprocessing/remove_duplicates.py +15 -6
  67. smftools/readwrite.py +13 -16
  68. smftools/tools/apply_HMM.py +1 -0
  69. smftools/tools/cluster.py +0 -0
  70. smftools/tools/read_HMM.py +1 -0
  71. smftools/tools/subset_adata.py +32 -0
  72. smftools/tools/train_HMM.py +43 -0
  73. smftools-0.1.3.dist-info/METADATA +94 -0
  74. smftools-0.1.3.dist-info/RECORD +84 -0
  75. smftools/informatics/helpers/align_BAM.py +0 -49
  76. smftools/informatics/helpers/load_experiment_config.py +0 -17
  77. smftools/informatics/pod5_conversion.py +0 -26
  78. smftools/informatics/pod5_direct.py +0 -29
  79. smftools/informatics/pod5_to_adata.py +0 -17
  80. smftools-0.1.0.dist-info/METADATA +0 -75
  81. smftools-0.1.0.dist-info/RECORD +0 -58
  82. /smftools/informatics/helpers/{informatics.py → archived/informatics.py} +0 -0
  83. /smftools/informatics/helpers/{load_adata.py → archived/load_adata.py} +0 -0
  84. /smftools/preprocessing/{preprocessing.py → archives/preprocessing.py} +0 -0
  85. {smftools-0.1.0.dist-info → smftools-0.1.3.dist-info}/WHEEL +0 -0
  86. {smftools-0.1.0.dist-info → smftools-0.1.3.dist-info}/licenses/LICENSE +0 -0
smftools/__init__.py CHANGED
@@ -3,7 +3,6 @@
3
3
  import logging
4
4
  import warnings
5
5
 
6
- from anndata import AnnData
7
6
  from . import informatics as inform
8
7
  from . import preprocessing as pp
9
8
  from . import tools as tl
@@ -17,7 +16,6 @@ package_name = "smftools"
17
16
  __version__ = version(package_name)
18
17
 
19
18
  __all__ = [
20
- "AnnData",
21
19
  "inform",
22
20
  "pp",
23
21
  "tl",
smftools/_settings.py CHANGED
@@ -1,4 +1,5 @@
1
1
  from pathlib import Path
2
+ from typing import Union
2
3
 
3
4
  class SMFConfig:
4
5
  """\
@@ -8,9 +9,9 @@ class SMFConfig:
8
9
  def __init__(
9
10
  self,
10
11
  *,
11
- datasetdir: Path | str = "./datasets/"
12
+ datasetdir: Union[Path, str] = "./datasets/"
12
13
  ):
13
- self.datasetdir = datasetdir
14
+ self._datasetdir = Path(datasetdir) if isinstance(datasetdir, str) else datasetdir
14
15
 
15
16
  @property
16
17
  def datasetdir(self) -> Path:
smftools/_version.py ADDED
@@ -0,0 +1 @@
1
+ __version__ = "0.1.3"
@@ -0,0 +1,5 @@
1
+ Sample,Sample_names,MTase,Time (min),Notes
2
+ barcode0001_sorted,Neither,M.CviPI,7.5,Cultured in IL2
3
+ barcode0002_sorted,BALBC,M.CviPI,7.5,Cultured in IL2
4
+ barcode0003_sorted,B6,M.CviPI,7.5,Cultured in IL2
5
+ barcode0004_sorted,Both,M.CviPI,7.5,Cultured in IL2
@@ -1,25 +1,28 @@
1
1
  ## datasets
2
2
 
3
- import numpy as np
4
- import pandas as pd
5
- import anndata as ad
6
- from pathlib import Path
7
-
8
- from .._settings import settings
9
-
10
- HERE = Path(__file__).parent
11
-
3
+ def import_HERE():
4
+ """
5
+ Imports HERE for loading datasets
6
+ """
7
+ from pathlib import Path
8
+ from .._settings import settings
9
+ HERE = Path(__file__).parent
10
+ return HERE
12
11
 
13
12
  def dCas9_kinetics():
14
13
  """
15
-
14
+ in vitro Hia5 dCas9 kinetics SMF dataset. Nanopore HAC m6A modcalls.
16
15
  """
16
+ import anndata as ad
17
+ HERE = import_HERE()
17
18
  filepath = HERE / "dCas9_m6A_invitro_kinetics.h5ad.gz"
18
19
  return ad.read_h5ad(filepath)
19
20
 
20
21
  def Kissiov_and_McKenna_2025():
21
22
  """
22
-
23
+ F1 Hybrid M.CviPI natural killer cell SMF. Nanopore canonical calls of NEB EMseq converted SMF gDNA.
23
24
  """
25
+ import anndata as ad
26
+ HERE = import_HERE()
24
27
  filepath = HERE / "F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz"
25
28
  return ad.read_h5ad(filepath)
@@ -1,11 +1,14 @@
1
1
  from . import helpers
2
- from .pod5_conversion import pod5_conversion
3
- from .pod5_direct import pod5_direct
4
- from .pod5_to_adata import pod5_to_adata
2
+ from .load_adata import load_adata
3
+ from .subsample_fasta_from_bed import subsample_fasta_from_bed
4
+ from .subsample_pod5 import subsample_pod5
5
+ from .fast5_to_pod5 import fast5_to_pod5
6
+
5
7
 
6
8
  __all__ = [
7
- "helpers",
8
- "pod5_conversion",
9
- "pod5_direct"
10
- "pod5_to_adata"
9
+ "load_adata",
10
+ "subsample_fasta_from_bed",
11
+ "subsample_pod5",
12
+ "fast5_to_pod5",
13
+ "helpers"
11
14
  ]
@@ -0,0 +1,59 @@
1
+ ## bam_conversion
2
+
3
+ def bam_conversion(fasta, output_directory, conversion_types, strands, basecalled_path, split_dir, mapping_threshold, experiment_name, bam_suffix):
4
+ """
5
+ Converts a BAM file from a nanopore conversion SMF experiment to an adata object.
6
+
7
+ Parameters:
8
+ fasta (str): File path to the reference genome to align to.
9
+ output_directory (str): A file path to the directory to output all the analyses.
10
+ conversion_type (list): A list of strings of the conversion types to use in the analysis.
11
+ strands (list): A list of converstion strands to use in the experiment.
12
+ basecalled_path (str): a string representing the file path to the experiment BAM or FASTQ file.
13
+ split_dir (str): A string representing the file path to the directory to split the BAMs into.
14
+ mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
15
+ experiment_name (str): A string to provide an experiment name to the output adata file.
16
+ bam_suffix (str): A suffix to add to the bam file.
17
+
18
+ Returns:
19
+ None
20
+ """
21
+ from .helpers import align_and_sort_BAM, converted_BAM_to_adata, generate_converted_FASTA, split_and_index_BAM, make_dirs
22
+ import os
23
+ input_basecalled_basename = os.path.basename(basecalled_path)
24
+ bam_basename = input_basecalled_basename.split(".")[0]
25
+ output_bam=f"{output_directory}/{bam_basename}"
26
+ aligned_BAM=f"{output_bam}_aligned"
27
+ aligned_sorted_BAM=f"{aligned_BAM}_sorted"
28
+
29
+ os.chdir(output_directory)
30
+
31
+ # 1) Convert FASTA file
32
+ fasta_basename = os.path.basename(fasta)
33
+ converted_FASTA_basename = fasta_basename.split('.fa')[0]+'_converted.fasta'
34
+ converted_FASTA = os.path.join(output_directory, converted_FASTA_basename)
35
+ if 'converted.fa' in fasta:
36
+ print(fasta + ' is already converted. Using existing converted FASTA.')
37
+ converted_FASTA = fasta
38
+ elif os.path.exists(converted_FASTA):
39
+ print(converted_FASTA + ' already exists. Using existing converted FASTA.')
40
+ else:
41
+ generate_converted_FASTA(fasta, conversion_types, strands, converted_FASTA)
42
+
43
+ # 2) Align the basecalled file to the converted reference FASTA and sort the bam on positional coordinates. Also make an index and a bed file of mapped reads
44
+ aligned_output = aligned_BAM + bam_suffix
45
+ sorted_output = aligned_sorted_BAM + bam_suffix
46
+ if os.path.exists(aligned_output) and os.path.exists(sorted_output):
47
+ print(sorted_output + ' already exists. Using existing aligned/sorted BAM.')
48
+ else:
49
+ align_and_sort_BAM(converted_FASTA, basecalled_path, bam_suffix, output_directory)
50
+
51
+ ### 3) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory###
52
+ if os.path.isdir(split_dir):
53
+ print(split_dir + ' already exists. Using existing aligned/sorted/split BAMs.')
54
+ else:
55
+ make_dirs([split_dir])
56
+ split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix, output_directory)
57
+
58
+ # 4) Take the converted BAM and load it into an adata object.
59
+ converted_BAM_to_adata(converted_FASTA, split_dir, mapping_threshold, experiment_name, conversion_types, bam_suffix)
@@ -0,0 +1,63 @@
1
+ ## bam_direct
2
+
3
+ def bam_direct(fasta, output_directory, mod_list, thresholds, bam_path, split_dir, mapping_threshold, experiment_name, bam_suffix, batch_size):
4
+ """
5
+ Converts a POD5 file from a nanopore native SMF experiment to an adata object.
6
+
7
+ Parameters:
8
+ fasta (str): File path to the reference genome to align to.
9
+ output_directory (str): A file path to the directory to output all the analyses.
10
+ mod_list (list): A list of strings of the modification types to use in the analysis.
11
+ thresholds (list): A list of floats to pass for call thresholds.
12
+ bam_path (str): a string representing the file path to the the BAM file.
13
+ split_dir (str): A string representing the file path to the directory to split the BAMs into.
14
+ mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
15
+ experiment_name (str): A string to provide an experiment name to the output adata file.
16
+ bam_suffix (str): A suffix to add to the bam file.
17
+ batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
18
+
19
+ Returns:
20
+ None
21
+ """
22
+ from .helpers import align_and_sort_BAM, extract_mods, make_modbed, modkit_extract_to_adata, modQC, split_and_index_BAM, make_dirs
23
+ import os
24
+ input_bam_base = os.path.basename(bam_path)
25
+ bam_basename = input_bam_base.split(bam_suffix)[0]
26
+ output_bam=f"{output_directory}/{bam_basename}"
27
+ aligned_BAM=f"{output_bam}_aligned"
28
+ aligned_sorted_BAM=f"{aligned_BAM}_sorted"
29
+ mod_bed_dir=f"{output_directory}/split_mod_beds"
30
+ mod_tsv_dir=f"{output_directory}/split_mod_tsvs"
31
+
32
+ aligned_output = aligned_BAM + bam_suffix
33
+ aligned_sorted_output = aligned_sorted_BAM + bam_suffix
34
+ mod_map = {'6mA': '6mA', '5mC_5hmC': '5mC'}
35
+ mods = [mod_map[mod] for mod in mod_list]
36
+
37
+ os.chdir(output_directory)
38
+
39
+ # 1) Align the BAM to the reference FASTA. Also make an index and a bed file of mapped reads
40
+ if os.path.exists(aligned_output) and os.path.exists(aligned_sorted_output):
41
+ print(aligned_sorted_output + ' already exists. Using existing aligned/sorted BAM.')
42
+ else:
43
+ align_and_sort_BAM(fasta, bam_path, bam_suffix, output_directory)
44
+ # 2) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory
45
+ if os.path.isdir(split_dir):
46
+ print(split_dir + ' already exists. Using existing aligned/sorted/split BAMs.')
47
+ else:
48
+ make_dirs([split_dir])
49
+ split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix, output_directory)
50
+ # 3) Using nanopore modkit to work with modified BAM files ###
51
+ if os.path.isdir(mod_bed_dir):
52
+ print(mod_bed_dir + ' already exists')
53
+ else:
54
+ make_dirs([mod_bed_dir])
55
+ modQC(aligned_sorted_output, thresholds) # get QC metrics for mod calls
56
+ make_modbed(aligned_sorted_output, thresholds, mod_bed_dir) # Generate bed files of position methylation summaries for every sample
57
+ if os.path.isdir(mod_tsv_dir):
58
+ print(mod_tsv_dir + ' already exists')
59
+ else:
60
+ make_dirs([mod_tsv_dir])
61
+ extract_mods(thresholds, mod_tsv_dir, split_dir, bam_suffix) # Extract methylations calls for split BAM files into split TSV files
62
+ #4 Load the modification data from TSVs into an adata object
63
+ modkit_extract_to_adata(fasta, split_dir, mapping_threshold, experiment_name, mods, batch_size, mod_tsv_dir)
@@ -0,0 +1,71 @@
1
+ ## basecalls_to_adata
2
+
3
+ def basecalls_to_adata(config_path):
4
+ """
5
+ High-level function to call for loading basecalled SMF data from a BAM file into an adata object. Also works with FASTQ for conversion SMF.
6
+
7
+ Parameters:
8
+ config_path (str): A string representing the file path to the experiment configuration csv file.
9
+
10
+ Returns:
11
+ None
12
+ """
13
+ from .helpers import LoadExperimentConfig, make_dirs
14
+ from .subsample_fasta_from_bed import subsample_fasta_from_bed
15
+ import os
16
+ import numpy as np
17
+ bam_suffix = '.bam' # If different, change from here.
18
+ split_dir = 'split_BAMs' # If different, change from here.
19
+ strands = ['bottom', 'top'] # If different, change from here. Having both listed generally doesn't slow things down too much.
20
+ conversions = ['unconverted'] # The name to use for the unconverted files. If different, change from here.
21
+
22
+ # Load experiment config parameters into global variables
23
+ experiment_config = LoadExperimentConfig(config_path)
24
+ var_dict = experiment_config.var_dict
25
+
26
+ # These below variables will point to the value np.nan if they are either empty in the experiment_config.csv or if the variable is fully omitted from the csv.
27
+ default_value = None
28
+
29
+ conversion_types = var_dict.get('conversion_types', default_value)
30
+ output_directory = var_dict.get('output_directory', default_value)
31
+ smf_modality = var_dict.get('smf_modality', default_value)
32
+ fasta = var_dict.get('fasta', default_value)
33
+ fasta_regions_of_interest = var_dict.get("fasta_regions_of_interest", default_value)
34
+ basecalled_path = var_dict.get('basecalled_path', default_value)
35
+ mapping_threshold = var_dict.get('mapping_threshold', default_value)
36
+ experiment_name = var_dict.get('experiment_name', default_value)
37
+ filter_threshold = var_dict.get('filter_threshold', default_value)
38
+ m6A_threshold = var_dict.get('m6A_threshold', default_value)
39
+ m5C_threshold = var_dict.get('m5C_threshold', default_value)
40
+ hm5C_threshold = var_dict.get('hm5C_threshold', default_value)
41
+ mod_list = var_dict.get('mod_list', default_value)
42
+ batch_size = var_dict.get('batch_size', default_value)
43
+ thresholds = [filter_threshold, m6A_threshold, m5C_threshold, hm5C_threshold]
44
+
45
+ split_path = os.path.join(output_directory, split_dir)
46
+
47
+ make_dirs([output_directory])
48
+ os.chdir(output_directory)
49
+
50
+ conversions += conversion_types
51
+
52
+ # If a bed file is passed, subsample the input FASTA on regions of interest and use the subsampled FASTA.
53
+ if fasta_regions_of_interest != None:
54
+ if '.bed' in fasta_regions_of_interest:
55
+ fasta_basename = os.path.basename(fasta)
56
+ bed_basename_minus_suffix = os.path.basename(fasta_regions_of_interest).split('.bed')[0]
57
+ output_FASTA = bed_basename_minus_suffix + '_' + fasta_basename
58
+ subsample_fasta_from_bed(fasta, fasta_regions_of_interest, output_directory, output_FASTA)
59
+ fasta = output_FASTA
60
+
61
+ if smf_modality == 'conversion':
62
+ from .bam_conversion import bam_conversion
63
+ bam_conversion(fasta, output_directory, conversions, strands, basecalled_path, split_path, mapping_threshold, experiment_name, bam_suffix)
64
+ elif smf_modality == 'direct':
65
+ if bam_suffix in basecalled_path:
66
+ from .bam_direct import bam_direct
67
+ bam_direct(fasta, output_directory, mod_list, thresholds, basecalled_path, split_path, mapping_threshold, experiment_name, bam_suffix, batch_size)
68
+ else:
69
+ print('basecalls_to_adata function only work with the direct modality when the input filetype is BAM and not FASTQ.')
70
+ else:
71
+ print("Error")
@@ -0,0 +1,79 @@
1
+ ## conversion_smf
2
+
3
+ def conversion_smf(fasta, output_directory, conversion_types, strands, model, input_data_path, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, basecall):
4
+ """
5
+ Processes sequencing data from a conversion SMF experiment to an adata object.
6
+
7
+ Parameters:
8
+ fasta (str): File path to the reference genome to align to.
9
+ output_directory (str): A file path to the directory to output all the analyses.
10
+ conversion_type (list): A list of strings of the conversion types to use in the analysis.
11
+ strands (list): A list of converstion strands to use in the experiment.
12
+ model (str): a string representing the file path to the dorado basecalling model.
13
+ input_data_path (str): a string representing the file path to the experiment directory/file containing sequencing data
14
+ split_dir (str): A string representing the file path to the directory to split the BAMs into.
15
+ barcode_kit (str): A string representing the barcoding kit used in the experiment.
16
+ mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
17
+ experiment_name (str): A string to provide an experiment name to the output adata file.
18
+ bam_suffix (str): A suffix to add to the bam file.
19
+ basecall (bool): Whether to go through basecalling or not.
20
+
21
+ Returns:
22
+ None
23
+ """
24
+ from .helpers import align_and_sort_BAM, canoncall, converted_BAM_to_adata, generate_converted_FASTA, get_chromosome_lengths, split_and_index_BAM, make_dirs
25
+ import os
26
+ if basecall:
27
+ model_basename = os.path.basename(model)
28
+ model_basename = model_basename.replace('.', '_')
29
+ bam=f"{output_directory}/{model_basename}_canonical_basecalls"
30
+ else:
31
+ bam_base=os.path.basename(input_data_path).split('.bam')[0]
32
+ bam=os.path.join(output_directory, bam_base)
33
+ aligned_BAM=f"{bam}_aligned"
34
+ aligned_sorted_BAM=f"{aligned_BAM}_sorted"
35
+
36
+ os.chdir(output_directory)
37
+
38
+ # 1) Convert FASTA file
39
+ fasta_basename = os.path.basename(fasta)
40
+ converted_FASTA_basename = fasta_basename.split('.fa')[0]+'_converted.fasta'
41
+ converted_FASTA = os.path.join(output_directory, converted_FASTA_basename)
42
+ if 'converted.fa' in fasta:
43
+ print(fasta + ' is already converted. Using existing converted FASTA.')
44
+ converted_FASTA = fasta
45
+ elif os.path.exists(converted_FASTA):
46
+ print(converted_FASTA + ' already exists. Using existing converted FASTA.')
47
+ else:
48
+ generate_converted_FASTA(fasta, conversion_types, strands, converted_FASTA)
49
+
50
+ # Make a FAI and .chrom.names file for the converted fasta
51
+ get_chromosome_lengths(converted_FASTA)
52
+
53
+ # 2) Basecall from the input POD5 to generate a singular output BAM
54
+ if basecall:
55
+ canoncall_output = bam + bam_suffix
56
+ if os.path.exists(canoncall_output):
57
+ print(canoncall_output + ' already exists. Using existing basecalled BAM.')
58
+ else:
59
+ canoncall(model, input_data_path, barcode_kit, bam, bam_suffix)
60
+ else:
61
+ canoncall_output = input_data_path
62
+
63
+ # 3) Align the BAM to the converted reference FASTA and sort the bam on positional coordinates. Also make an index and a bed file of mapped reads
64
+ aligned_output = aligned_BAM + bam_suffix
65
+ sorted_output = aligned_sorted_BAM + bam_suffix
66
+ if os.path.exists(aligned_output) and os.path.exists(sorted_output):
67
+ print(sorted_output + ' already exists. Using existing aligned/sorted BAM.')
68
+ else:
69
+ align_and_sort_BAM(converted_FASTA, canoncall_output, bam_suffix, output_directory)
70
+
71
+ ### 4) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory###
72
+ if os.path.isdir(split_dir):
73
+ print(split_dir + ' already exists. Using existing aligned/sorted/split BAMs.')
74
+ else:
75
+ make_dirs([split_dir])
76
+ split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix, output_directory, converted_FASTA)
77
+
78
+ # 5) Take the converted BAM and load it into an adata object.
79
+ converted_BAM_to_adata(converted_FASTA, split_dir, mapping_threshold, experiment_name, conversion_types, bam_suffix)
@@ -0,0 +1,89 @@
1
+ ## direct_smf
2
+
3
+ def direct_smf(fasta, output_directory, mod_list, model, thresholds, input_data_path, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size, basecall):
4
+ """
5
+ Processes sequencing data from a direct methylation detection Nanopore SMF experiment to an AnnData object.
6
+
7
+ Parameters:
8
+ fasta (str): File path to the reference genome to align to.
9
+ output_directory (str): A file path to the directory to output all the analyses.
10
+ mod_list (list): A list of strings of the modification types to use in the analysis.
11
+ model (str): a string representing the file path to the dorado basecalling model.
12
+ thresholds (list): A list of floats to pass for call thresholds.
13
+ input_data_path (str): a string representing the file path to the experiment directory containing the input sequencing files.
14
+ split_dir (str): A string representing the file path to the directory to split the BAMs into.
15
+ barcode_kit (str): A string representing the barcoding kit used in the experiment.
16
+ mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
17
+ experiment_name (str): A string to provide an experiment name to the output adata file.
18
+ bam_suffix (str): A suffix to add to the bam file.
19
+ batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
20
+ basecall (bool): Whether to basecall
21
+
22
+ Returns:
23
+ None
24
+ """
25
+ from .helpers import align_and_sort_BAM, extract_mods, get_chromosome_lengths, make_modbed, modcall, modkit_extract_to_adata, modQC, split_and_index_BAM, make_dirs
26
+ import os
27
+
28
+ if basecall:
29
+ model_basename = os.path.basename(model)
30
+ model_basename = model_basename.replace('.', '_')
31
+ mod_string = "_".join(mod_list)
32
+ bam=f"{output_directory}/{model_basename}_{mod_string}_calls"
33
+ else:
34
+ bam_base=os.path.basename(input_data_path).split('.bam')[0]
35
+ bam=os.path.join(output_directory, bam_base)
36
+ aligned_BAM=f"{bam}_aligned"
37
+ aligned_sorted_BAM=f"{aligned_BAM}_sorted"
38
+ mod_bed_dir=f"{output_directory}/split_mod_beds"
39
+ mod_tsv_dir=f"{output_directory}/split_mod_tsvs"
40
+
41
+ aligned_sorted_output = aligned_sorted_BAM + bam_suffix
42
+ mod_map = {'6mA': '6mA', '5mC_5hmC': '5mC'}
43
+ mods = [mod_map[mod] for mod in mod_list]
44
+
45
+ # Make a FAI and .chrom.names file for the fasta
46
+ get_chromosome_lengths(fasta)
47
+
48
+ os.chdir(output_directory)
49
+
50
+ # 1) Basecall using dorado
51
+ if basecall:
52
+ modcall_output = bam + bam_suffix
53
+ if os.path.exists(modcall_output):
54
+ print(modcall_output + ' already exists. Using existing basecalled BAM.')
55
+ else:
56
+ modcall(model, input_data_path, barcode_kit, mod_list, bam, bam_suffix)
57
+ else:
58
+ modcall_output = input_data_path
59
+
60
+ # 2) Align the BAM to the reference FASTA. Also make an index and a bed file of mapped reads
61
+ aligned_output = aligned_BAM + bam_suffix
62
+ sorted_output = aligned_sorted_BAM + bam_suffix
63
+ if os.path.exists(aligned_output) and os.path.exists(sorted_output):
64
+ print(sorted_output + ' already exists. Using existing aligned/sorted BAM.')
65
+ else:
66
+ align_and_sort_BAM(fasta, modcall_output, bam_suffix, output_directory)
67
+
68
+ # 3) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory
69
+ if os.path.isdir(split_dir):
70
+ print(split_dir + ' already exists. Using existing aligned/sorted/split BAMs.')
71
+ else:
72
+ make_dirs([split_dir])
73
+ split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix, output_directory, fasta)
74
+
75
+ # 4) Using nanopore modkit to work with modified BAM files ###
76
+ if os.path.isdir(mod_bed_dir):
77
+ print(mod_bed_dir + ' already exists')
78
+ else:
79
+ make_dirs([mod_bed_dir])
80
+ modQC(aligned_sorted_output, thresholds) # get QC metrics for mod calls
81
+ make_modbed(aligned_sorted_output, thresholds, mod_bed_dir) # Generate bed files of position methylation summaries for every sample
82
+ if os.path.isdir(mod_tsv_dir):
83
+ print(mod_tsv_dir + ' already exists')
84
+ else:
85
+ make_dirs([mod_tsv_dir])
86
+ extract_mods(thresholds, mod_tsv_dir, split_dir, bam_suffix) # Extract methylations calls for split BAM files into split TSV files
87
+
88
+ #5 Load the modification data from TSVs into an adata object
89
+ modkit_extract_to_adata(fasta, split_dir, mapping_threshold, experiment_name, mods, batch_size, mod_tsv_dir)
@@ -0,0 +1,21 @@
1
+ # fast5_to_pod5
2
+
3
+ def fast5_to_pod5(fast5_dir, output_pod5='FAST5s_to_POD5.pod5'):
4
+ """
5
+ Convert Nanopore FAST5 files to POD5 file
6
+
7
+ Parameters:
8
+ fast5_dir (str): String representing the file path to a directory containing all FAST5 files to convert into a single POD5 output.
9
+ output_pod5 (str): The name of the output POD5.
10
+
11
+ Returns:
12
+ None
13
+
14
+ """
15
+ import subprocess
16
+ from pathlib import Path
17
+
18
+ if Path(fast5_dir).is_file():
19
+ subprocess.run(["pod5", "convert", "fast5", fast5_dir, "--output", output_pod5])
20
+ elif Path(fast5_dir).is_dir():
21
+ subprocess.run(["pod5", "convert", "fast5", f".{fast5_dir}*.fast5", "--output", output_pod5])
@@ -0,0 +1,74 @@
1
+ ## LoadExperimentConfig
2
+
3
+ class LoadExperimentConfig:
4
+ """
5
+ Loads in the experiment configuration csv and saves global variables with experiment configuration parameters.
6
+ Parameters:
7
+ experiment_config (str): A string representing the file path to the experiment configuration csv file.
8
+
9
+ Attributes:
10
+ var_dict (dict): A dictionary containing experiment configuration parameters.
11
+
12
+ Example:
13
+ >>> import pandas as pd
14
+ >>> from io import StringIO
15
+ >>> csv_data = '''variable,value,type
16
+ ... mapping_threshold,0.05,float
17
+ ... batch_size,4,int
18
+ ... testing_bool,True,bool
19
+ ... strands,"[bottom, top]",list
20
+ ... split_dir,split_bams,string
21
+ ... pod5_dir,None,string
22
+ ... pod5_dir,,string
23
+ ... '''
24
+ >>> csv_file = StringIO(csv_data)
25
+ >>> df = pd.read_csv(csv_file)
26
+ >>> df.to_csv('test_config.csv', index=False)
27
+ >>> config_loader = LoadExperimentConfig('test_config.csv')
28
+ >>> config_loader.var_dict['mapping_threshold']
29
+ 0.05
30
+ >>> config_loader.var_dict['batch_size']
31
+ 4
32
+ >>> config_loader.var_dict['testing_bool']
33
+ True
34
+ >>> config_loader.var_dict['strands']
35
+ ['bottom', 'top']
36
+ >>> config_loader.var_dict['split_dir']
37
+ 'split_bams'
38
+ >>> config_loader.var_dict['pod5_dir'] is None
39
+ True
40
+ >>> config_loader.var_dict['pod5_dir'] is None
41
+ True
42
+ """
43
+ def __init__(self, experiment_config):
44
+ import pandas as pd
45
+ # Read the CSV into a pandas DataFrame
46
+ df = pd.read_csv(experiment_config)
47
+ # Initialize an empty dictionary to store variables
48
+ var_dict = {}
49
+ # Iterate through each row in the DataFrame
50
+ for _, row in df.iterrows():
51
+ var_name = str(row['variable'])
52
+ value = row['value']
53
+ dtype = row['type']
54
+ # Handle empty and None values
55
+ if pd.isna(value) or value in ['None', '']:
56
+ value = None
57
+ else:
58
+ # Handle different data types
59
+ if dtype == 'list':
60
+ # Convert the string representation of a list to an actual list
61
+ value = value.strip('()[]').replace(', ', ',').split(',')
62
+ elif dtype == 'int':
63
+ value = int(value)
64
+ elif dtype == 'float':
65
+ value = float(value)
66
+ elif dtype == 'bool':
67
+ value = value.lower() == 'true'
68
+ elif dtype == 'string':
69
+ value = str(value)
70
+ # Store the variable in the dictionary
71
+ var_dict[var_name] = value
72
+ # Save the dictionary as an attribute of the class
73
+ self.var_dict = var_dict
74
+
@@ -1,42 +1,60 @@
1
- from .align_BAM import align_BAM
1
+ from .align_and_sort_BAM import align_and_sort_BAM
2
+ from .aligned_BAM_to_bed import aligned_BAM_to_bed
3
+ from .bed_to_bigwig import bed_to_bigwig
2
4
  from .binarize_converted_base_identities import binarize_converted_base_identities
3
5
  from .canoncall import canoncall
6
+ from .complement_base_list import complement_base_list
4
7
  from .converted_BAM_to_adata import converted_BAM_to_adata
8
+ from .concatenate_fastqs_to_bam import concatenate_fastqs_to_bam
5
9
  from .count_aligned_reads import count_aligned_reads
6
10
  from .extract_base_identities import extract_base_identities
7
11
  from .extract_mods import extract_mods
12
+ from .extract_readnames_from_BAM import extract_readnames_from_BAM
8
13
  from .find_conversion_sites import find_conversion_sites
9
14
  from .generate_converted_FASTA import convert_FASTA_record, generate_converted_FASTA
15
+ from .get_chromosome_lengths import get_chromosome_lengths
10
16
  from .get_native_references import get_native_references
11
- from .load_experiment_config import load_experiment_config
17
+ from .index_fasta import index_fasta
18
+ from .LoadExperimentConfig import LoadExperimentConfig
12
19
  from .make_dirs import make_dirs
13
20
  from .make_modbed import make_modbed
14
21
  from .modcall import modcall
15
22
  from .modkit_extract_to_adata import modkit_extract_to_adata
16
23
  from .modQC import modQC
17
24
  from .one_hot_encode import one_hot_encode
25
+ from .ohe_batching import ohe_batching
26
+ from .plot_read_length_and_coverage_histograms import plot_read_length_and_coverage_histograms
18
27
  from .separate_bam_by_bc import separate_bam_by_bc
19
28
  from .split_and_index_BAM import split_and_index_BAM
20
29
 
21
30
  __all__ = [
22
- "align_BAM",
31
+ "align_and_sort_BAM",
32
+ "aligned_BAM_to_bed",
33
+ "bed_to_bigwig",
23
34
  "binarize_converted_base_identities",
24
35
  "canoncall",
36
+ "complement_base_list",
25
37
  "converted_BAM_to_adata",
38
+ "concatenate_fastqs_to_bam",
26
39
  "count_aligned_reads",
27
40
  "extract_base_identities",
28
41
  "extract_mods",
42
+ "extract_readnames_from_BAM",
29
43
  "find_conversion_sites",
30
44
  "convert_FASTA_record",
31
45
  "generate_converted_FASTA",
46
+ "get_chromosome_lengths",
32
47
  "get_native_references",
33
- "load_experiment_config",
48
+ "index_fasta",
49
+ "LoadExperimentConfig",
34
50
  "make_dirs",
35
51
  "make_modbed",
36
52
  "modcall",
37
53
  "modkit_extract_to_adata",
38
54
  "modQC",
39
55
  "one_hot_encode",
56
+ "ohe_batching",
57
+ "plot_read_length_and_coverage_histograms",
40
58
  "separate_bam_by_bc",
41
59
  "split_and_index_BAM"
42
60
  ]