sklearn-fluent 0.2__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sklearn_fluent/__init__.py +3 -1
- sklearn_fluent/main.py +17 -21
- {sklearn_fluent-0.2.dist-info → sklearn_fluent-0.4.1.dist-info}/METADATA +25 -21
- sklearn_fluent-0.4.1.dist-info/RECORD +6 -0
- {sklearn_fluent-0.2.dist-info → sklearn_fluent-0.4.1.dist-info}/WHEEL +1 -1
- sklearn_fluent-0.2.dist-info/RECORD +0 -6
- {sklearn_fluent-0.2.dist-info → sklearn_fluent-0.4.1.dist-info}/top_level.txt +0 -0
sklearn_fluent/__init__.py
CHANGED
sklearn_fluent/main.py
CHANGED
@@ -1,50 +1,46 @@
|
|
1
|
-
def
|
2
|
-
|
1
|
+
def req(xlist, ylist, linearreg):
|
3
2
|
from sklearn.linear_model import LinearRegression
|
4
3
|
import numpy as np
|
5
4
|
|
6
|
-
if linearreg==True:
|
7
|
-
if len(ylist) >50:
|
5
|
+
if linearreg == True:
|
6
|
+
if len(ylist) > 50:
|
8
7
|
from sklearn.model_selection import train_test_split
|
9
|
-
x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
|
8
|
+
x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
|
10
9
|
model = LinearRegression()
|
11
|
-
model.fit(x_train,y_train)
|
12
|
-
accuracy = round(model.score(x_test,y_test))
|
10
|
+
model.fit(x_train, y_train)
|
11
|
+
accuracy = round(model.score(x_test, y_test))
|
13
12
|
|
14
|
-
x_train = np.array(xlist).reshape(-1,1)
|
15
|
-
y_train = np.array(ylist).reshape(-1,1)
|
13
|
+
x_train = np.array(xlist).reshape(-1, 1)
|
14
|
+
y_train = np.array(ylist).reshape(-1, 1)
|
16
15
|
model = LinearRegression()
|
17
|
-
model.fit(x_train,y_train)
|
16
|
+
model.fit(x_train, y_train)
|
18
17
|
elif linearreg == False:
|
19
18
|
x_train = np.array(xlist)
|
20
19
|
y_train = np.array(ylist)
|
21
|
-
# print(x_train, y_train)
|
22
20
|
model = LinearRegression()
|
23
|
-
model.fit(x_train,y_train)
|
21
|
+
model.fit(x_train, y_train)
|
24
22
|
|
25
23
|
a = model.intercept_
|
26
24
|
b = model.coef_
|
27
25
|
letters = list('abcdefghijklmnopqrstuvwxyz')
|
28
26
|
reqletters = []
|
29
|
-
for i in range(0,len(b)):
|
27
|
+
for i in range(0, len(b)):
|
30
28
|
reqletters.append(letters[i])
|
31
29
|
newvars = []
|
32
30
|
for i in range(len(reqletters)):
|
33
31
|
try:
|
34
|
-
new = str(round(b[i],4))+reqletters[i]
|
32
|
+
new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
|
35
33
|
except:
|
36
|
-
new = str(round(float(b[0]),4))+reqletters[i]
|
34
|
+
new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
|
37
35
|
newvars.append(new)
|
38
36
|
try:
|
39
|
-
mainvar = round(a,4)
|
37
|
+
mainvar = round(a[0], 4) # Extract single element
|
40
38
|
except:
|
41
|
-
mainvar = round(float(a[0]),4)
|
39
|
+
mainvar = round(float(a[0]), 4)
|
42
40
|
newvars.append(mainvar)
|
43
|
-
last = " + ".join(list(map(str,newvars)))
|
41
|
+
last = " + ".join(list(map(str, newvars)))
|
44
42
|
|
45
43
|
try:
|
46
|
-
return f"function: {last}\naccuracy: {accuracy*100}%"
|
44
|
+
return f"function: {last}\naccuracy: {accuracy * 100}%"
|
47
45
|
except:
|
48
46
|
return f"function: {last}"
|
49
|
-
# return last
|
50
|
-
|
@@ -1,21 +1,25 @@
|
|
1
|
-
Metadata-Version: 2.
|
2
|
-
Name:
|
3
|
-
Version: 0.
|
4
|
-
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
-
|
6
|
-
Author:
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
Classifier:
|
12
|
-
Classifier:
|
13
|
-
Classifier:
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: sklearn_fluent
|
3
|
+
Version: 0.4.1
|
4
|
+
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
+
Author: YusiferZendric (Aditya Singh)
|
6
|
+
Author-email: <yzendric@gmail.com>
|
7
|
+
Keywords: python,sklearn,mathematical functions,functions,linear regressions
|
8
|
+
Classifier: Development Status :: 1 - Planning
|
9
|
+
Classifier: Intended Audience :: Developers
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Operating System :: Unix
|
12
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
13
|
+
Classifier: Operating System :: Microsoft :: Windows
|
14
|
+
Description-Content-Type: text/markdown
|
15
|
+
Requires-Dist: scikit-learn
|
16
|
+
Dynamic: author
|
17
|
+
Dynamic: author-email
|
18
|
+
Dynamic: classifier
|
19
|
+
Dynamic: description
|
20
|
+
Dynamic: description-content-type
|
21
|
+
Dynamic: keywords
|
22
|
+
Dynamic: requires-dist
|
23
|
+
Dynamic: summary
|
24
|
+
|
25
|
+
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
@@ -0,0 +1,6 @@
|
|
1
|
+
sklearn_fluent/__init__.py,sha256=_tBxgz2zPN6jg4RCDM51m2dIKTgxaMQSzrWfBXhuIio,60
|
2
|
+
sklearn_fluent/main.py,sha256=SmTcBV6vG-noI0Hxc3pCtJGWj3eGTUXRSx86Rls9YzY,1633
|
3
|
+
sklearn_fluent-0.4.1.dist-info/METADATA,sha256=EYju593j_MCYI9l-QF7JfokQ6ozS8Cvr7K0aQtkcAaI,938
|
4
|
+
sklearn_fluent-0.4.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
5
|
+
sklearn_fluent-0.4.1.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
|
6
|
+
sklearn_fluent-0.4.1.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
sklearn_fluent/__init__.py,sha256=zF78HVRV1PWsZt4QIiP6wDpO4AnwNicSFrf-kIcZl3A,43
|
2
|
-
sklearn_fluent/main.py,sha256=asPGyaslbegVygktSF_7gRDOZvIEjl7lN8YY4p4FTL8,1577
|
3
|
-
sklearn_fluent-0.2.dist-info/METADATA,sha256=QP_tW-t4pPL2EXoMAtGB1-_B1xdChHjzK5Uo6tf-MRU,790
|
4
|
-
sklearn_fluent-0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
5
|
-
sklearn_fluent-0.2.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
|
6
|
-
sklearn_fluent-0.2.dist-info/RECORD,,
|
File without changes
|