sklearn-fluent 0.2__py3-none-any.whl → 0.4.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1 +1,3 @@
1
- from sklearn_fluent.main import fluent_it
1
+ from .main import req as fluent_it
2
+
3
+ __all__ = ['fluent_it']
sklearn_fluent/main.py CHANGED
@@ -1,50 +1,46 @@
1
- def fluent_it(xlist, ylist,linearreg):
2
-
1
+ def req(xlist, ylist, linearreg):
3
2
  from sklearn.linear_model import LinearRegression
4
3
  import numpy as np
5
4
 
6
- if linearreg==True:
7
- if len(ylist) >50:
5
+ if linearreg == True:
6
+ if len(ylist) > 50:
8
7
  from sklearn.model_selection import train_test_split
9
- x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
8
+ x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
10
9
  model = LinearRegression()
11
- model.fit(x_train,y_train)
12
- accuracy = round(model.score(x_test,y_test))
10
+ model.fit(x_train, y_train)
11
+ accuracy = round(model.score(x_test, y_test))
13
12
 
14
- x_train = np.array(xlist).reshape(-1,1)
15
- y_train = np.array(ylist).reshape(-1,1)
13
+ x_train = np.array(xlist).reshape(-1, 1)
14
+ y_train = np.array(ylist).reshape(-1, 1)
16
15
  model = LinearRegression()
17
- model.fit(x_train,y_train)
16
+ model.fit(x_train, y_train)
18
17
  elif linearreg == False:
19
18
  x_train = np.array(xlist)
20
19
  y_train = np.array(ylist)
21
- # print(x_train, y_train)
22
20
  model = LinearRegression()
23
- model.fit(x_train,y_train)
21
+ model.fit(x_train, y_train)
24
22
 
25
23
  a = model.intercept_
26
24
  b = model.coef_
27
25
  letters = list('abcdefghijklmnopqrstuvwxyz')
28
26
  reqletters = []
29
- for i in range(0,len(b)):
27
+ for i in range(0, len(b)):
30
28
  reqletters.append(letters[i])
31
29
  newvars = []
32
30
  for i in range(len(reqletters)):
33
31
  try:
34
- new = str(round(b[i],4))+reqletters[i]
32
+ new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
35
33
  except:
36
- new = str(round(float(b[0]),4))+reqletters[i]
34
+ new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
37
35
  newvars.append(new)
38
36
  try:
39
- mainvar = round(a,4)
37
+ mainvar = round(a[0], 4) # Extract single element
40
38
  except:
41
- mainvar = round(float(a[0]),4)
39
+ mainvar = round(float(a[0]), 4)
42
40
  newvars.append(mainvar)
43
- last = " + ".join(list(map(str,newvars)))
41
+ last = " + ".join(list(map(str, newvars)))
44
42
 
45
43
  try:
46
- return f"function: {last}\naccuracy: {accuracy*100}%"
44
+ return f"function: {last}\naccuracy: {accuracy * 100}%"
47
45
  except:
48
46
  return f"function: {last}"
49
- # return last
50
-
@@ -1,21 +1,25 @@
1
- Metadata-Version: 2.1
2
- Name: sklearn-fluent
3
- Version: 0.2
4
- Summary: Linear/Multli Regression Mathematical Function in one line of code
5
- Home-page: UNKNOWN
6
- Author: YusiferZendric (Aditya Singh)
7
- Author-email: <yzendric@gmail.com>
8
- License: UNKNOWN
9
- Keywords: python,sklearn,mathematical functions,functions,linear regressions
10
- Platform: UNKNOWN
11
- Classifier: Development Status :: 1 - Planning
12
- Classifier: Intended Audience :: Developers
13
- Classifier: Programming Language :: Python :: 3
14
- Classifier: Operating System :: Unix
15
- Classifier: Operating System :: MacOS :: MacOS X
16
- Classifier: Operating System :: Microsoft :: Windows
17
- Description-Content-Type: text/markdown
18
- Requires-Dist: sklearn
19
-
20
- Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
21
-
1
+ Metadata-Version: 2.2
2
+ Name: sklearn_fluent
3
+ Version: 0.4.1
4
+ Summary: Linear/Multli Regression Mathematical Function in one line of code
5
+ Author: YusiferZendric (Aditya Singh)
6
+ Author-email: <yzendric@gmail.com>
7
+ Keywords: python,sklearn,mathematical functions,functions,linear regressions
8
+ Classifier: Development Status :: 1 - Planning
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: Unix
12
+ Classifier: Operating System :: MacOS :: MacOS X
13
+ Classifier: Operating System :: Microsoft :: Windows
14
+ Description-Content-Type: text/markdown
15
+ Requires-Dist: scikit-learn
16
+ Dynamic: author
17
+ Dynamic: author-email
18
+ Dynamic: classifier
19
+ Dynamic: description
20
+ Dynamic: description-content-type
21
+ Dynamic: keywords
22
+ Dynamic: requires-dist
23
+ Dynamic: summary
24
+
25
+ Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
@@ -0,0 +1,6 @@
1
+ sklearn_fluent/__init__.py,sha256=_tBxgz2zPN6jg4RCDM51m2dIKTgxaMQSzrWfBXhuIio,60
2
+ sklearn_fluent/main.py,sha256=SmTcBV6vG-noI0Hxc3pCtJGWj3eGTUXRSx86Rls9YzY,1633
3
+ sklearn_fluent-0.4.1.dist-info/METADATA,sha256=EYju593j_MCYI9l-QF7JfokQ6ozS8Cvr7K0aQtkcAaI,938
4
+ sklearn_fluent-0.4.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
5
+ sklearn_fluent-0.4.1.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
6
+ sklearn_fluent-0.4.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.37.1)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,6 +0,0 @@
1
- sklearn_fluent/__init__.py,sha256=zF78HVRV1PWsZt4QIiP6wDpO4AnwNicSFrf-kIcZl3A,43
2
- sklearn_fluent/main.py,sha256=asPGyaslbegVygktSF_7gRDOZvIEjl7lN8YY4p4FTL8,1577
3
- sklearn_fluent-0.2.dist-info/METADATA,sha256=QP_tW-t4pPL2EXoMAtGB1-_B1xdChHjzK5Uo6tf-MRU,790
4
- sklearn_fluent-0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
5
- sklearn_fluent-0.2.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
6
- sklearn_fluent-0.2.dist-info/RECORD,,