skinoptics 0.0.1b8__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skinoptics/__init__.py +3 -3
- skinoptics/absorption_coefficient.py +0 -1
- skinoptics/anisotropy_factor.py +954 -955
- skinoptics/colors.py +1543 -1403
- skinoptics/dataframes.py +98 -98
- skinoptics/datasets/colors/Sharma2004_TableI.txt +69 -0
- skinoptics/datasets/optical_properties/ext_and_molarext_oxy_and_deo_Prahl.txt +376 -376
- skinoptics/datasets/optical_properties/molarext_bil_Li.txt +1842 -1842
- skinoptics/datasets/optical_properties/mua_wat_Hale.txt +231 -231
- skinoptics/refractive_index.py +413 -414
- skinoptics/scattering_coefficient.py +0 -1
- skinoptics/utils.py +419 -420
- {skinoptics-0.0.1b8.dist-info → skinoptics-0.0.2.dist-info}/METADATA +31 -31
- {skinoptics-0.0.1b8.dist-info → skinoptics-0.0.2.dist-info}/RECORD +17 -16
- {skinoptics-0.0.1b8.dist-info → skinoptics-0.0.2.dist-info}/WHEEL +1 -1
- {skinoptics-0.0.1b8.dist-info → skinoptics-0.0.2.dist-info}/licenses/LICENSE.txt +674 -674
- {skinoptics-0.0.1b8.dist-info → skinoptics-0.0.2.dist-info}/top_level.txt +0 -0
skinoptics/dataframes.py
CHANGED
|
@@ -1,98 +1,98 @@
|
|
|
1
|
-
'''
|
|
2
|
-
| SkinOptics
|
|
3
|
-
| Copyright (C) 2024-2025 Victor Lima
|
|
4
|
-
|
|
5
|
-
| This program is free software: you can redistribute it and/or modify
|
|
6
|
-
| it under the terms of the GNU General Public License as published by
|
|
7
|
-
| the Free Software Foundation, either version 3 of the License, or
|
|
8
|
-
| (at your option) any later version.
|
|
9
|
-
|
|
10
|
-
| This program is distributed in the hope that it will be useful,
|
|
11
|
-
| but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
-
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
-
| GNU General Public License for more details.
|
|
14
|
-
|
|
15
|
-
| You should have received a copy of the GNU General Public License
|
|
16
|
-
| along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
17
|
-
|
|
18
|
-
| Victor Lima
|
|
19
|
-
|
|
|
20
|
-
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
|
24
|
-
|
|
|
25
|
-
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
import
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
1
|
+
'''
|
|
2
|
+
| SkinOptics
|
|
3
|
+
| Copyright (C) 2024-2025 Victor Lima
|
|
4
|
+
|
|
5
|
+
| This program is free software: you can redistribute it and/or modify
|
|
6
|
+
| it under the terms of the GNU General Public License as published by
|
|
7
|
+
| the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
| (at your option) any later version.
|
|
9
|
+
|
|
10
|
+
| This program is distributed in the hope that it will be useful,
|
|
11
|
+
| but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
| GNU General Public License for more details.
|
|
14
|
+
|
|
15
|
+
| You should have received a copy of the GNU General Public License
|
|
16
|
+
| along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
17
|
+
|
|
18
|
+
| Victor Lima
|
|
19
|
+
| victor.lima\@ufscar.br
|
|
20
|
+
| victorportog.github.io
|
|
21
|
+
|
|
22
|
+
| Release date:
|
|
23
|
+
| October 2024
|
|
24
|
+
| Last modification:
|
|
25
|
+
| March 2025
|
|
26
|
+
|
|
27
|
+
| Example:
|
|
28
|
+
| Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
|
|
29
|
+
|
|
30
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
31
|
+
| group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
|
|
32
|
+
+==========================================+==================+==================+==================+
|
|
33
|
+
| european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
|
|
34
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
35
|
+
| chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
|
|
36
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
37
|
+
| mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
|
|
38
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
39
|
+
| indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
|
|
40
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
41
|
+
| african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
|
|
42
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
43
|
+
| european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
|
|
44
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
45
|
+
| chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
|
|
46
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
47
|
+
| mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
|
|
48
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
49
|
+
| indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
|
|
50
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
51
|
+
| african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
|
|
52
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
53
|
+
'''
|
|
54
|
+
|
|
55
|
+
import os
|
|
56
|
+
import pandas as pd
|
|
57
|
+
|
|
58
|
+
folder0 = os.path.dirname(os.path.abspath(__file__))
|
|
59
|
+
folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
|
|
60
|
+
|
|
61
|
+
ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
|
|
62
|
+
ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
|
|
63
|
+
ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
|
|
64
|
+
molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
|
|
65
|
+
|
|
66
|
+
mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
|
|
67
|
+
mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
|
|
68
|
+
mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
|
|
69
|
+
|
|
70
|
+
EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
|
|
71
|
+
DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
|
|
72
|
+
HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
|
|
73
|
+
iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
|
|
74
|
+
nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
|
|
75
|
+
SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
|
|
76
|
+
EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
|
|
77
|
+
DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
|
|
78
|
+
HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
|
|
79
|
+
|
|
80
|
+
n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
|
|
81
|
+
n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
|
|
82
|
+
n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
|
|
83
|
+
n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
|
|
84
|
+
beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
|
|
85
|
+
|
|
86
|
+
n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
|
|
87
|
+
n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
|
|
88
|
+
oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
|
|
89
|
+
|
|
90
|
+
folder2 = os.path.join(folder0, 'datasets', 'colors')
|
|
91
|
+
|
|
92
|
+
rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
|
|
93
|
+
rspds_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_D55_D75.txt'), sep = ' ')
|
|
94
|
+
cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
|
|
95
|
+
|
|
96
|
+
Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
|
|
97
|
+
Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
|
|
98
|
+
Sharma2004_TableI_dataframe = pd.read_csv(os.path.join(folder2, 'Sharma2004_TableI.txt'), sep = ' ')
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
pair i L a b al Cl hl hl_bar G T SL SC SH RT Delta_E_00
|
|
2
|
+
1 1 50.0000 2.6772 -79.7751 2.6774 79.8200 271.9222 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
|
|
3
|
+
1 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
|
|
4
|
+
2 1 50.0000 3.1571 -77.2803 3.1573 77.3448 272.3395 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
|
|
5
|
+
2 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
|
|
6
|
+
3 1 50.0000 2.8361 -74.0200 2.8363 74.0743 272.1944 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
|
|
7
|
+
3 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
|
|
8
|
+
4 1 50.0000 -1.3802 -84.2814 1.3803 84.2927 269.0618 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
|
|
9
|
+
4 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
|
|
10
|
+
5 1 50.0000 -1.1848 -84.8006 1.1849 84.8089 269.1995 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
|
|
11
|
+
5 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
|
|
12
|
+
6 1 50.0000 -0.9009 -85.5211 0.9009 85.5258 269.3964 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
|
|
13
|
+
6 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
|
|
14
|
+
7 1 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
15
|
+
7 2 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
16
|
+
8 1 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
17
|
+
8 2 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
18
|
+
9 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
19
|
+
9 2 50.0000 -2.4900 0.0009 3.7346 3.7346 179.9862 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
20
|
+
10 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
21
|
+
10 2 50.0000 -2.4900 0.0010 3.7346 3.7346 179.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
22
|
+
11 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
23
|
+
11 2 50.0000 -2.4900 0.0011 3.7346 3.7346 179.9831 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
24
|
+
12 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
25
|
+
12 2 50.0000 -2.4900 0.0012 3.7346 3.7346 179.9816 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
26
|
+
13 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
27
|
+
13 2 50.0000 0.0009 -2.4900 0.0013 2.4900 270.0311 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
28
|
+
14 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
29
|
+
14 2 50.0000 0.0010 -2.4900 0.0015 2.4900 270.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
30
|
+
15 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
|
|
31
|
+
15 2 50.0000 0.0011 -2.4900 0.0016 2.4900 270.0380 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
|
|
32
|
+
16 1 50.0000 2.5000 0.0000 3.7496 3.7496 0.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
|
|
33
|
+
16 2 50.0000 0.0000 -2.5000 0.0000 2.5000 270.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
|
|
34
|
+
17 1 50.0000 2.5000 0.0000 3.4569 3.4569 0.0000 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
|
|
35
|
+
17 2 73.0000 25.0000 -18.0000 34.5687 38.9743 332.4939 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
|
|
36
|
+
18 1 50.0000 2.5000 0.0000 3.4954 3.4954 0.0000 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
|
|
37
|
+
18 2 61.0000 -5.0000 29.0000 6.9907 29.8307 103.5532 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
|
|
38
|
+
19 1 50.0000 2.5000 0.0000 3.5514 3.5514 0.0000 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
|
|
39
|
+
19 2 56.0000 -27.0000 -3.0000 38.3556 38.4728 184.4723 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
|
|
40
|
+
20 1 50.0000 2.5000 0.0000 3.5244 3.5244 0.0000 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
|
|
41
|
+
20 2 58.0000 24.0000 15.0000 33.8342 37.0102 23.9095 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
|
|
42
|
+
21 1 50.0000 2.5000 0.0000 3.7494 3.7494 0.0000 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
|
|
43
|
+
21 2 50.0000 3.1736 0.5854 4.7596 4.7954 7.0113 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
|
|
44
|
+
22 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
|
|
45
|
+
22 2 50.0000 3.2972 0.0000 4.9450 4.9450 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
|
|
46
|
+
23 1 50.0000 2.5000 0.0000 3.7497 3.7497 0.0000 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
|
|
47
|
+
23 2 50.0000 1.8634 0.5757 2.7949 2.8536 11.6380 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
|
|
48
|
+
24 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
|
|
49
|
+
24 2 50.0000 3.2592 0.3350 4.8879 4.8994 3.9206 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
|
|
50
|
+
25 1 60.2574 -34.0099 36.2677 34.0678 49.7590 133.2085 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
|
|
51
|
+
25 2 60.4626 -34.1751 39.4387 34.2333 52.2238 130.9584 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
|
|
52
|
+
26 1 63.0109 -31.0961 -5.8663 32.6194 33.1427 190.1951 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
|
|
53
|
+
26 2 62.8187 -29.7946 -4.0864 31.2542 31.5202 187.4490 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
|
|
54
|
+
27 1 61.2901 3.7196 -5.3901 5.5668 7.7487 315.9240 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
|
|
55
|
+
27 2 61.4292 2.2480 -4.9620 3.3644 5.9950 304.1385 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
|
|
56
|
+
28 1 35.0831 -44.1164 3.7933 44.3939 44.5557 175.1161 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
|
|
57
|
+
28 2 35.0232 -40.0716 1.5901 40.3237 40.3550 177.7418 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
|
|
58
|
+
29 1 22.7233 20.0904 -46.6940 20.1424 50.8532 293.3339 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
|
|
59
|
+
29 2 23.0331 14.9730 -42.5619 15.0118 45.1317 289.4279 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
|
|
60
|
+
30 1 36.4612 47.8580 18.3852 47.9197 51.3256 20.9901 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
|
|
61
|
+
30 2 36.2715 50.5065 21.2231 50.5716 54.8444 22.7660 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
|
|
62
|
+
31 1 90.8027 -2.0831 1.4410 3.1245 3.4408 155.2410 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
|
|
63
|
+
31 2 91.1528 -1.6435 0.0447 2.4651 2.4655 178.9612 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
|
|
64
|
+
32 1 90.9257 -0.5406 -0.9208 0.8109 1.2270 228.6315 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
|
|
65
|
+
32 2 88.6381 -0.8985 -0.7239 1.3477 1.5298 208.2412 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
|
|
66
|
+
33 1 6.7747 -0.2908 -2.4247 0.4362 2.4636 259.8025 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
|
|
67
|
+
33 2 5.8714 -0.0985 -2.2286 0.1477 2.2335 266.2073 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
|
|
68
|
+
34 1 2.0776 0.0795 -1.1350 0.1192 1.1412 275.9978 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
|
|
69
|
+
34 2 0.9033 -0.0636 -0.5514 0.0954 0.5596 260.1842 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
|