skinoptics 0.0.1b8__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
skinoptics/dataframes.py CHANGED
@@ -1,98 +1,98 @@
1
- '''
2
- | SkinOptics
3
- | Copyright (C) 2024-2025 Victor Lima
4
-
5
- | This program is free software: you can redistribute it and/or modify
6
- | it under the terms of the GNU General Public License as published by
7
- | the Free Software Foundation, either version 3 of the License, or
8
- | (at your option) any later version.
9
-
10
- | This program is distributed in the hope that it will be useful,
11
- | but WITHOUT ANY WARRANTY; without even the implied warranty of
12
- | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
- | GNU General Public License for more details.
14
-
15
- | You should have received a copy of the GNU General Public License
16
- | along with this program. If not, see <https://www.gnu.org/licenses/>.
17
-
18
- | Victor Lima
19
- | victorporto\@ifsc.usp.br
20
- | victor.lima\@ufscar.br
21
- | victorportog.github.io
22
-
23
- | Release date:
24
- | October 2024
25
- | Last modification:
26
- | March 2025
27
-
28
- | Example:
29
- | Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
30
-
31
- +------------------------------------------+------------------+------------------+------------------+
32
- | group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
33
- +==========================================+==================+==================+==================+
34
- | european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
35
- +------------------------------------------+------------------+------------------+------------------+
36
- | chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
37
- +------------------------------------------+------------------+------------------+------------------+
38
- | mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
39
- +------------------------------------------+------------------+------------------+------------------+
40
- | indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
41
- +------------------------------------------+------------------+------------------+------------------+
42
- | african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
43
- +------------------------------------------+------------------+------------------+------------------+
44
- | european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
45
- +------------------------------------------+------------------+------------------+------------------+
46
- | chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
47
- +------------------------------------------+------------------+------------------+------------------+
48
- | mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
49
- +------------------------------------------+------------------+------------------+------------------+
50
- | indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
51
- +------------------------------------------+------------------+------------------+------------------+
52
- | african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
53
- +------------------------------------------+------------------+------------------+------------------+
54
- '''
55
-
56
- import os
57
- import pandas as pd
58
-
59
- folder0 = os.path.dirname(os.path.abspath(__file__))
60
- folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
61
-
62
- ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
63
- ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
64
- ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
65
- molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
66
-
67
- mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
68
- mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
69
- mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
70
-
71
- EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
72
- DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
73
- HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
74
- iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
75
- nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
76
- SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
77
- EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
78
- DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
79
- HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
80
-
81
- n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
82
- n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
83
- n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
84
- n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
85
- beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
86
-
87
- n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
88
- n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
89
- oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
90
-
91
- folder2 = os.path.join(folder0, 'datasets', 'colors')
92
-
93
- rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
94
- rspds_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_D55_D75.txt'), sep = ' ')
95
- cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
96
-
97
- Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
98
- Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
1
+ '''
2
+ | SkinOptics
3
+ | Copyright (C) 2024-2025 Victor Lima
4
+
5
+ | This program is free software: you can redistribute it and/or modify
6
+ | it under the terms of the GNU General Public License as published by
7
+ | the Free Software Foundation, either version 3 of the License, or
8
+ | (at your option) any later version.
9
+
10
+ | This program is distributed in the hope that it will be useful,
11
+ | but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ | GNU General Public License for more details.
14
+
15
+ | You should have received a copy of the GNU General Public License
16
+ | along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+
18
+ | Victor Lima
19
+ | victor.lima\@ufscar.br
20
+ | victorportog.github.io
21
+
22
+ | Release date:
23
+ | October 2024
24
+ | Last modification:
25
+ | March 2025
26
+
27
+ | Example:
28
+ | Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
29
+
30
+ +------------------------------------------+------------------+------------------+------------------+
31
+ | group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
32
+ +==========================================+==================+==================+==================+
33
+ | european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
34
+ +------------------------------------------+------------------+------------------+------------------+
35
+ | chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
36
+ +------------------------------------------+------------------+------------------+------------------+
37
+ | mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
38
+ +------------------------------------------+------------------+------------------+------------------+
39
+ | indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
40
+ +------------------------------------------+------------------+------------------+------------------+
41
+ | african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
42
+ +------------------------------------------+------------------+------------------+------------------+
43
+ | european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
44
+ +------------------------------------------+------------------+------------------+------------------+
45
+ | chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
46
+ +------------------------------------------+------------------+------------------+------------------+
47
+ | mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
48
+ +------------------------------------------+------------------+------------------+------------------+
49
+ | indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
50
+ +------------------------------------------+------------------+------------------+------------------+
51
+ | african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
52
+ +------------------------------------------+------------------+------------------+------------------+
53
+ '''
54
+
55
+ import os
56
+ import pandas as pd
57
+
58
+ folder0 = os.path.dirname(os.path.abspath(__file__))
59
+ folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
60
+
61
+ ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
62
+ ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
63
+ ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
64
+ molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
65
+
66
+ mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
67
+ mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
68
+ mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
69
+
70
+ EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
71
+ DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
72
+ HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
73
+ iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
74
+ nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
75
+ SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
76
+ EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
77
+ DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
78
+ HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
79
+
80
+ n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
81
+ n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
82
+ n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
83
+ n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
84
+ beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
85
+
86
+ n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
87
+ n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
88
+ oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
89
+
90
+ folder2 = os.path.join(folder0, 'datasets', 'colors')
91
+
92
+ rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
93
+ rspds_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_D55_D75.txt'), sep = ' ')
94
+ cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
95
+
96
+ Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
97
+ Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
98
+ Sharma2004_TableI_dataframe = pd.read_csv(os.path.join(folder2, 'Sharma2004_TableI.txt'), sep = ' ')
@@ -0,0 +1,69 @@
1
+ pair i L a b al Cl hl hl_bar G T SL SC SH RT Delta_E_00
2
+ 1 1 50.0000 2.6772 -79.7751 2.6774 79.8200 271.9222 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
3
+ 1 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
4
+ 2 1 50.0000 3.1571 -77.2803 3.1573 77.3448 272.3395 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
5
+ 2 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
6
+ 3 1 50.0000 2.8361 -74.0200 2.8363 74.0743 272.1944 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
7
+ 3 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
8
+ 4 1 50.0000 -1.3802 -84.2814 1.3803 84.2927 269.0618 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
9
+ 4 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
10
+ 5 1 50.0000 -1.1848 -84.8006 1.1849 84.8089 269.1995 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
11
+ 5 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
12
+ 6 1 50.0000 -0.9009 -85.5211 0.9009 85.5258 269.3964 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
13
+ 6 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
14
+ 7 1 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
15
+ 7 2 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
16
+ 8 1 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
17
+ 8 2 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
18
+ 9 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
19
+ 9 2 50.0000 -2.4900 0.0009 3.7346 3.7346 179.9862 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
20
+ 10 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
21
+ 10 2 50.0000 -2.4900 0.0010 3.7346 3.7346 179.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
22
+ 11 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
23
+ 11 2 50.0000 -2.4900 0.0011 3.7346 3.7346 179.9831 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
24
+ 12 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
25
+ 12 2 50.0000 -2.4900 0.0012 3.7346 3.7346 179.9816 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
26
+ 13 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
27
+ 13 2 50.0000 0.0009 -2.4900 0.0013 2.4900 270.0311 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
28
+ 14 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
29
+ 14 2 50.0000 0.0010 -2.4900 0.0015 2.4900 270.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
30
+ 15 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
31
+ 15 2 50.0000 0.0011 -2.4900 0.0016 2.4900 270.0380 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
32
+ 16 1 50.0000 2.5000 0.0000 3.7496 3.7496 0.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
33
+ 16 2 50.0000 0.0000 -2.5000 0.0000 2.5000 270.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
34
+ 17 1 50.0000 2.5000 0.0000 3.4569 3.4569 0.0000 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
35
+ 17 2 73.0000 25.0000 -18.0000 34.5687 38.9743 332.4939 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
36
+ 18 1 50.0000 2.5000 0.0000 3.4954 3.4954 0.0000 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
37
+ 18 2 61.0000 -5.0000 29.0000 6.9907 29.8307 103.5532 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
38
+ 19 1 50.0000 2.5000 0.0000 3.5514 3.5514 0.0000 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
39
+ 19 2 56.0000 -27.0000 -3.0000 38.3556 38.4728 184.4723 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
40
+ 20 1 50.0000 2.5000 0.0000 3.5244 3.5244 0.0000 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
41
+ 20 2 58.0000 24.0000 15.0000 33.8342 37.0102 23.9095 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
42
+ 21 1 50.0000 2.5000 0.0000 3.7494 3.7494 0.0000 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
43
+ 21 2 50.0000 3.1736 0.5854 4.7596 4.7954 7.0113 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
44
+ 22 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
45
+ 22 2 50.0000 3.2972 0.0000 4.9450 4.9450 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
46
+ 23 1 50.0000 2.5000 0.0000 3.7497 3.7497 0.0000 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
47
+ 23 2 50.0000 1.8634 0.5757 2.7949 2.8536 11.6380 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
48
+ 24 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
49
+ 24 2 50.0000 3.2592 0.3350 4.8879 4.8994 3.9206 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
50
+ 25 1 60.2574 -34.0099 36.2677 34.0678 49.7590 133.2085 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
51
+ 25 2 60.4626 -34.1751 39.4387 34.2333 52.2238 130.9584 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
52
+ 26 1 63.0109 -31.0961 -5.8663 32.6194 33.1427 190.1951 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
53
+ 26 2 62.8187 -29.7946 -4.0864 31.2542 31.5202 187.4490 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
54
+ 27 1 61.2901 3.7196 -5.3901 5.5668 7.7487 315.9240 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
55
+ 27 2 61.4292 2.2480 -4.9620 3.3644 5.9950 304.1385 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
56
+ 28 1 35.0831 -44.1164 3.7933 44.3939 44.5557 175.1161 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
57
+ 28 2 35.0232 -40.0716 1.5901 40.3237 40.3550 177.7418 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
58
+ 29 1 22.7233 20.0904 -46.6940 20.1424 50.8532 293.3339 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
59
+ 29 2 23.0331 14.9730 -42.5619 15.0118 45.1317 289.4279 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
60
+ 30 1 36.4612 47.8580 18.3852 47.9197 51.3256 20.9901 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
61
+ 30 2 36.2715 50.5065 21.2231 50.5716 54.8444 22.7660 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
62
+ 31 1 90.8027 -2.0831 1.4410 3.1245 3.4408 155.2410 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
63
+ 31 2 91.1528 -1.6435 0.0447 2.4651 2.4655 178.9612 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
64
+ 32 1 90.9257 -0.5406 -0.9208 0.8109 1.2270 228.6315 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
65
+ 32 2 88.6381 -0.8985 -0.7239 1.3477 1.5298 208.2412 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
66
+ 33 1 6.7747 -0.2908 -2.4247 0.4362 2.4636 259.8025 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
67
+ 33 2 5.8714 -0.0985 -2.2286 0.1477 2.2335 266.2073 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
68
+ 34 1 2.0776 0.0795 -1.1350 0.1192 1.1412 275.9978 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
69
+ 34 2 0.9033 -0.0636 -0.5514 0.0954 0.5596 260.1842 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082