siat 3.0.35__py3-none-any.whl → 3.0.40__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/common.py +36 -16
- siat/financials2.py +29 -17
- siat/financials_china.py +33 -9
- siat/financials_china2.py +184 -75
- siat/risk_adjusted_return2.py +11 -6
- siat/sector_china.py +210 -59
- siat/security_prices.py +8 -0
- siat/stock_china.py +35 -13
- siat/translate.py +492 -149
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/METADATA +1 -1
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/RECORD +13 -13
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/WHEEL +0 -0
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/top_level.txt +0 -0
siat/financials_china2.py
CHANGED
@@ -449,9 +449,9 @@ def df_directprint(dfp,title_txt,footnote, \
|
|
449
449
|
title_break=True,foot_break=True,foot_center=False,foot_start=1, \
|
450
450
|
decimals=2,facecolor='papayawhip'):
|
451
451
|
"""
|
452
|
-
def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip'):
|
452
|
+
def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip',font_size='16px'):
|
453
453
|
"""
|
454
|
-
功能:对dfp直接打印,使用pandas style
|
454
|
+
功能:对dfp直接打印,使用pandas style打印,套壳函数df_display_CSS
|
455
455
|
"""
|
456
456
|
#替换nan和inf
|
457
457
|
import pandas as pd
|
@@ -459,7 +459,7 @@ def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip'):
|
|
459
459
|
dfp.replace([np.inf, -np.inf],'-', inplace=True)
|
460
460
|
dfp.replace([np.nan],'-', inplace=True)
|
461
461
|
|
462
|
-
print('') #空一行
|
462
|
+
#print('') #空一行
|
463
463
|
|
464
464
|
"""
|
465
465
|
#解析标题各行并居中打印
|
@@ -477,6 +477,16 @@ def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip'):
|
|
477
477
|
|
478
478
|
pos=pos_new+1
|
479
479
|
"""
|
480
|
+
|
481
|
+
#确定表格字体大小
|
482
|
+
titile_font_size=font_size
|
483
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
484
|
+
|
485
|
+
df_display_CSS(dfp,titletxt=title_txt,footnote=footnote,facecolor=facecolor, \
|
486
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
487
|
+
data_font_size=data_font_size)
|
488
|
+
|
489
|
+
"""
|
480
490
|
disph=dfp.style.hide() #不显示索引列
|
481
491
|
dispp=disph.format(precision=decimals) #设置带有小数点的列精度调整为小数点后2位
|
482
492
|
|
@@ -502,7 +512,7 @@ def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip'):
|
|
502
512
|
#打印数据框本身
|
503
513
|
from IPython.display import display
|
504
514
|
display(dispf2)
|
505
|
-
|
515
|
+
"""
|
506
516
|
"""
|
507
517
|
#print(dfp.to_string(index=False))
|
508
518
|
colalign=['left']+['right']*(len(list(dfp)) - 1)
|
@@ -532,7 +542,7 @@ def df_directprint(dfp,title_txt,footnote,decimals=2,facecolor='papayawhip'):
|
|
532
542
|
pos=pos_new+1
|
533
543
|
"""
|
534
544
|
#print('') #空一行
|
535
|
-
print(footnote,'\n')
|
545
|
+
#print(footnote,'\n')
|
536
546
|
|
537
547
|
return
|
538
548
|
#==============================================================================
|
@@ -551,7 +561,8 @@ if __name__=='__main__':
|
|
551
561
|
items=["货币资金","应收票据","应收账款"]
|
552
562
|
dfp=fs_item_analysis_1(df,ticker,fsdate,items)
|
553
563
|
|
554
|
-
def fs_item_analysis_1(df,ticker,fsdate,items,title_txt='',notes='',
|
564
|
+
def fs_item_analysis_1(df,ticker,fsdate,items,title_txt='',notes='', \
|
565
|
+
facecolor='papayawhip',font_size='16px'):
|
555
566
|
"""
|
556
567
|
功能:比较给定财报日期的资产项目、期初数、期末数、变动额和变动幅度%
|
557
568
|
"""
|
@@ -608,11 +619,17 @@ def fs_item_analysis_1(df,ticker,fsdate,items,title_txt='',notes='',facecolor='p
|
|
608
619
|
foottext=footnote
|
609
620
|
else:
|
610
621
|
foottext=notes+'\n'+footnote
|
622
|
+
|
623
|
+
#确定表格字体大小
|
624
|
+
titile_font_size=font_size
|
625
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
611
626
|
|
612
627
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
613
628
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
614
629
|
first_col_align='left', \
|
615
|
-
facecolor=facecolor,decimals=2
|
630
|
+
facecolor=facecolor,decimals=2, \
|
631
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
632
|
+
data_font_size=data_font_size)
|
616
633
|
|
617
634
|
return dfp
|
618
635
|
|
@@ -631,7 +648,8 @@ if __name__=='__main__':
|
|
631
648
|
|
632
649
|
dfp=fs_item_analysis_2(df,ticker,fsdates,items)
|
633
650
|
|
634
|
-
def fs_item_analysis_2(df,ticker,fsdates,items,title_txt='',notes='',
|
651
|
+
def fs_item_analysis_2(df,ticker,fsdates,items,title_txt='',notes='', \
|
652
|
+
facecolor='papayawhip',font_size='16px'):
|
635
653
|
"""
|
636
654
|
功能:比较给定财报日期的报表项目、最近几年fsdates、占比%
|
637
655
|
"""
|
@@ -671,11 +689,17 @@ def fs_item_analysis_2(df,ticker,fsdates,items,title_txt='',notes='',facecolor='
|
|
671
689
|
foottext=footnote
|
672
690
|
else:
|
673
691
|
foottext=notes+'\n'+footnote
|
692
|
+
|
693
|
+
#确定表格字体大小
|
694
|
+
titile_font_size=font_size
|
695
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
674
696
|
|
675
697
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
676
698
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
677
699
|
first_col_align='left', \
|
678
|
-
facecolor=facecolor,decimals=2
|
700
|
+
facecolor=facecolor,decimals=2, \
|
701
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
702
|
+
data_font_size=data_font_size)
|
679
703
|
|
680
704
|
return dfp
|
681
705
|
|
@@ -690,7 +714,8 @@ if __name__=='__main__':
|
|
690
714
|
|
691
715
|
dfp=fs_item_analysis_3(df,ticker,fsdates)
|
692
716
|
|
693
|
-
def fs_item_analysis_3(df,ticker,fsdates,title_txt='',notes='',
|
717
|
+
def fs_item_analysis_3(df,ticker,fsdates,title_txt='',notes='', \
|
718
|
+
facecolor='papayawhip',font_size='16px'):
|
694
719
|
"""
|
695
720
|
功能:比较给定财报日期的流动比率、最近几年fsdates
|
696
721
|
"""
|
@@ -729,11 +754,21 @@ def fs_item_analysis_3(df,ticker,fsdates,title_txt='',notes='',facecolor='papaya
|
|
729
754
|
foottext=footnote
|
730
755
|
else:
|
731
756
|
foottext=notes+'\n'+footnote
|
757
|
+
|
758
|
+
#确定表格字体大小
|
759
|
+
titile_font_size=font_size
|
760
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
761
|
+
|
762
|
+
#确定表格字体大小
|
763
|
+
titile_font_size=font_size
|
764
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
732
765
|
|
733
766
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
734
767
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
735
768
|
first_col_align='left', \
|
736
|
-
facecolor=facecolor,decimals=2
|
769
|
+
facecolor=facecolor,decimals=2, \
|
770
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
771
|
+
data_font_size=data_font_size)
|
737
772
|
|
738
773
|
return dfp
|
739
774
|
|
@@ -748,7 +783,8 @@ if __name__=='__main__':
|
|
748
783
|
|
749
784
|
dfp=fs_item_analysis_4(df,ticker,fsdates)
|
750
785
|
|
751
|
-
def fs_item_analysis_4(df,ticker,fsdates,title_txt='',notes='',
|
786
|
+
def fs_item_analysis_4(df,ticker,fsdates,title_txt='',notes='', \
|
787
|
+
facecolor='papayawhip',font_size='16px'):
|
752
788
|
"""
|
753
789
|
功能:比较给定财报日期的流动比率、最近几年fsdates
|
754
790
|
"""
|
@@ -807,11 +843,17 @@ def fs_item_analysis_4(df,ticker,fsdates,title_txt='',notes='',facecolor='papaya
|
|
807
843
|
foottext=footnote
|
808
844
|
else:
|
809
845
|
foottext=notes+'\n'+footnote
|
846
|
+
|
847
|
+
#确定表格字体大小
|
848
|
+
titile_font_size=font_size
|
849
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
810
850
|
|
811
851
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
812
852
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
813
853
|
first_col_align='left', \
|
814
|
-
facecolor=facecolor,decimals=2
|
854
|
+
facecolor=facecolor,decimals=2, \
|
855
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
856
|
+
data_font_size=data_font_size)
|
815
857
|
return dfp
|
816
858
|
|
817
859
|
#==============================================================================
|
@@ -825,7 +867,8 @@ if __name__=='__main__':
|
|
825
867
|
|
826
868
|
dfp=fs_item_analysis_5(df,ticker,fsdates)
|
827
869
|
|
828
|
-
def fs_item_analysis_5(df,ticker,fsdates,title_txt='',notes='',
|
870
|
+
def fs_item_analysis_5(df,ticker,fsdates,title_txt='',notes='', \
|
871
|
+
facecolor='papayawhip',font_size='16px'):
|
829
872
|
"""
|
830
873
|
功能:比较给定财报日期的流动比率、最近几年fsdates
|
831
874
|
"""
|
@@ -864,11 +907,17 @@ def fs_item_analysis_5(df,ticker,fsdates,title_txt='',notes='',facecolor='papaya
|
|
864
907
|
foottext=footnote
|
865
908
|
else:
|
866
909
|
foottext=notes+'\n'+footnote
|
910
|
+
|
911
|
+
#确定表格字体大小
|
912
|
+
titile_font_size=font_size
|
913
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
867
914
|
|
868
915
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
869
916
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
870
917
|
first_col_align='left', \
|
871
|
-
facecolor=facecolor,decimals=2
|
918
|
+
facecolor=facecolor,decimals=2, \
|
919
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
920
|
+
data_font_size=data_font_size)
|
872
921
|
return dfp
|
873
922
|
|
874
923
|
#==============================================================================
|
@@ -943,7 +992,8 @@ if __name__=='__main__':
|
|
943
992
|
|
944
993
|
dfp=fs_item_analysis_6(df,ticker,fsdates,items)
|
945
994
|
|
946
|
-
def fs_item_analysis_6(df,ticker,fsdates,items,title_txt='',notes='',
|
995
|
+
def fs_item_analysis_6(df,ticker,fsdates,items,title_txt='',notes='', \
|
996
|
+
facecolor='papayawhip',font_size='16px'):
|
947
997
|
"""
|
948
998
|
功能:比较给定财报日期的应收账款与营业收入增幅、最近几年fsdates
|
949
999
|
"""
|
@@ -989,11 +1039,17 @@ def fs_item_analysis_6(df,ticker,fsdates,items,title_txt='',notes='',facecolor='
|
|
989
1039
|
foottext=footnote
|
990
1040
|
else:
|
991
1041
|
foottext=notes+'\n'+footnote
|
1042
|
+
|
1043
|
+
#确定表格字体大小
|
1044
|
+
titile_font_size=font_size
|
1045
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
992
1046
|
|
993
1047
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
994
1048
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
995
1049
|
first_col_align='left', \
|
996
|
-
facecolor=facecolor,decimals=2
|
1050
|
+
facecolor=facecolor,decimals=2, \
|
1051
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1052
|
+
data_font_size=data_font_size)
|
997
1053
|
return dfp
|
998
1054
|
|
999
1055
|
#==============================================================================
|
@@ -1070,7 +1126,8 @@ if __name__=='__main__':
|
|
1070
1126
|
|
1071
1127
|
dfp=fs_item_analysis_7(df,tickers,fsdate,items)
|
1072
1128
|
|
1073
|
-
def fs_item_analysis_7(df,tickers,fsdate,items,title_txt='',notes='',
|
1129
|
+
def fs_item_analysis_7(df,tickers,fsdate,items,title_txt='',notes='', \
|
1130
|
+
facecolor='papayawhip',font_size='16px'):
|
1074
1131
|
"""
|
1075
1132
|
功能:比较给定财报日期fsdate的项目和指标,与同业相比
|
1076
1133
|
"""
|
@@ -1134,11 +1191,17 @@ def fs_item_analysis_7(df,tickers,fsdate,items,title_txt='',notes='',facecolor='
|
|
1134
1191
|
foottext=footnote
|
1135
1192
|
else:
|
1136
1193
|
foottext=notes+'\n'+footnote
|
1194
|
+
|
1195
|
+
#确定表格字体大小
|
1196
|
+
titile_font_size=font_size
|
1197
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
1137
1198
|
|
1138
1199
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
1139
1200
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
1140
1201
|
first_col_align='left', \
|
1141
|
-
facecolor=facecolor,decimals=2
|
1202
|
+
facecolor=facecolor,decimals=2, \
|
1203
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1204
|
+
data_font_size=data_font_size)
|
1142
1205
|
return dfp
|
1143
1206
|
|
1144
1207
|
#==============================================================================
|
@@ -1152,7 +1215,8 @@ if __name__=='__main__':
|
|
1152
1215
|
items=['资产总计','资产负债率%','流动比率%','速动比率%']
|
1153
1216
|
dfp=fs_item_analysis_8(df,tickers,fsdate,items)
|
1154
1217
|
|
1155
|
-
def fs_item_analysis_8(df,tickers,fsdate,items,title_txt='',notes='',
|
1218
|
+
def fs_item_analysis_8(df,tickers,fsdate,items,title_txt='',notes='', \
|
1219
|
+
facecolor='papayawhip',font_size='16px'):
|
1156
1220
|
"""
|
1157
1221
|
功能:比较给定财报日期fsdate的项目和指标,与同业相比
|
1158
1222
|
区别:项目不带‘(亿元)’字样,避免行过长
|
@@ -1218,11 +1282,17 @@ def fs_item_analysis_8(df,tickers,fsdate,items,title_txt='',notes='',facecolor='
|
|
1218
1282
|
foottext=footnote
|
1219
1283
|
else:
|
1220
1284
|
foottext=notes+'\n'+footnote
|
1285
|
+
|
1286
|
+
#确定表格字体大小
|
1287
|
+
titile_font_size=font_size
|
1288
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
1221
1289
|
|
1222
1290
|
#df_directprint(dfp,title_txt,foottext,facecolor=facecolor)
|
1223
1291
|
df_display_CSS(df=dfp,titletxt=title_txt,footnote=foottext, \
|
1224
1292
|
first_col_align='left', \
|
1225
|
-
facecolor=facecolor,decimals=2
|
1293
|
+
facecolor=facecolor,decimals=2, \
|
1294
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1295
|
+
data_font_size=data_font_size)
|
1226
1296
|
return dfp
|
1227
1297
|
|
1228
1298
|
#==============================================================================
|
@@ -1231,16 +1301,16 @@ if __name__=='__main__':
|
|
1231
1301
|
fsdates=['2022-12-31','2021-12-31','2020-12-31','2019-12-31']
|
1232
1302
|
asset_liab_structure_china(tickers,fsdates)
|
1233
1303
|
|
1234
|
-
def asset_liab_china(tickers,fsdates,facecolor='papayawhip'):
|
1304
|
+
def asset_liab_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1235
1305
|
"""
|
1236
1306
|
套壳函数asset_liab_structure_china
|
1237
1307
|
"""
|
1238
|
-
asset_liab_structure_china(tickers,fsdates,facecolor=facecolor)
|
1308
|
+
asset_liab_structure_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1239
1309
|
|
1240
1310
|
return
|
1241
1311
|
|
1242
1312
|
|
1243
|
-
def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
1313
|
+
def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1244
1314
|
"""
|
1245
1315
|
功能:分析上市公司的资产负债基本结构,并与同业公司对比。
|
1246
1316
|
注意1:分析近三期情况,fsdates要给出四个报表日期,以便获得期初数。
|
@@ -1332,12 +1402,14 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1332
1402
|
notes4="固定资产净额 = 固定资产原值 - 累计折旧 - 资产减值准备"
|
1333
1403
|
|
1334
1404
|
notes=notes1+'\n'+notes2+'\n'+notes3+'\n'+notes4
|
1335
|
-
dfp2=fs_item_analysis_1(df,ticker,fsdate,items2,title_txt,notes,
|
1405
|
+
dfp2=fs_item_analysis_1(df,ticker,fsdate,items2,title_txt,notes, \
|
1406
|
+
facecolor=facecolor,font_size=font_size)
|
1336
1407
|
|
1337
1408
|
#负债变动趋势
|
1338
1409
|
title_txt=title_head+"主要负债项目,"+fsdate
|
1339
1410
|
items3=["短期借款","长期借款","应付账款","预收款项","应交税费","应付职工薪酬","负债合计"]
|
1340
|
-
dfp3=fs_item_analysis_1(df,ticker,fsdate,items3,title_txt,
|
1411
|
+
dfp3=fs_item_analysis_1(df,ticker,fsdate,items3,title_txt, \
|
1412
|
+
facecolor=facecolor,font_size=font_size)
|
1341
1413
|
|
1342
1414
|
#所有者权益变动趋势
|
1343
1415
|
title_txt=title_head+"主要权益项目,"+fsdate
|
@@ -1377,37 +1449,43 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1377
1449
|
notesB=notes8+'\n'+notes9+'\n'+notes10+'\n'+notes11+'\n'+notes12+'\n'+notes13+'\n'+notes14
|
1378
1450
|
|
1379
1451
|
notes=notesA+'\n'+notesB
|
1380
|
-
dfp4=fs_item_analysis_1(df,ticker,fsdate,items4,title_txt,notes,
|
1452
|
+
dfp4=fs_item_analysis_1(df,ticker,fsdate,items4,title_txt,notes, \
|
1453
|
+
facecolor=facecolor,font_size=font_size)
|
1381
1454
|
|
1382
1455
|
### 货币资金与应收项目
|
1383
1456
|
#资产变动趋势1:"货币资金","应收票据","应收账款"
|
1384
1457
|
title_txt=title_head+"货币资金与应收项目,"+fsdate
|
1385
1458
|
items1=["货币资金","应收票据","应收账款"]
|
1386
|
-
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt,
|
1459
|
+
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt, \
|
1460
|
+
facecolor=facecolor,font_size=font_size)
|
1387
1461
|
|
1388
1462
|
#应收账款占比变动分析
|
1389
1463
|
fsdates1=fsdates[:3]
|
1390
1464
|
items5=["应收账款","资产总计"]
|
1391
1465
|
title_txt=title_head+"应收账款占比变动情况"
|
1392
|
-
dfp5=fs_item_analysis_2(df,ticker,fsdates1,items5,title_txt,
|
1466
|
+
dfp5=fs_item_analysis_2(df,ticker,fsdates1,items5,title_txt, \
|
1467
|
+
facecolor=facecolor,font_size=font_size)
|
1393
1468
|
|
1394
1469
|
#应收与营业收入增幅对比
|
1395
1470
|
fsdates2=fsdates[:2]
|
1396
1471
|
items6=['应收账款',"应收票据",'营业总收入']
|
1397
1472
|
title_txt=title_head+"应收项目与营业收入增幅对比"
|
1398
|
-
dfp6=fs_item_analysis_6(df,ticker,fsdates2,items6,title_txt,
|
1473
|
+
dfp6=fs_item_analysis_6(df,ticker,fsdates2,items6,title_txt, \
|
1474
|
+
facecolor=facecolor,font_size=font_size)
|
1399
1475
|
|
1400
1476
|
#应收账款占比同行对比
|
1401
1477
|
items7=['应收账款','资产总计','应收账款占比%']
|
1402
1478
|
#title_txt=title_head+"应收账款占比同行对比"
|
1403
1479
|
title_txt="应收账款占比同行对比:"+fsdate
|
1404
|
-
dfp7=fs_item_analysis_7(df,tickers,fsdate,items7,title_txt,
|
1480
|
+
dfp7=fs_item_analysis_7(df,tickers,fsdate,items7,title_txt, \
|
1481
|
+
facecolor=facecolor,font_size=font_size)
|
1405
1482
|
|
1406
1483
|
### 存货
|
1407
1484
|
#存货占比变动分析
|
1408
1485
|
items8=["存货","资产总计"]
|
1409
1486
|
title_txt=title_head+"存货占比变动情况"
|
1410
|
-
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items8,title_txt,
|
1487
|
+
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items8,title_txt, \
|
1488
|
+
facecolor=facecolor,font_size=font_size)
|
1411
1489
|
"""
|
1412
1490
|
items9=["存货","营业总收入"]
|
1413
1491
|
dfp9=fs_item_analysis_6(df,ticker,fsdates2,items9)
|
@@ -1415,32 +1493,38 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1415
1493
|
#存货与营业收入增幅对比分析
|
1416
1494
|
items10=['存货','流动资产合计',"速动资产合计","资产总计"]
|
1417
1495
|
title_txt=title_head+"存货与资产项目增幅对比"
|
1418
|
-
dfp10=fs_item_analysis_6(df,ticker,fsdates2,items10,title_txt,
|
1496
|
+
dfp10=fs_item_analysis_6(df,ticker,fsdates2,items10,title_txt, \
|
1497
|
+
facecolor=facecolor,font_size=font_size)
|
1419
1498
|
|
1420
1499
|
#存货占比与行业对比
|
1421
1500
|
items11=['存货','资产总计','存货占比%']
|
1422
1501
|
#title_txt=title_head+"存货占比情况同行对比"
|
1423
1502
|
title_txt="存货占比情况同行对比:"+fsdate
|
1424
|
-
dfp11=fs_item_analysis_7(df,tickers,fsdate,items11,title_txt,
|
1503
|
+
dfp11=fs_item_analysis_7(df,tickers,fsdate,items11,title_txt, \
|
1504
|
+
facecolor=facecolor,font_size=font_size)
|
1425
1505
|
|
1426
1506
|
### 偿债能力
|
1427
1507
|
#流动比率变动分析
|
1428
1508
|
title_txt=title_head+"流动比率变动情况"
|
1429
|
-
dfp12=fs_item_analysis_3(df,ticker,fsdates1,title_txt,
|
1509
|
+
dfp12=fs_item_analysis_3(df,ticker,fsdates1,title_txt, \
|
1510
|
+
facecolor=facecolor,font_size=font_size)
|
1430
1511
|
|
1431
1512
|
#速动比率变动分析
|
1432
1513
|
title_txt=title_head+"速动比率变动情况"
|
1433
|
-
dfp13=fs_item_analysis_4(df,ticker,fsdates1,title_txt,
|
1514
|
+
dfp13=fs_item_analysis_4(df,ticker,fsdates1,title_txt, \
|
1515
|
+
facecolor=facecolor,font_size=font_size)
|
1434
1516
|
|
1435
1517
|
#资产负债率变动分析
|
1436
1518
|
title_txt=title_head+"资产负债率变动情况"
|
1437
|
-
dfp14=fs_item_analysis_5(df,ticker,fsdates1,title_txt,
|
1519
|
+
dfp14=fs_item_analysis_5(df,ticker,fsdates1,title_txt, \
|
1520
|
+
facecolor=facecolor,font_size=font_size)
|
1438
1521
|
|
1439
1522
|
#资产负债率同行比较
|
1440
1523
|
#title_txt=title_head+"资产负债率同行比较"
|
1441
1524
|
title_txt="资产负债率同行比较:"+fsdate
|
1442
1525
|
items15=['资产总计','资产负债率%','流动比率%','速动比率%']
|
1443
|
-
dfp15=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,
|
1526
|
+
dfp15=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt, \
|
1527
|
+
facecolor=facecolor,font_size=font_size)
|
1444
1528
|
|
1445
1529
|
return
|
1446
1530
|
|
@@ -1450,15 +1534,15 @@ if __name__=='__main__':
|
|
1450
1534
|
fsdates=['2021-12-31','2020-12-31','2019-12-31','2018-12-31']
|
1451
1535
|
income_cost_structure_china(tickers,fsdates)
|
1452
1536
|
|
1453
|
-
def income_cost_china(tickers,fsdates,facecolor='papayawhip'):
|
1537
|
+
def income_cost_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1454
1538
|
"""
|
1455
1539
|
套壳函数income_cost_structure_china
|
1456
1540
|
"""
|
1457
|
-
income_cost_structure_china(tickers,fsdates,facecolor=facecolor)
|
1541
|
+
income_cost_structure_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1458
1542
|
|
1459
1543
|
return
|
1460
1544
|
|
1461
|
-
def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
1545
|
+
def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1462
1546
|
"""
|
1463
1547
|
功能:分析上市公司的收入成本基本结构,并与同业公司对比。
|
1464
1548
|
注意1:分析近三期情况,fsdates要给出四个报表日期,以便获得期初数。
|
@@ -1526,7 +1610,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1526
1610
|
#收入成本总体变动趋势
|
1527
1611
|
title_txt=title_head+"主要利润表项目,"+fsdate
|
1528
1612
|
items1=["营业总收入","营业总成本","营业成本","毛利润","营业利润","营业外收支","税前利润","所得税费用","净利润","归母净利润"]
|
1529
|
-
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt,
|
1613
|
+
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt, \
|
1614
|
+
facecolor=facecolor,font_size=font_size)
|
1530
1615
|
|
1531
1616
|
#成本变动趋势
|
1532
1617
|
title_txt=title_head+"主要成本费用项目,"+fsdate
|
@@ -1539,7 +1624,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1539
1624
|
items2=["营业总成本","营业成本","营业税金及附加","销售费用","管理费用","研发费用",
|
1540
1625
|
"应付利息","非流动资产处置损失",
|
1541
1626
|
"资产减值损失","营业外支出"]
|
1542
|
-
dfp2=fs_item_analysis_1(df,ticker,'2021-12-31',items2,title_txt,
|
1627
|
+
dfp2=fs_item_analysis_1(df,ticker,'2021-12-31',items2,title_txt, \
|
1628
|
+
facecolor=facecolor,font_size=font_size)
|
1543
1629
|
|
1544
1630
|
#占比变动分析:近三年
|
1545
1631
|
title_txt=title_head+"营业总成本占营业总收入比例情况"
|
@@ -1555,7 +1641,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1555
1641
|
notes3="营业总收入=营业收入+非营业收入(投资收益、营业外收入等)"
|
1556
1642
|
|
1557
1643
|
notes=notes1+'\n'+notes2+'\n'+notes3
|
1558
|
-
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items3,title_txt,notes,
|
1644
|
+
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items3,title_txt,notes, \
|
1645
|
+
facecolor=facecolor,font_size=font_size)
|
1559
1646
|
#====================================================================
|
1560
1647
|
title_txt=title_head+"营业成本占营业总成本比例情况"
|
1561
1648
|
items4=["营业成本","营业总成本"]
|
@@ -1567,29 +1654,34 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1567
1654
|
notes2="营业总成本包括营业成本、营业税金及附加、三大费用和资产减值损失"
|
1568
1655
|
|
1569
1656
|
notes=notes1+'\n'+notes2
|
1570
|
-
dfp4=fs_item_analysis_2(df,ticker,fsdates1,items4,title_txt,notes,
|
1657
|
+
dfp4=fs_item_analysis_2(df,ticker,fsdates1,items4,title_txt,notes, \
|
1658
|
+
facecolor=facecolor,font_size=font_size)
|
1571
1659
|
|
1572
1660
|
title_txt=title_head+"营业成本占营业总收入比例情况"
|
1573
1661
|
items5=["营业成本","营业总收入"]
|
1574
|
-
dfp5=fs_item_analysis_2(df,ticker,fsdates1,items5,title_txt,
|
1662
|
+
dfp5=fs_item_analysis_2(df,ticker,fsdates1,items5,title_txt, \
|
1663
|
+
facecolor=facecolor,font_size=font_size)
|
1575
1664
|
|
1576
1665
|
title_txt=title_head+"营业成本增幅分析"
|
1577
1666
|
fsdates2=fsdates[:2]
|
1578
1667
|
items12=['营业成本','营业总成本','营业总收入']
|
1579
|
-
dfp12=fs_item_analysis_6(df,ticker,fsdates2,items12,title_txt,
|
1668
|
+
dfp12=fs_item_analysis_6(df,ticker,fsdates2,items12,title_txt, \
|
1669
|
+
facecolor=facecolor,font_size=font_size)
|
1580
1670
|
|
1581
1671
|
#====================================================================
|
1582
1672
|
title_txt=title_head+"销售费用占营业总收入比例情况"
|
1583
1673
|
items6=["销售费用","营业总收入"]
|
1584
1674
|
|
1585
1675
|
notes="注:销售费用是企业销售过程中发生的各种费用"
|
1586
|
-
dfp6=fs_item_analysis_2(df,ticker,fsdates1,items6,title_txt,notes,
|
1676
|
+
dfp6=fs_item_analysis_2(df,ticker,fsdates1,items6,title_txt,notes, \
|
1677
|
+
facecolor=facecolor,font_size=font_size)
|
1587
1678
|
#====================================================================
|
1588
1679
|
title_txt=title_head+"管理费用占营业总收入比例情况"
|
1589
1680
|
items7=["管理费用","营业总收入"]
|
1590
1681
|
|
1591
1682
|
notes="注:管理费用是行政管理部门为组织生产/经营活动发生的各种费用"
|
1592
|
-
dfp7=fs_item_analysis_2(df,ticker,fsdates1,items7,title_txt,notes,
|
1683
|
+
dfp7=fs_item_analysis_2(df,ticker,fsdates1,items7,title_txt,notes, \
|
1684
|
+
facecolor=facecolor,font_size=font_size)
|
1593
1685
|
|
1594
1686
|
#title_txt=title_head+"三项费用率同行对比"
|
1595
1687
|
title_txt="三项费用率同行对比:"+fsdate
|
@@ -1605,28 +1697,34 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1605
1697
|
|
1606
1698
|
notes=notes1+'\n'+notes2+'\n'+notes3
|
1607
1699
|
|
1608
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items14,title_txt,notes,
|
1700
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items14,title_txt,notes, \
|
1701
|
+
facecolor=facecolor,font_size=font_size)
|
1609
1702
|
#====================================================================
|
1610
1703
|
title_txt=title_head+"毛利润占营业总收入比例情况"
|
1611
1704
|
items8=["毛利润","营业总收入"]
|
1612
|
-
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items8,title_txt,
|
1705
|
+
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items8,title_txt, \
|
1706
|
+
facecolor=facecolor,font_size=font_size)
|
1613
1707
|
#====================================================================
|
1614
1708
|
title_txt=title_head+"营业利润占营业总收入比例情况"
|
1615
1709
|
items9=["营业利润","营业总收入"]
|
1616
|
-
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items9,title_txt,
|
1710
|
+
dfp8=fs_item_analysis_2(df,ticker,fsdates1,items9,title_txt, \
|
1711
|
+
facecolor=facecolor,font_size=font_size)
|
1617
1712
|
#====================================================================
|
1618
1713
|
title_txt=title_head+"税前利润占营业总收入比例情况"
|
1619
1714
|
items10=["税前利润","营业总收入"]
|
1620
|
-
dfp9=fs_item_analysis_2(df,ticker,fsdates1,items10,title_txt,
|
1715
|
+
dfp9=fs_item_analysis_2(df,ticker,fsdates1,items10,title_txt, \
|
1716
|
+
facecolor=facecolor,font_size=font_size)
|
1621
1717
|
#====================================================================
|
1622
1718
|
title_txt=title_head+"净利润占营业总收入比例情况"
|
1623
1719
|
items11=["净利润","营业总收入"]
|
1624
|
-
dfp9=fs_item_analysis_2(df,ticker,fsdates1,items11,title_txt,
|
1720
|
+
dfp9=fs_item_analysis_2(df,ticker,fsdates1,items11,title_txt, \
|
1721
|
+
facecolor=facecolor,font_size=font_size)
|
1625
1722
|
|
1626
1723
|
#增幅分析:近两年
|
1627
1724
|
title_txt=title_head+"四种利润对比"
|
1628
1725
|
items13=['毛利润','营业利润','税前利润','净利润']
|
1629
|
-
dfp11=fs_item_analysis_6(df,ticker,fsdates2,items13,title_txt,
|
1726
|
+
dfp11=fs_item_analysis_6(df,ticker,fsdates2,items13,title_txt, \
|
1727
|
+
facecolor=facecolor,font_size=font_size)
|
1630
1728
|
|
1631
1729
|
#同行比较
|
1632
1730
|
#title_txt=title_head+"利润率同行对比"
|
@@ -1634,7 +1732,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1634
1732
|
#items15=['营业利润','营业利润率%','税前利润率%','实际所得税率%','净利润','净利润率%']
|
1635
1733
|
#items15=['毛利润率%','营业利润率%','税前利润率%','净利润率%']
|
1636
1734
|
items15=['净利润率%','税前利润率%','营业利润率%','毛利润率%']
|
1637
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,
|
1735
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt, \
|
1736
|
+
facecolor=facecolor,font_size=font_size)
|
1638
1737
|
|
1639
1738
|
return
|
1640
1739
|
|
@@ -1644,16 +1743,16 @@ if __name__=='__main__':
|
|
1644
1743
|
fsdates=['2021-12-31','2020-12-31','2019-12-31','2018-12-31']
|
1645
1744
|
cash_flow_structure_china(tickers,fsdates)
|
1646
1745
|
|
1647
|
-
def cash_flow_china(tickers,fsdates,facecolor='papayawhip'):
|
1746
|
+
def cash_flow_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1648
1747
|
"""
|
1649
1748
|
套壳函数cash_flow_structure_china
|
1650
1749
|
"""
|
1651
|
-
cash_flow_structure_china(tickers,fsdates,facecolor=facecolor)
|
1750
|
+
cash_flow_structure_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1652
1751
|
|
1653
1752
|
return
|
1654
1753
|
|
1655
1754
|
|
1656
|
-
def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
1755
|
+
def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
1657
1756
|
"""
|
1658
1757
|
功能:分析上市公司的现金流量基本结构,并与同业公司对比。
|
1659
1758
|
注意1:分析近三期情况,fsdates要给出四个报表日期,以便获得期初数。
|
@@ -1722,23 +1821,27 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1722
1821
|
"投资活动现金流净额","投资活动现金流入","投资活动现金流出",
|
1723
1822
|
"筹资活动现金流净额","筹资活动现金流入","筹资活动现金流出",
|
1724
1823
|
"汇率对现金流的影响","现金流量净增加额"]
|
1725
|
-
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt,
|
1824
|
+
dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt, \
|
1825
|
+
facecolor=facecolor,font_size=font_size)
|
1726
1826
|
|
1727
1827
|
#占比变动分析:近三年
|
1728
1828
|
title_txt=title_head+"经营活动现金流入占比情况"
|
1729
1829
|
fsdates1=fsdates[:3]
|
1730
1830
|
items3=["经营活动现金流入","营业总收入"]
|
1731
|
-
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items3,title_txt,
|
1831
|
+
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items3,title_txt, \
|
1832
|
+
facecolor=facecolor,font_size=font_size)
|
1732
1833
|
|
1733
1834
|
title_txt=title_head+"经营活动现金流净额占比情况"
|
1734
1835
|
items4=["经营活动现金流净额","营业利润"]
|
1735
|
-
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items4,title_txt,
|
1836
|
+
dfp3=fs_item_analysis_2(df,ticker,fsdates1,items4,title_txt, \
|
1837
|
+
facecolor=facecolor,font_size=font_size)
|
1736
1838
|
|
1737
1839
|
#增幅分析:近两年
|
1738
1840
|
title_txt=title_head+"经营活动现金流增幅情况"
|
1739
1841
|
fsdates2=fsdates[:2]
|
1740
1842
|
items12=['经营活动现金流入','经营活动现金流出','经营活动现金流净额']
|
1741
|
-
dfp12=fs_item_analysis_6(df,ticker,fsdates2,items12,title_txt,
|
1843
|
+
dfp12=fs_item_analysis_6(df,ticker,fsdates2,items12,title_txt, \
|
1844
|
+
facecolor=facecolor,font_size=font_size)
|
1742
1845
|
|
1743
1846
|
#同行比较
|
1744
1847
|
title_txt=title_head+"现金收入能力同行比较,"+fsdate
|
@@ -1753,7 +1856,8 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1753
1856
|
notes3="营业现金回笼率 = 经营活动现金流入 / 营业总收入"
|
1754
1857
|
|
1755
1858
|
notes=notes1+'\n'+notes2+'\n'+notes3
|
1756
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items16,title_txt,notes,
|
1859
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items16,title_txt,notes, \
|
1860
|
+
facecolor=facecolor,font_size=font_size)
|
1757
1861
|
|
1758
1862
|
title_txt=title_head+"现金偿债能力同行比较,"+fsdate
|
1759
1863
|
items14=['短期现金偿债能力%','长期现金偿债能力%']
|
@@ -1765,7 +1869,8 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1765
1869
|
notes2="长期现金偿债能力 = 经营活动现金流净额 / 负债合计"
|
1766
1870
|
|
1767
1871
|
notes=notes1+'\n'+notes2
|
1768
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items14,title_txt,notes,
|
1872
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items14,title_txt,notes, \
|
1873
|
+
facecolor=facecolor,font_size=font_size)
|
1769
1874
|
|
1770
1875
|
title_txt=title_head+"现金支付能力同行比较,"+fsdate
|
1771
1876
|
items15=['现金支付股利能力(元)','现金综合支付能力%','支付给职工的现金比率%']
|
@@ -1779,7 +1884,8 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1779
1884
|
notes3="支付给职工的现金比率 = 支付给(为)职工支付的现金 / 经营活动现金流入"
|
1780
1885
|
|
1781
1886
|
notes=notes1+'\n'+notes2+'\n'+notes3
|
1782
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,notes,
|
1887
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,notes, \
|
1888
|
+
facecolor=facecolor,font_size=font_size)
|
1783
1889
|
|
1784
1890
|
title_txt=title_head+"财务指标含金量同行比较,"+fsdate
|
1785
1891
|
items17=['盈利现金比率%','现金流入流出比率%','资产现金回收率%']
|
@@ -1793,7 +1899,8 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
|
|
1793
1899
|
notes3="资产现金回收率 = 经营活动现金流净额 / 资产总计"
|
1794
1900
|
|
1795
1901
|
notes=notes1+'\n'+notes2+'\n'+notes3
|
1796
|
-
dfp12=fs_item_analysis_8(df,tickers,fsdate,items17,title_txt,notes,
|
1902
|
+
dfp12=fs_item_analysis_8(df,tickers,fsdate,items17,title_txt,notes, \
|
1903
|
+
facecolor=facecolor,font_size=font_size)
|
1797
1904
|
|
1798
1905
|
return
|
1799
1906
|
|
@@ -1852,7 +1959,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1852
1959
|
category='profile',business_period='recent', \
|
1853
1960
|
printout=False,gview=False, \
|
1854
1961
|
loc1='upper left',loc2='upper right', \
|
1855
|
-
facecolor='papayawhip'):
|
1962
|
+
facecolor='papayawhip',font_size='16px'):
|
1856
1963
|
"""
|
1857
1964
|
【功能】财务报表分析,仅适用于中国A股,注意不适用于港股和美股(含中概股)
|
1858
1965
|
|
@@ -1923,7 +2030,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1923
2030
|
fsdates=gen_yoy_dates(fsdates,num=4)
|
1924
2031
|
|
1925
2032
|
# 分析资产负债表
|
1926
|
-
asset_liab_china(tickers,fsdates,facecolor=facecolor)
|
2033
|
+
asset_liab_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1927
2034
|
return
|
1928
2035
|
|
1929
2036
|
elif ('income' in analysis_type1) or ('cost' in analysis_type1) \
|
@@ -1936,7 +2043,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1936
2043
|
fsdates=gen_yoy_dates(fsdates,num=4)
|
1937
2044
|
|
1938
2045
|
# 分析利润表
|
1939
|
-
income_cost_china(tickers,fsdates,facecolor=facecolor)
|
2046
|
+
income_cost_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1940
2047
|
return
|
1941
2048
|
|
1942
2049
|
elif ('cash' in analysis_type1) or ('flow' in analysis_type1):
|
@@ -1948,7 +2055,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1948
2055
|
fsdates=gen_yoy_dates(fsdates,num=4)
|
1949
2056
|
|
1950
2057
|
# 分析现金流量表
|
1951
|
-
cash_flow_china(tickers,fsdates,facecolor=facecolor)
|
2058
|
+
cash_flow_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1952
2059
|
return
|
1953
2060
|
|
1954
2061
|
elif ('summary' in analysis_type1):
|
@@ -1973,7 +2080,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1973
2080
|
|
1974
2081
|
# 分析财报摘要
|
1975
2082
|
from siat.financials_china import compare_fin_summary_china
|
1976
|
-
df_summary=compare_fin_summary_china(tickers,fsdates,facecolor=facecolor)
|
2083
|
+
df_summary=compare_fin_summary_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
1977
2084
|
return
|
1978
2085
|
|
1979
2086
|
elif ('indicator' in analysis_type1):
|
@@ -1998,7 +2105,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1998
2105
|
|
1999
2106
|
# 分析主要财务指标和比率
|
2000
2107
|
from siat.financials_china import compare_fin_indicator_china
|
2001
|
-
df_ind=compare_fin_indicator_china(tickers,fsdates,facecolor=facecolor)
|
2108
|
+
df_ind=compare_fin_indicator_china(tickers,fsdates,facecolor=facecolor,font_size=font_size)
|
2002
2109
|
return
|
2003
2110
|
|
2004
2111
|
elif ('profile' in analysis_type1):
|
@@ -2008,7 +2115,8 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
2008
2115
|
return
|
2009
2116
|
|
2010
2117
|
# 分析单只股票的全方位概况
|
2011
|
-
stock_profile_china(tickers,category,business_period,loc1=loc1,loc2=loc2,
|
2118
|
+
stock_profile_china(tickers,category,business_period,loc1=loc1,loc2=loc2, \
|
2119
|
+
facecolor=facecolor,font_size=font_size)
|
2012
2120
|
return
|
2013
2121
|
|
2014
2122
|
elif ('dupont' in analysis_type1) and (('identity' in analysis_type1) or ('analysis' in analysis_type1)):
|
@@ -2026,7 +2134,8 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
2026
2134
|
|
2027
2135
|
# 多只股票的杜邦分析对比
|
2028
2136
|
from siat.financials_china import compare_dupont_china
|
2029
|
-
df_db=compare_dupont_china(tickers,fsdate=fsdates,printout=printout,
|
2137
|
+
df_db=compare_dupont_china(tickers,fsdate=fsdates,printout=printout, \
|
2138
|
+
facecolor=facecolor,font_size=font_size)
|
2030
2139
|
return
|
2031
2140
|
|
2032
2141
|
elif ('dupont' in analysis_type1) and ('decompose' in analysis_type1):
|